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The derivatives of eight Horn hypergeometric functions [four Appell F1, F2, F3,
and F4, and four (degenerate) confluent Φ1, Φ2, Ψ1, and Ξ1] with respect to their
parameters are studied. The first derivatives are expressed, systematically, as triple
infinite summations or, alternatively, as single summations of two-variable Kampé
de Fériet functions. Taking advantage of previously established expressions for the
derivative of the confluent or Gaussian hypergeometric functions, the generalization
to the nth derivative of Horn’s functions with respect to their parameters is rather
straightforward in most cases; the results are expressed in terms of n + 2 infinite
summations. Following a similar procedure, mixed derivatives are also treated. An
illustration of the usefulness of the derivatives of F1, with respect to the first and third
parameters, is given with the study of autoionization of atoms occurring as part of
a post-collisional process. Their evaluation setting the Coulomb charge to zero pro-
vides the coefficients of a Born-like expansion of the interaction. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4994059]

I. INTRODUCTION

Two-variable hypergeometric series have been studied extensively from their mathematical point
of view.1–4 Horn essentially identified 34 distinct convergent series (see, e.g., p. 224-226 of Ref. 3
or Sec. 1.3 of Ref. 1). Amongst them, we have selected eight Horn series that occur more frequently
in a wide variety of problems in theoretical physics, applied mathematics, chemistry, statistics and
engineering sciences (see, e.g., Refs. 2–16). They are the four Appell hypergeometric functions (F1,
F2, F3, and F4) and four (degenerate) confluent hypergeometric ones (Φ1, Φ2, Ψ1, and Ξ1). The
purpose of this paper is to provide ready to use compact expressions for the derivatives of such
functions with respect to their parameters.

Amongst the properties of two-variable (say z1 and z2) hypergeometric functions, one finds com-
pact expressions for the derivatives to nth order with respect to z1 and/or z2. In some applications,
on top of the variables, the quantity of interest may be one of the parameters, say α. The dependence
on such a parameter is therefore related to the study of Horn series as a function of α, rather than
their variables z1 and z2. Similarly, for one-variable hypergeometric series pFq, the dependence on a
parameter may be of special interest; this is the case for applications in fields as varied as physics,17–24

engineering,25–28 neurosciences,29 biochemistry,30 statistics,31,32 and even in mathematical finance.33

One important tool is then provided by the derivatives of such functions with respect to their param-
eters since they allow, for example, to write a Taylor expansion around a given value α0. The first
derivative, in particular, is the required quantity if one focuses on the linear dependence on a given
parameter.

The derivative of hypergeometric series with respect to a parameter implies expressing the
derivative of a Pochhammer symbol (or the reciprocal Pochhammer symbol) with respect to its
argument. In this direct method, appears the digamma function Ψ or polygamma functions if higher
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derivatives are at stake; although recurrence relations may then be effectively used to reformulate the
sought after results, the approach is cumbersome as discussed in the Introduction of Ref. 34. Following
this direct route, derivatives with respect to parameters of Appell hypergeometric functions have been
derived by Sahai and Verma.35 With a different scope, useful expressions and properties of derivatives
of the Pochhammer symbol were provided recently by Greynat et al.7,24 who then applied the results
for the so-called ε-expansions of some Appell and Kampé de Fériet hypergeometric functions (the
analytical method seems particularly well adapted to the studied cases in which ε appears linearly
in several parameters at the same time). Such ε-expansion is expressible also in terms of multiple
polylogarithms (see Refs. 23 and 36–38 and the references therein). Without going into details of each,
other analytical and/or numerical approaches exist. For certain classes of functions, small parameter
expansions can be achieved by algebraic tools based on nested sums and can be formulated as
algorithms suitable for an implementation on a computer.38,39 Another numerical tool is provided by
the HYPERDIRE project which is devoted to the creation of a set of Mathematica-based programs
for the differential reduction of generalized hypergeometric functions without the construction of
ε-expansions.16,37,40

As we already stated, the Horn series appear in many branches of science. In high energy physics,
in particular, it was shown that any one-loop Feynman diagram has a representation in terms of Horn-
type hypergeometric functions of few variables (see, e.g., Refs. 5, 6, and 15). In the framework of
dimensional regularization, it is necessary to construct the derivative of such functions with respect to
the parameters. It is therefore in this field, in particular, that analytical properties have been obtained
and different algorithms have been developed and computer packages published (see, e.g., Refs. 7, 16,
23, 24, and 36–41 and the references therein). Some techniques are specific to a class of multivariate
hypergeometric functions, or to integer, half-integer, or rational parameters, others have limitations
in their application. We emphasize that the present contribution does not aim to review and compare
different algorithms. Furthermore, it does not aim to be exhaustive with respect to the 34 Horn
two-variable series.

In previous investigations, we studied the derivatives of any order n, with respect to their param-
eters, of one-variable (z) hypergeometric series: the confluent hypergeometric function 1F1,34 the
Gaussian hypergeometric function 2F1,42 and the general hypergeometric function pFq.43 This was
made possible using the second-order linear differential equation that they satisfy, together with
Babister’s solution44 to closely related non-homogeneous differential equations. The nth derivatives
could finally be expressed in a systematic way in terms of Kampé de Fériet functions2 in n + 1
equal variables z. In contrast to the direct method, we found this differential equation method sim-
pler to implement and generalize. Besides, according to the rather wide range of applications it has
encountered (see, e.g., Refs. 17–22 and 25–33), our formulation seems to be sufficiently accessible
to non-mathematician end users.

The differential equation method employed for the one-variable hypergeometric functions can
also be applied, in principle, for some two-variable Horn functions (like the Appell F1) that can be
related to a high order ordinary differential equation.45 However, since this association is not generally
applicable to all the functions of Horn’s list, we propose here a different strategy. Essentially, we
express Horn functions as single series of Gaussian or confluent hypergeometric functions and then
exploit, when possible, our previous findings.34,42 This provides us with a systematic way of writing
the nth derivatives of Horn functions with respect to the parameters; they are given, in most cases, as
a single sum of generalized multivariable Kampé de Fériet functions, noted as 2Θ

(n)
1 and Θ(n), whose

definition and properties were presented in Refs. 42 and 34, respectively.
We consider derivatives to any order n, but we shall provide details of the procedure mainly for

all n = 1 cases; higher order derivatives, as well as mixed derivatives, are obtained in a similar fashion
since our approach is quite systematic. Also, results for only eight Horn functions will be detailed.
Further two-variable Horn series, as well as triple hypergeometric functions, can be considered in a
very similar way.

To illustrate the usefulness of some of the found expressions, we have considered a physical
application: the autoionization of atoms46 when the decay occurs as part of a post-collisional process.
After an ion-molecule double electron capture, say He++ + H2→He∗∗ + H++

2 , the doubly excited He∗∗

autoionizes, i.e., He∗∗ → He+ + e�. We propose to use the Φ2 model47,48 to describe the interaction
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between the autoionized electron and the two nuclei of the doubly ionized molecule. Such a model
leads to interference fringes on the electron spectra.49 As we shall explain, the nuclear charges of
the molecule play the role of physical parameters; a Taylor expansion around them corresponds to a
Born series approach. Since these nuclear charges appear as mathematical parameters in an Appell
F1 function, derivatives with respect to them are needed to build up the corresponding series and
allow for a physical interpretation of the involved Coulomb interactions. Note that for sufficiently
high relative electron velocities, a first-Born treatment is generally enough, and thus only the first
derivative is needed.

In Sec. II, we describe the method and provide the expressions for the first derivatives with respect
to the parameters. The generalization to order n, mixed derivatives and some further properties are
given in Sec. III. A physical application is presented in Sec. IV. Section V provides a summary of
our results.

II. FIRST DERIVATIVE OF EIGHT HORN HYPERGEOMETRIC FUNCTIONS
WITH RESPECT TO THE PARAMETERS

We assume hereafter that all variables and parameters of the Horn functions are complex numbers
and that the parameters appearing in the denominator of all series are neither zero nor negative integers.
Also, unless otherwise indicated, in all summations, the integers run from 0 to∞. We start by recalling
some results of Refs. 34 and 42 which we shall need below.

Consider first the Gaussian hypergeometric function

2F1 (a, b, c; z)=
∑

n

(a)n(b)n

(c)n

zn

n!
, (1)

where the Pochhammer symbol (γ)n = Γ(γ+n)/Γ(γ) is defined in terms of the Gamma function;3 it is
assumed that |z | < 1. The derivatives with respect to the parameters a or c of the function 2F1 (a, b, c; z)
can be written as42

d
da 2F1(a, b, c; z)=

z
a

a b
c 2Θ

(1)
1

*
,

1, 1|a, a + 1, b + 1

a + 1|2, c + 1

������
; z, z+

-
, (2a)

d
dc 2F1(a, b, c; z)=−

z
c

a b
c 2Θ

(1)
1

*
,

1, 1|c, a + 1, b + 1

c + 1|2, c + 1

������
; z, z+

-
, (2b)

where 2Θ
(1)
1 stands for a two-variable Kampé de Fériet function2 defined as42

2Θ
(1)
1

(
a1, a2 |b1, b2, b3

c1 |d1, d2

�����
; z1, z2

)
=

∑
m,n

(a1)m(a2)n(b1)m

(c1)m

(b2)m+n(b3)m+n

(d1)m+n(d2)m+n

zm
1

m!

zn
2

n!
. (3)

As a and b play a similar role, the derivatives with respect to b may be obtained by interchanging a
and b in (2a).

For the confluent hypergeometric function

1F1 (a, b; z)=
∑

n

(a)n

(b)n

zn

n!
, (4)

the derivatives with respect to a and b read34

d
da 1F1(a, b; z)=

z
b
Θ

(1) *
,

1, 1| a, a + 1

a + 1| 2, b + 1

������
; z, z+

-
(5a)

d
db 1F1(a, b; z)=−

z
b

a
b
Θ

(1) *
,

1, 1| b, a + 1

b + 1| 2, b + 1

������
; z, z+

-
, (5b)

where Θ(1) stands for a two-variable Kampé de Fériet function2 defined as34

Θ
(1) *

,

a1, a2 | b1, b2

c1 | d1, d2

������
; z1, z2+

-
=

∞∑
m1=0

∞∑
m2=0

(a1)m1
(a2)m2

(b1)m1
(b2)m1+m2

(c1)m1
(d1)m1+m2

(d2)m1+m2

zm1
1 zm2

2

m1!m2!
. (6)
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We can now proceed with the eight Horn series F1, F2, F3, F4, Φ1, Φ2, Ψ1, and Ξ1, whose
definitions can be found, e.g., in Ref. 1.

A. Function F2

For presentation convenience, we shall start with the Appell F2 function which is defined by the
two-variable series

F2(a, b1, b2, c1, c2; z1, z2)=
∑
m,n

(a)m+n(b1)m(b2)n

(c1)m(c2)n

zm
1

m!

zn
2

n!
, |z1 | + |z2 | < 1. (7)

One may also express the F2 function as a series about z1 = 0 for fixed z2

F2(a, b1, b2, c1, c2; z1, z2)=
∑

k

(a)k(b1)k

(c1)k
2F1(a + k, b2, c2; z2)

zk
1

k!
. (8)

Using the derivatives of the Gaussian hypergeometric function with respect to its second (respectively,
third) parameter [i.e., relations (2a), respectively, (2b)], we find

d
db2

F2(a, b1, b2, c1, c2; z1, z2)

= z2
a
c2

∑
k

(a + 1)k(b1)k

(c1)k
2Θ

(1)
1

*
,

1, 1|b2, b2 + 1, a + k + 1

b2 + 1|2, c2 + 1

������
; z2, z2+

-

zk
1

k!
(9a)

= z2
a
c2

∑
k,m,n

(a + 1)k+m+n
(b2 + 1)m+n

(2)m+n(c2 + 1)m+n

(b1)k

(c1)k

(1)m(b2)m

(b2 + 1)m
(1)n

zk
1

k!

zm
2

m!

zn
2

n!
, (9b)

d
dc2

F2(a, b1, b2, c1, c2; z1, z2)

= −z2
a b2

c2
2

∑
k

(a + 1)k(b1)k

(c1)k
2Θ

(1)
1

*
,

1, 1|c2, a + k + 1, b2 + 1

c2 + 1|2, c2 + 1

������
; z2, z2+

-

zk
1

k!
, (9c)

= −z2
a b2

c2
2

∑
k,m,n

(a + 1)k+m+n
(b2 + 1)m+n

(2)m+n(c2 + 1)m+n

(b1)k

(c1)k

(1)m(c2)m

(c2 + 1)m
(1)n

zk
1

k!

zm
2

m!

zn
2

n!
. (9d)

In each case, the second equality is obtained by using the identity

1
(a + k)

=
1
a

(a)k

(a + 1)k
. (10)

Thus the derivative of the Appell function is expressed either as an infinite series of functions 2Θ
(1)
1

or, equivalently, as a triple infinite summation.
Making use of the symmetry relation F2(a, b1, b2, c1, c2; z1, z2) = F2(a, b2, b1, c2, c1; z2, z1),

we have similar expressions for the derivatives with respect to b1 and c1 where in the above one
interchanges (z1, b1, c1) with (z2, b2, c2).

Finally, we consider the derivative with respect to the parameter a which appears in the numerator
of series (7) with combined index m + n or, alternatively, in a more cumbersome manner in expansion
(8). For this case, we use a different approach, based on the derivative of the Pochhammer symbol

d(a)n+m

da
= (a)n+m[Ψ(a + n + m) − Ψ(a)]= (a)n+m

m+n−1∑
k=0

1
a + k

, (11)

the second equality coming from a recurrence relation of the digamma function Ψ (Eq. (6.3.6) of
Ref. 50). Note that for n = m = 0, this derivative is obviously zero. It is convenient to split the sum
into two,

d(a)n+m

da
= (a)n+m



m−1∑
k=0

1
a + k

+
n−1∑
k=0

1
a + m + k


. (12)
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The derivative of F2(a, b1, b2, c1, c2; z1, z2) with respect to a can therefore be written as

d
da

F2(a, b1, b2, c1, c2; z1, z2)

=

∞∑
m=0

∞∑
n=0

(a)n+m
(b1)m(b2)n

(c1)m(c2)n

zm
1

m!

zn
2

n!



m−1∑
k=0

1
a + k

+
n−1∑
k=0

1
a + m + k


(13a)

=

∞∑
n=0

(b2)n

(c2)n

zn
2

n!

∞∑
m=0

(b1)m+1

(c1)m+1

zm+1
1

(m + 1)!
(a)n+m+1

m∑
k=0

1
a

(a)k

(a + 1)k

+
∞∑

m=0

(b1)m

(c1)m

zm
1

m!

∞∑
n=0

(b2)n+1

(c2)n+1

zn+1
2

(n + 1)!
(a)n+m+1

n∑
k=0

1
a

(a)m+k

(a + 1)m+k
, (13b)

where for the second equality, we shifted the index m (respectively, n), and we made use of relation
(10). Using then the rearrangement series technique (see, for example, Chap. 2 of Ref. 51)

∞∑
p=0

p∑
k=0

B(k, p)=
∞∑

p=0

∞∑
k=0

B(k, p + k), (14)

we obtain two separate triple infinite summations

d
da

F2(a, b1, b2, c1, c2; z1, z2)

= z1
b1

c1

∞∑
k,m,n=0

(a + 1)n+m+k
(b1 + 1)m+k

(c1 + 1)m+k(2)m+k

(1)k(a)k

(a + 1)k
(1)m

(b2)n

(c2)n

zk
1

k!

zm
1

m!

zn
2

n!
(15)

+ z2
b2

c2

∞∑
k,m,n=0

(a + 1)n+m+k
(b2 + 1)n+k

(c2 + 1)n+k(2)n+k

(a)m+k

(a + 1)m+k
(1)k

(b1)m

(c1)m
(1)n

zk
2

k!

zn
2

n!

zm
1

m!
.

Each of these triple summations can also be expressed as single series of 2Θ
(1)
1 functions.

B. Function F1

We now turn to the F1 function which is defined as

F1(a, b1, b2, c; z1, z2)=
∑
m,n

(a)m+n(b1)m(b2)n

(c)m+n

zm
1

m!

zn
2

n!
, |z1 | < 1, |z2 | < 1. (16)

As a series around the z1 = 0 point, for fixed z2, one has

F1(a, b1, b2, c; z1, z2)=
∑

k

(a)k(b1)k

(c)k
2F1(a + k, b2, c + k; z2)

zk
1

k!
. (17)

Using expression (2a), we immediately get

d
db2

F1(a, b1, b2, c; z1, z2)

= z2
a
c

∑
k

(a + 1)k(b1)k

(c + 1)k
2Θ

(1)
1

(
1, 1|b2, b2 + 1, a + k + 1

b2 + 1|2, c + k + 1

�����
; z2, z2

)
zk

1

k!
(18a)

= z2
a
c

∑
k,m,n

(a + 1)k+m+n

(c + 1)k+m+n

(b2 + 1)m+n

(2)m+n
(b1)k

(1)m(b2)m

(b2 + 1)m
(1)n

zk
1

k!

zm
2

m!

zn
2

n!
, (18b)

and a similar expression, for the derivative with respect to b1 by interchanging (z1, b1) with (z2, b2),
since F1(a, b1, b2, c; z1, z2) = F1(a, b2, b1, c; z2, z1).

For the derivative with respect to parameters a and c, we first use the identity
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F2(a, b1, b2, c, a; z1, z2)= (1 − z2)−b2 F1

(
b1, a − b2, b2, c; z1,

z1

1 − z2

)
(19)

from which

F1(a, b1, b2, c; z1, z2)=

(
z1

z2

)b2

F2

(
b1 + b2, a, b2, c, b1 + b2; z1, 1 −

z1

z2

)
. (20)

Then, applying the expressions found previously for F2, i.e., Eqs. (9a)–(9d), one easily finds

d
da

F1(a, b1, b2, c; z1, z2)

=

(
z1

z2

)b2 d
da

F2

(
b1 + b2, a, b2, c, b1 + b2; z1, 1 −

z1

z2

)
(21a)

=

(
z1

z2

)b2

z1
b1 + b2

c

∑
k

(b1 + b2 + 1)k(b2)k

(b1 + b2)k

1
k!

(
1 −

z1

z2

)k

× 2Θ
(1)
1

(
1, 1|a, a + 1, b1 + b2 + 1 + k

a + 1|2, c + 1

�����
; z1, z1

)
(21b)

=

(
z1

z2

)b2

z1
b1 + b2

c

∑
k,m,n

(b1 + b2 + 1)k+m+n
(a + 1)m+n

(2)m+n(c + 1)m+n

(b2)k

(b1 + b2)k

×
(1)m(a)m

(a + 1)m
(1)n

1
k!

(
1 −

z1

z2

)k zm
1

m!

zn
1

n!
, (21c)

d
dc

F1(a, b1, b2, c; z1, z2)

=

(
z1

z2

)b2 d
dc

F2

(
b1 + b2, a, b2, c, b1 + b2; z1, 1 −

z1

z2

)
(22a)

= −

(
z1

z2

)b2

z1
(b1 + b2) a

c2

∑
k

(b1 + b2 + 1)k(b2)k

(b1 + b2)k

1
k!

(
1 −

z1

z2

)k

× 2Θ
(1)
1

(
1, 1|c, b1 + b2 + 1 + k, a + 1

c + 1|2, c + 1

�����
; z1, z1

)
(22b)

= −

(
z1

z2

)b2

z1
(b1 + b2) a

c2

∑
k,m,n

(b1 + b2 + 1)k+m+n
(a + 1)m+n

(2)m+n(c + 1)m+n

(b2)k

(b1 + b2)k

×
(1)m(c)m

(c + 1)m
(1)n

1
k!

(
1 −

z1

z2

)k zm
1

m!

zn
1

n!
. (22c)

C. Function F3

Next, we consider the F3 function which is defined as

F3(a1, a2, b1, b2, c; z1, z2)=
∑
m,n

(a1)m(a2)n(b1)m(b2)n

(c)m+n

zm
1

m!

zn
2

n!
, |z1 | < 1, |z2 | < 1. (23)

Using the series around the z1 = 0 point, for fixed z2,

F3(a1, a2, b1, b2, c; z1, z2)=
∑

k

(a1)k(b1)k

(c)k
2F1(a2, b2, c + k; z2)

zk
1

k!
, (24)

and following the same procedure [i.e., using result (2a)], we obtain
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d
da2

F3(a1, a2, b1, b2, c; z1, z2)

= z2
b2

c

∑
k

(a1)k(b1)k

(c + 1)k

zk
1

k! 2Θ
(1)
1

(
1, 1|a2, a2 + 1, b2 + 1

a2 + 1|2, c + k + 1

�����
; z2, z2

)
(25a)

= z2
b2

c

∑
k,m,n

1
(c + 1)k+m+n

(a2 + 1)m+n(b2 + 1)m+n

(2)m+n
(a1)k(b1)k

(1)m(a2)m

(a2 + 1)m
(1)n

zk
1

k!

zm
2

m!

zn
2

n!
. (25b)

Since a2 and b2 play a similar role in the definition of F3, the derivative with respect to b2 is
the same as the above by simply interchanging a2 with b2. Moreover, since F3(a1, a2, b1, b2, c; z1,
z2) = F3(a2, a1, b2, b1, c; z2, z1), the derivative with respect to a1 (and similarly to b1) is given by
expressions (25a) or (25b), by interchanging (z1, a1, b1) with (z2, a2, b2).

For the derivative with respect to c, the calculation is different, as c appears with an index m + n
in (23). In this case, we have

d
dc

1
(c)n+m

=−
1

[(c)n+m]2

d(c)n+m

dc
=−

1
(c)n+m



m−1∑
k=0

1
c + k

+
n−1∑
k=0

1
c + m + k


, (26)

the second equality coming from (12). Proceeding similarly to the derivative of F2 with respect to a,
one arrives to

d
dc

F3(a1, a2, b1, b2, c; z1, z2)

= −z1
a1b1

c2

∑
m,n,k

(1)m(a2)n(b2)n(1)k(c)k

(c + 1)k

(a1 + 1)m+k(b1 + 1)m+k

(2)m+k

1
(c + 1)m+n+k

×
zm

1

m!

zk
1

k!

zn
2

n!

− z2
a2b2

c2

∑
m,n,k

(a1)m(b1)m(1)n(1)k
(c)m+k

(c + 1)m+k

(a2 + 1)n+k(b2 + 1)n+k

(2)n+k

1
(c + 1)m+n+k

×
zm

1

m!

zk
2

k!

zn
2

n!
, (27)

which may be written, equivalently, as two single summations of 2Θ
(1)
1 functions.

D. Function F4

Finally, the Appell function F4 is defined as

F4(a, b, c1, c2; z1, z2)=
∑
m,n

(a)m+n(b)m+n

(c1)m(c2)n

zm
1

m!

zn
2

n!
, |
√

z1 | + |
√

z2 | < 1. (28)

Alternatively, as a series around the z1 = 0 point, for fixed z2, one has

F4(a, b, c1, c2; z1, z2)=
∑

k

(a)k(b)k

(c1)k
2F1(a + k, b + k, c2; z2)

zk
1

k!
. (29)

Applying result (2b), one immediately finds

d
dc2

F4(a, b, c1, c2; z1, z2)

= −z2
a b

c2
2

∑
k

(a + 1)k(b + 1)k

(c1)k

zk
1

k! 2Θ
(1)
1

(
1, 1|c2, a + k + 1, b + k + 1

c2 + 1|2, c2 + 1

�����
; z2, z2

)
(30a)

= −z2
a b

c2
2

∑
k,m,n

(a + 1)k+m+n(b + 1)k+m+n
1

(2)m+n(c2 + 1)m+n

1
(c1)k

×
(1)m(c2)m

(c2 + 1)m
(1)n

zk
1

k!

zm
2

m!

zn
2

n!
(30b)
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and a similar expression for the derivative with respect to c1 can be obtained by interchanging (z1,
c1) with (z2, c2), since F4(a, b, c1, c2; z1, z2) = F4(a, b, c2, c1; z2, z1).

For the derivative with respect to a (and similarly with respect to b, by permutation), the calcu-
lation is longer, as a appears with an index m + n in (28). We can proceed similarly to the derivative
with respect to a of function F2, and we end up again with two triple infinite summations.

E. Function Φ1

The confluent hypergeometric series Φ1 has the following alternative representations

Φ1(a, b, c; z1, z2)=
∑
m,n

(a)m+n(b)m

(c)m+n

zm
1

m!

zn
2

n!
, |z1 | < 1 (31a)

=
∑

n

(a)n

(c)n

zn
2

n! 2F1(a + n, b, c + n; z1). (31b)

The derivative with respect to the b parameter is given by the direct application of formula (2a) and
reads

d
db
Φ1(a, b, c; z1, z2)

= z1
a
c

∑
n

(a + 1)n

(c + 1)n

zn
2

n! 2Θ
(1)
1

*
,

1, 1|b, b + 1, a + n + 1

b + 1|2, c + n + 1

������
; z1, z1+

-
(32a)

= z1
a
c

∑
k,m,n

(a + 1)k+m+n

(c + 1)k+m+n

(b + 1)m+k

(2)m+k

(1)m(b)m

(b + 1)m
(1)k

zk
1

k!

zm
1

m!

zn
2

n!
. (32b)

The case of the derivative with respect to a is similar to that of the derivative with respect to the
first parameter of the Appell F2 function, while the situation with parameter c is similar to the one
found with the fifth parameter of the Appell F3 function. Thus they can be calculated, proceeding as
described in those two cases, and the results are

d
da
Φ1(a, b, c; z1, z2)

= z1
b
c

∑
m,n,k

(1)m(1)k(a)k

(a + 1)k

(b + 1)m+k

(2)m+k

(a + 1)m+n+k

(c + 1)m+n+k

zm
1

m!

zk
1

k!

zn
2

n!

+ z2
1
c

∑
m,n,k

(b)m(1)n(1)k
(a)m+k

(a + 1)m+k

1
(2)n+k

(a + 1)m+n+k

(c + 1)m+n+k

zm
1

m!

zk
2

k!

zn
2

n!
, (33)

d
dc
Φ1(a, b, c; z1, z2)

= −z1
ab

c2

∑
m,n,k

(1)m(1)k(c)k

(c + 1)k

(b + 1)m+k

(2)m+k

(a + 1)m+n+k

(c + 1)m+n+k

zm
1

m!

zk
1

k!

zn
2

n!

− z2
a

c2

∑
m,n,k

(b)m(1)n(1)k
(c)m+k

(c + 1)m+k

1
(2)n+k

(a + 1)m+n+k

(c + 1)m+n+k

zm
1

m!

zk
2

k!

zn
2

n!
, (34)

each triple summation being equivalent to a single summation of 2Θ
(1)
1 functions.

F. Function Φ2

The confluent hypergeometric series Φ2 has the following alternative representations

Φ2(a, b, c; z1, z2)=
∑
m,n

(a)m(b)n

(c)m+n

zm
1

m!

zn
2

n!
(35a)

=
∑

m

(a)m

(c)m

zm
1

m! 1F1(b, c + m; z2). (35b)
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The derivative with respect to the b parameter is given by the direct application of formula (5b) and
reads

d
db
Φ2(a, b, c; z1, z2)

= z2
1
c

∑
n

(a)m

(c + 1)m

zm
1

m!
Θ

(1) *
,

1, 1|b, b + 1

b + 1|2, c + m + 1

������
; z2, z2+

-
(36a)

= z2
1
c

∑
k,m,n

1
(c + 1)k+m+n

(b + 1)n+k

(2)n+k
(a)m

(1)n(b)n

(b + 1)n
(1)k

zm
1

m!

zk
2

k!

zn
2

n!
. (36b)

As a consequence of the symmetry Φ2(a, b, c; z1, z2)=Φ2(b, a, c; z2, z1), the derivative of Φ2

with respect to a can be obtained by simply interchanging (z1, a) with (z2, b) in the previous
formula.

For the derivative with respect to c, we repeat the procedure used to calculate d
dc F3 to obtain

d
dc
Φ2(a, b, c; z1, z2)

=−z1
a

c2

∑
m,n,k

(1)m(b)n(1)k(c)k

(c + 1)k

(a + 1)m+k

(2)m+k

1
(c + 1)m+n+k

zm
1

m!

zk
1

k!

zn
2

n!

− z2
b

c2

∑
m,n,k

(a)m(1)n(1)k
(c)m+k

(c + 1)m+k

(b + 1)n+k

(2)n+k

1
(c + 1)m+n+k

zm
1

m!

zk
2

k!

zn
2

n!
. (37)

G. Function Ψ1

For the confluent hypergeometric series Ψ1, one has the equivalent series expressions

Ψ1(a, b, c1, c2; z1, z2)=
∑
m,n

(a)m+n(b)m

(c1)m(c2)n

zm
1

m!

zn
2

n!
, |z1 | < 1 (38a)

=
∑

m

(a)m(b)m

(c1)m

zm
1

m! 1F1(a + m, c2; z2) (38b)

=
∑

n

(a)n

(c2)n

zn
2

n! 2F1(a + n, b, c1; z1). (38c)

For the derivative with respect to parameter c2, we can use the series representation in terms of
confluent hypergeometric functions (38b) and apply directly formula (5b) to get

d
dc2
Ψ1(a, b, c1, c2; z1, z2)=−z2

a

c2
2

∑
m

(a + 1)m(b)m

(c1)m

zm
1

m!
Θ

(1)
(

1, 1|c2, a + m + 1
c2 + 1|2, c2 + 1

�����
; z2, z2

)
. (39)

For derivatives with respect to b (respectively, c1), it is more convenient to start from series (38c);
by applying directly (2a) [respectively, (2b)], we get

d
db
Ψ1(a, b, c1, c2; z1, z2)= z1

a
c1

∑
m

(a + 1)m

(c2)m

zm
2

m! 2Θ
(1)
1

*
,

1, 1|b, b + 1, a + m + 1

b + 1|2, c1 + 1

������
; z1, z1+

-
, (40)

d
dc1
Ψ1(a, b, c1, c2; z1, z2)=−z1

ab

c2
1

∑
m

(a + 1)m

(c2)m

zm
2

m! 2Θ
(1)
1

*
,

1, 1|c1, a + m + 1, b + 1

c1 + 1|2, c1 + 1

������
; z1, z1+

-
. (41)
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The derivative with respect to a can be calculated similarly to the derivative with respect to the
first parameter of the F2 function. The result reads

d
da
Ψ1(a, b, c1, c2; z1, z2)

= z1
b
c1

∑
m,n,k

(1)m(1)k(a)k

(c2)n(a + 1)k

(b + 1)m+k

(2)m+k(c1 + 1)m+k
(a + 1)m+n+k

zm
1

m!

zk
1

k!

zn
2

n!

+ z2
1
c2

∑
m,n,k

(b)m(1)n(1)k

(c1)m

(a)m+k

(a + 1)m+k

1
(2)n+k(c2 + 1)n+k

(a + 1)m+n+k

zm
1

m!

zk
2

k!

zn
2

n!
. (42)

H. Function Ξ1

For the confluent hypergeometric series Ξ1, one has the equivalent series expressions

Ξ1(a1, a2, b, c; z1, z2)=
∑
m,n

(a1)m(a2)n(b)m

(c)m+n

zm
1

m!

zn
2

n!
, |z1 | < 1 (43a)

=
∑

m

(a1)m(b)m

(c)m

zm
1

m! 1F1(a2, c + m; z2) (43b)

=
∑

n

(a2)n

(c)n

zn
2

n! 2F1(a1, b, c + n; z1). (43c)

The derivative with respect to a1 is, once more, easily deduced from formula (2a) and reads

d
da1
Ξ1(a1, a2, b, c; z1, z2)= z1

b
c

∑
n

(a2)n

(c + 1)n

zn
2

n! 2Θ
(1)
1

(
1, 1|a1, a1 + 1, b + 1
a1 + 1|2, c + n + 1

�����
; z1, z1

)
. (44)

The derivative with respect to b is obtained by interchanging a1 with b in the last formula as a
consequence of the symmetry that the Gaussian hypergeometric functions satisfy. On the other hand,
by applying (5a), for the parameter a2, one finds

d
da2
Ξ1(a1, a2, b, c; z1, z2)= z2

1
c

∑
m

(a1)m(b)m

(c + 1)m

zm
1

m!
Θ

(1)
(

1, 1|a2, a2 + 1
a2 + 1|2, c + m + 1

�����
; z2, z2

)
. (45)

For the derivative with respect to c, we proceed similarly to dF3
dc to obtain

d
dc
Ξ1(a1, a2, b, c; z1, z2)

= −z1
a1b

c2

∑
m,n,k

(1)m(a2)n(1)k(c)k

(c + 1)k

(a1 + 1)m+k(b + 1)m+k

(2)m+k

1
(c + 1)m+n+k

zm
1

m!

zk
1

k!

zn
2

n!

− z2
a2

c2

∑
m,n,k

(a1)m(b)m(1)n(1)k
(c)m+k

(c + 1)m+k

(a2 + 1)n+k

(2)n+k

1
(c + 1)m+n+k

zm
1

m!

zk
2

k!

zn
2

n!
. (46)

III. nTH DERIVATIVES, MIXED DERIVATIVES, AND OTHER PROPERTIES

A. nth derivatives

Similarly to the case of the first derivatives of the Gaussian hypergeometric function 2F1 for which
we introduced a two-variable 2Θ

(1)
1 function, for the nth derivatives, it is convenient to introduce a

hypergeometric function in n + 1 variables42
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2Θ
(n)
1

*
,

a1, a2, . . . , an+1 | b1, b2, . . . , bn+2

c1, . . . , cn | d1, d2

������
; z1, . . . , zn+1+

-

=

∞∑
m1=0

· · ·

∞∑
mn+1=0

(a1)m1
(a2)m2

. . . (an+1)mn+1

(b1)m1
(b2)m1+m2

. . . (bn+1)m1+m2+· · ·+mn+1

(c1)m1
(c2)m1+m2

. . . (cn)m1+m2+· · ·+mn

×
(bn+2)m1+m2+· · ·+mn+1

(d1)m1+m2+· · ·+mn+1
(d2)m1+m2+· · ·+mn+1

zm1
1 zm2

2 . . . zmn+1
n+1

m1!m2! . . .mn+1!
, (47)

which follow some recurrence relations and possess alternative series representations42 which may
be of use in certain cases. In terms of these functions (which are also Kampé de Fériet func-
tions42), the nth derivatives of the Gaussian hypergeometric function with respect to the parameters
read

dn

dan 2F1(a, b, c; z)=
(b)n

(c)n
zn

2Θ
(n)
1

*
,

1, 1, . . . , 1| a, a + 1, . . . , a + n, b + n

a + 1, . . . , a + n| n + 1, c + n

������
; z, . . . , z+

-
, (48a)

dn

dcn 2F1(a, b, c; z)= (−1)n n!
cn

ab
c

z 2Θ
(n)
1

*
,

1, 1, . . . , 1| c, c, . . . , c, a + 1, b + 1

c + 1, . . . , c + 1| 2, c + 1

������
; z, . . . , z+

-
. (48b)

Obviously, the nth derivative with respect to the b parameter can be obtained from (48a) simply by
interchanging a and b. Note that in these nth derivatives, the same variable z appears n + 1 times.

Applying the same procedure as described in Sec. II, the nth derivatives of the Appell functions
with respect to their parameters are given by n + 2 infinite summations. In most cases, they can be
obtained straightforwardly and expressed as a single sum of these 2Θ

(n)
1 functions [for the derivatives

of F2 (respectively, F3 or F4) with respect to a (respectively, c or a), the generalization of the results
to nth order is not as compact]. For example, from (17), one immediately finds

dn

dbn
2

F1(a, b1, b2, c; z1, z2)

= zn
2

(a)n

(c)n

∑
k

(a + n)k(b1)k

(c + n)k

zk
1

k!

× 2Θ
(n)
1

(
1, 1, . . . , 1| b2, b2 + 1, . . . , b2 + n, a + k + n

b2 + 1, . . . , b2 + n| n + 1, c + k + n

�����
; z2, . . . , z2

)
. (49)

For the b1 parameter, a simple symmetry relation can be invoked. To obtain the nth derivative of F1

with respect to a or c, it is convenient to use relation (20) and the series representation (8). Thus we
have

dn

dan F1(a, b1, b2, c; z1, z2)

=

(
z1

z2

)b2

zn
1

1
(c)n

∑
k

(b2)k(b1 + b2)n+k

(b1 + b2)k k!

(
1 −

z1

z2

)k

× 2Θ
(n)
1

(
1, 1, . . . , 1| a, a + 1, . . . , a + n, b1 + b2 + k + n

a + 1, . . . , a + n| n + 1, c + n

�����
; z1, . . . , z1

)
, (50)

dn

dcn F1(a, b1, b2, c; z1, z2)

=

(
z1

z2

)b2

z1(−1)nn!
a(b1 + b2)

cn+1

∑
p

(b2)p(b1 + b2 + 1)p

(b1 + b2)p p!

(
1 −

z1

z2

)p

× 2Θ
(n)
1

(
1, 1, . . . , 1| c, c, . . . , c, b1 + b2 + p + 1, a + 1

c + 1, . . . , c + 1| 2, c + 1

�����
; z1, . . . , z1

)
. (51)

For confluent Horn functions, the generalization depends on which parameter one is considering.
When series expressions in terms of Gaussian hypergeometric functions appear, one proceeds simi-
larly to the Appell situations; in most cases, the result is expressed as a single sum of 2Θ

(n)
1 functions.
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On the other hand, when expressions in terms of confluent hypergeometric functions appear, one
needs the nth derivatives34

dn

dan 1F1(a, b; z)=
zn

(b)n
Θ

(n) *
,

1, 1, . . . , 1| a, a + 1, .., a + n

a + 1, a + 2, . . . , a + n| n + 1, b + n

������
; z, z, .., z+

-
, (52a)

dn

dbn 1F1(a, b; z)= (−1)n n!
bn

a
b

z Θ(n) *
,

1, 1, . . . , 1| b, b, . . . , b, a + 1

b + 1, b + 1, . . . , b + 1| 2, b + 1

������
; z, z, . . . , z+

-
, (52b)

where the Θ(n) function is defined by

Θ
(n) *

,

a1, a2, . . . , an+1 | b1, .., bn+1

c1, . . . , cn | d1, d2

������
; z1, z2, .., zn+1+

-
(53)

=

∞∑
m1=0

· · ·

∞∑
mn+1=0

zm1
1 zm2

2 . . . zmn+1
n+1

m1!m2! · · ·mn+1!

×
(a1)m1

(a2)m2
. . . (an+1)mn+1

(b1)m1
(b2)m1+m2

. . . (bn+1)m1+m2+· · ·+mn+1

(c1)m1
(c2)m1+m2

. . . (cn)m1+m2+· · ·+mn
(d1)m1+m2+· · ·+mn+1

(d2)m1+m2+· · ·+mn+1

.

(Similarly to the functions 2Θ
(n)
1 , Θ(n) are Kampé de Fériet functions with recurrence relations and

alternative series representations.34) For example, starting from series (35b), the nth derivative with
respect to b of the confluent Horn function Φ2(a, b, c; z1, z2) reads

dn

dbnΦ2(a, b, c; z1, z2)=
∑

m

(a)m

(c)m

zm
1

m!

zn
2

(c + m)n

× Θ
(n)

(
1, 1, . . . , 1| b, b + 1, .., b + n

b + 1, b + 2, . . . , b + n| n + 1, c + m + n

�����
; z2, z2, .., z2

)
, (54)

where the same variable z2 appears n + 1 times in the Θ(n) function.
For length purposes, we do not provide all nth derivatives explicitly. However, it is clear that

expressing Horn functions as single series of Gaussian or confluent hypergeometric functions, the
results, (48a) and (48b) or (52a) and (52b), can be applied straightforwardly.

B. Other representations and properties

Most of the derivatives of the eight Horn functions considered in Sec. II have been expressed in
terms of the functions 2Θ

(1)
1 orΘ(1), with two equal variables z1 = z2. Such functions have a number of

properties such as series and integral representations, and contiguous relations.34,42 A deeper study on
functionsΘ(1) and 2Θ

(1)
1 and their generalizations (including the system of differential equations they

satisfy, the holonomic rank and the locus of singularities) should be the subject of future investigations.
As it will be useful in the subsection on mixed derivatives, we provide here alternative series

representations of the 2Θ
(1)
1 function,42

2Θ
(1)
1

(
a1, a2 | b1, b2, b3

c1 | d1, d2

�����
; z1, z2

)
=

∞∑
m1=0

(a1)m1
(b1)m1

(b2)m1
(b3)m1

(c1)m1
(d1)m1

(d2)m1

zm1
1

m1! 3F2 (a2, b2 + m1, b3 + m1, d1 + m1, d2 + m1; z2)

=

∞∑
m2=0

(a2)m2
(b2)m2

(b3)m2

(d1)m2
(d2)m2

zm2
2

m2! 4F3 (a1, b1, b2 + m2, b3 + m2, c1, d1 + m2, d2 + m2; z1) .
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Thus the derivatives of Horn functions with respect to the parameters can be written in alternative
forms which may result to be more practical. For example, for the F1 function, we have

d
db1

F1(a, b1, b2, c; z1, z2)= z1
a
c

∑
k,m

(a + 1)k+m

(c + 1)k+m
(b2)k

(1)m(b1)m

(2)m

zk
2

k!

zm
1

m!
(55a)

× 3F2(1, b1 + 1 + m, a + 1 + k + m, 2 + m, c + 1 + k + m; z1)

= z1
a
c

∑
k,m

(a + 1)k+m

(c + 1)k+m
(b2)k

(1)m(b1 + 1)m

(2)m

zk
2

k!

zm
1

m!
(55b)

× 4F3(1, b1, b1 + 1 + m, a + 1 + k + m, b1 + 1, 2 + m, c + 1 + k + m; z1).

It is also possible to express such derivatives in terms of Gaussian hypergeometric functions

d
db1

F1(a, b1, b2, c; z1, z2)= z1
a
c

∑
m,n

(a + 1)m+n(b1 + 1)m+n

(c + 1)m+n(2)m+n

(b1)m

(b1 + 1)m
zm+n

1

× 2F1(b2, a + 1 + m + n, c + 1 + m + n; z2), (56)

a result that shall be used in Subsection III C.
One more remark. In some subcases, one may easily recover previously published results. As

an example, consider the derivative with respect to a of the F1 function in the case z1 = z2; by
inspection of result (21b), only the k = 0 term survives in the summation and the derivative is given
as a single 2Θ

(1)
1 function. At the same time, the Appell function F1 is known to reduce to a Gaussian

hypergeometric function, F1(a, b1, b2, c; z1, z1) = 2F1(a, b1 + b2, c; z1), so that the derivative
d
da F1(a, b1, b2, c; z1, z1)= d

da 2F1(a, b1 + b2, c; z1) is also directly provided by (2a) as published in
Ref. 42. The results obviously coincide.

C. Mixed derivatives

Let us now provide some mixed derivatives, that is to say derivatives with respect to two or
more parameters at the same time. To illustrate the procedure, we start from the alternative series
representations (56) for the derivative d

db1
F1. From it, together with relation (2a), one can easily

deduce a result for the mixed derivative ∂2

∂b1∂b2
F1, in terms of a double infinite summation of 2Θ

(1)
1

functions

∂2

∂b1∂b2
F1(a, b1, b2, c; z1, z2)= z1z2

a(a + 1)
c(c + 1)

∑
m,n

(a + 2)m+n(b1 + 1)m+n

(c + 2)m+n(2)m+n

(b1)m

(b1 + 1)m
zm+n

1

× 2Θ
(1)
1

(
1, 1|b2, b2 + 1, a + 2 + m + n

b2 + 1|2, c + 2 + m + n

�����
; z2, z2

)
, (57)

or, alternatively, a quadruple infinite summation.
Let us now go further and consider the nth derivative (49) with respect to b2. Making use of the

series representation (47), algebraic manipulations allow one to perform the summation over k and
obtain

dn

dbn
2

F1(a, b1, b2, c; z1, z2)

= zn
2

(a)n

(c)n

∑
`1

· · ·
∑
`n+1

(1)`1
. . . (1)`n+1

(a + n)`1+`2+· · ·+`n+1

(n + 1)`1+`2+· · ·+`n+1
(c + n)`1+`2+· · ·+`n+1

×
(b2)`1

(b2 + 1)`1+`2
. . . (b2 + n)`1+`2+...+`n+1

(b2 + 1)`1
(b2 + 2)`1+`2

. . . (b2 + n)`1+`2+...+`n

z`1
2

`1!
. . .

z`n+1
2

`n+1!

× 2F1 (b1, a + n + `1 + `2 + . . . + `n+1, c + n + `1 + `2 + . . . + `n+1; z1) . (58)
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Since the b1 parameter appears now only in 2F1, we may apply directly formula (48a) and obtain

∂m+n

∂bm
1 ∂bn

2

F1(a, b1, b2, c; z1, z2)

= zm
1 zn

2
(a)m+n

(c)m+n

∑
`1

· · ·
∑
`n+1

(1)`1
. . . (1)`n+1

(a + m + n)`1+`2+· · ·+`n+1

(n + 1)`1+`2+· · ·+`n+1
(c + m + n)`1+`2+...+`n+1

×
(b2)`1

(b2 + 1)`1+`2
. . . (b2 + n)`1+`2+· · ·+`n+1

(b2 + 1)`1
(b2 + 2)`1+`2

. . . (b2 + n)`1+`2+...+`n

z`1
2

`1!
. . .

z`n+1
2

`n+1!

× 2Θ
(m)
1

(
1, . . . , 1| b1, b1 + 1, . . . , b1 + m, a + m + n + `1 + `2 + · · · + `n+1

b1 + 1, . . . , b1 + m|m + 1, c + m + n + `1 + `2 + · · · + `n+1

�����
; z2, . . . , z2

)
. (59)

The same procedure can be applied to easily find compact results for mixed derivatives of any order
n and m with respect to (b1, b2), (c1, c2), (b1, c2), and (b2, c1) for function F2; to (a1, a2),(a1, b2),
(a2, b1), and (b1, b2) for function F3; and to (c1, c2) for function F4.

The same thing can be done, for example, with the function Φ2 and its mixed derivatives with
respect to a and b. From (54), using the series representation (53) and performing the sum over m,
we find

dn

dbnΦ2(a, b, c; z1, z2)

= zn
2

1
(c)n

∑
`1

· · ·
∑
`n+1

(1)`1
. . . (1)`n+1

(n + 1)`1+`2+· · ·+`n+1
(c + n)`1+`2+· · ·+`n+1

×
(b)`1

(b + 1)`1+`2
. . . (b + n)`1+`2+· · ·+`n+1

(b + 1)`1
(b + 2)`1+`2

. . . (b + n)`1+`2+· · ·+`n

z`1
2

`1!
. . .

z`n+1
2

`n+1!

× 1F1 (a, c + n + `1 + `2 + · · · + `n+1; z1) . (60)

Thus using (52a), we obtain

∂m+n

∂am ∂bnΦ2(a, b, c; z1, z2)

= zm
1 zn

2
1

(c)m+n

∑
`1

· · ·
∑
`n+1

(1)`1
. . . (1)`n+1

(n + 1)`1+`2+· · ·+`n+1
(c + m + n)`1+`2+· · ·+`n+1

×
(b)`1

(b + 1)`1+`2
. . . (b + n)`1+`2+...+`n+1

(b + 1)`1
(b + 2)`1+`2

· · · (b + n)`1+`2+· · ·+`n

z`1
2

`1!
. . .

z`n+1
2

`n+1!

× Θ(m)
(

1, . . . , 1| a, a + 1, . . . , a + m
a + 1, . . . , a + m|m + 1, c + m + n + `1 + `2 + · · · + `n+1

�����
; z1, . . . , z1

)
. (61)

The same procedure can be applied to easily find results for mixed derivatives of any order with
respect to (c1, c2) and (b, c2) for function Ψ1, and to (a1, a2) and (a2, b) for function Ξ1.

D. Extensions

We have studied in detail the derivatives of 8 of the 34 two-variables Horn functions (listed, e.g.,
in Sec. 1.3 of Ref. 1). For many of them, the study of the derivative with respect to parameters can
be performed following the procedures indicated in Sec. II. The starting point consists in expressing,
when possible, such functions as a sum of one variable hypergeometric functions pFq, and then
apply the expressions presented in Refs. 34, 42, and 43 for the derivatives with respect to their
parameters.

Without being exhaustive, for example, for the derivative of function H4 with respect to the
second (β), third (γ), or fourth (δ) parameters, we could easily find expressions in terms of a single
sum of 2Θ

(1)
1 functions. For the function G1, which presents Pochhammer symbols with index n � m,

the situation is slightly trickier. We could find, however, a closed form for the derivative with respect
to the second (β) or third (β′) parameters in terms of two sums of 3Θ

(1)
2 functions; the same can be
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said for function G2 with respect to the third (β) or fourth (β′) parameters. Other functions, such
as G3 or H6, present Pochhammer symbols with more intricate summation indices such as 2m � n.
These difficult cases will be investigated and presented in a future work.

IV. APPLICATION

Among the many possible applications of the results presented above, we would like to briefly
discuss one that is related to collision problems, namely, autoionization of atoms46 when the decay
occurs as part of a post-collisional process; incidentally, the considered application is also closely
connected to the theory of many-variable hypergeometric functions.

Let us consider the situation where a heavy charged ion, e.g., He2+, collides with a simple
molecule, say H2. As a result of the collision, both molecular electrons are captured by the projectile
to form a doubly excited state He∗∗. After a given time, an atomic transition occurs whereby one
of the electrons is emitted to the continuum while the other decays to the ground state of He+; this
autoionization process is schematized by He∗∗→ He+ + e−. The emitted electron interacts with three
charged particles (the two molecular nuclei and the projectile, now singly ionized, He+). It moves
away from the system with velocity v relative to the target, and velocities v1 and v2 relative to each of
the H++

2 nuclei, which we shall label 1 (charge Z1) and 2 (charge Z2). The two Sommerfeld parameters
defined as η1 =Z1/v1 and η2 =Z2/v2 measure the strength of the Coulomb interaction.

The probability for this autoionization process to occur is an extension of the transition amplitude
corresponding to ion-atom considered in Refs. 52–54,

A=−i
∫ ∞

0
〈Ψf | V | Ψi〉t

iη1+iη2 eiEtdt. (62)

Here E=E − E0 + i Γ2 , where E0 = εi − εf + ∆, εi and εf are the initial and final energies of the atom
and Γ is the life-time of the autoionizing state (∆ is a correction of the energy due to the interaction
between the atom and the molecule); E is the final energy of the system and includes part of the energy
exchanged by the projectile with the molecule. The matrix element 〈Ψf | V | Ψi〉 gives the transition
amplitude related to the decay:49 Ψi is the doubly excited state He∗∗, and V is the interaction potential.
In the final state, one of the electrons is bound in the ground state He+, and the other moves in the
presence of both the atomic nucleus and the two centers of the ionized molecule. This continuum
state can be represented as follows:

Ψ
−
f 'Ψ

−(r) D̃−(r, v1t, v2t), (63)

where the continuum wave function Ψ−(r) of the emitted electron (here taken with incoming
behaviour) is distorted by the presence of the molecular nuclei; mathematically, this is expressed
by a distortion factor D̃−(r, v1t, v2t) where the classical approximation ri = vit (i = 1, 2) is consid-
ered. Since the integrand is strongly confined to the vicinity of the target nuclei (localization of the
ground state), the matrix element can be simplified by means of a peaking approximation, namely,

〈Ψf | V | Ψi〉 ' 〈Ψ
− | V | Ψi〉D

−(v1t, v2t). (64)

The resulting transition amplitude A reads

A=−iA0

∫ ∞
0

D−(v1t, v2t)tiη1+iη2 eiEtdt, (65)

where A0 = 〈Ψ
− | V | Ψi〉.

Different approaches for the distortion factor D�(v1t, v2t) can be considered. One of them is
the simple, uncorrelated, product of two Coulomb distortion factors.52 Martı́nez and co-workers49

used the Φ2 model introduced in the context of ion-atom collisions47,48 to include correlation. In the
process we are considering here, the distortion factor is built using theΦ2 model; it can be understood
as a sum of products of Coulomb functions, corresponding to the Sommerfeld parameters η ′ =Z1/v

′

and η ′′ =Z2/v
′′ where v ′ and v ′′ are the relative electron-ion velocities with respect to each nuclei.



073504-16 Ancarani, Del Punta, and Gasaneo J. Math. Phys. 58, 073504 (2017)

It reads

D−(v1t, v2t)= Γ
(
1 + iη ′ + iη ′′

)
e

π
2 (η′+η′′)

∞∑
m=0

(−iη ′)m(−iη ′′)m

m!(m)m(1)2m
d−m (v1t) d−m (v2t) , (66)

where

d−m (v1t)= [−ix1]m
1F1

[
−iη ′ + m, 1 + 2m;−ix1

]
, (67a)

d−m (v2t)= [−ix2]m
1F1

[
−iη ′′ + m, 1 + 2m;−ix2

]
, (67b)

where x1 and x2 depend on a combination of the velocities v ′, v ′′, v1, v2 and t. Omitting further
intermediate steps, one finds that the amplitude A can be expressed in terms of a F1 function

A(Z1, Z2)=A(Z1, Z2)F1(a, b1, b2, c; z1, z2), (68)

where

a= 1 + iη1 + iη2, (69a)

b1 = iη ′, (69b)

b2 = iη ′′, (69c)

c= 1, (69d)

and the purely imaginary variables z1 and z2 depend on all velocities involved. The coefficient
A(Z1, Z2) is given by

A(Z1, Z2)=−iA0Γ(a)Γ(1 + b1 + b2)eπ(η′+η′′)/2[−iE]−a. (70)

Contrary to a simple product of Coulomb functions, the Φ2 approach correlates the interaction
of the electron with both centers in a non-separable way. The autoionization probability is then
representing the emission of the electron with the full interaction with the charged centers. It is then
interesting to analyze the effect of the interaction with, separately, each of them. The quantity A(Z1,
Z2 = 0) provides the full interaction of the electron with Z1; indeed, in this case, the Φ2 distortion
factor reduces to a single Coulomb distortion. Similarly, A(Z1 = 0, Z2) includes the full interaction
but with the other center. Including the correlation to first order, we have

A(Z1, Z2)'A(Z1 = 0, Z2) + A(Z1, Z2 = 0)

+ Z1
dA(Z1, Z2)

dZ1

�����Z1=0
+ Z2

dA(Z1, Z2)
dZ2

�����Z2=0
+ · · · . (71)

In a first Born-like expansion for the autoionization process, the first derivative dA
dZ2

���Z2=0
stands for

the full interaction with the center Z1 after interacting once with the other (Z2). It is given by

dA
dZ2

�����Z2=0
=

dA(Z1, Z2)
dZ2

�����Z2=0
2F1(1 + iη1, iη ′, 1; z1) + A(Z1, 0)

dF1(a, b1, b2, c; z1, z2)
dZ2

�����Z2=0
, (72)

where, in the first term, the Appell function reduces to 2F1. Of course, a similar expression results
when considering the full interaction with Z2 after interacting once with Z1. The derivative of the
Appell function with respect to Z2 is further complicated because it involves the derivative with
respect to both a and b2

dF1(a, b1, b2, c; z1, z2)
dZ2

�����Z2=0
=

i
v2

dF1(a, b1, b2, c; z1, z2)
da

�����Z2=0
+

i
v ′′

dF1(a, b1, b2, c; z1, z2)
db2

�����Z2=0
. (73)

However, using the results presented above [specifically, Eqs. (21b) and (18b)], a closed form
expression in terms of multivariable hypergeometric functions results

d
dZ2

F1(a, b1, b2, c; z1, z2)
�����Z2=0

=−
z1η
′

v2
2Θ

(1)
1

*
,

1, 1| ã, ã + 1, b1 + 1

ã + 1| 2, 2

������
; z1, z1+

-

+ i
ãz2

v ′′
2Θ

(1)
1

*
,

1, b1 | 1, ã + 1,−

2| 2,−

������
; z2, z1+

-
, (74)



073504-17 Ancarani, Del Punta, and Gasaneo J. Math. Phys. 58, 073504 (2017)

where ã= 1 + iη1.
The result given in Eq. (71) differs substantially from the one that would come from the use a

distortion factor D�(v1t, v2t) given by a simple product of two Coulomb functions. With the present
Φ2 approach, the first order allows for an interference between the electron scattering by each of
the molecular nuclei individually. Indeed, when calculating the square modulus of the amplitude, an
interference arises from the cross product involving the first derivatives of Eq. (73), both of which
can be easily obtained with the formulas provided in Sec. II. Higher orders in powers of Z1 and Z2

can be included in expansion (71), summing one by one the interactions between the electron and the
charged centers of the residual molecule. Such a construction, or the aforementioned interference,
is not possible with a distortion factor represented by a simple product of Coulomb factors. The
physics associated with the included Coulomb interaction is contained in the coefficients of the
Taylor expansion (71). The latter are given by derivatives of the Appell function F1, that is to say—as
shown in the present contribution—in terms of the 2Θ

(n)
1 functions.

V. SUMMARY

We have studied the derivatives to any order n, with respect to their parameters, of eight Horn
hypergeometric functions. They can be written as n + 2 infinite summations. The following systematic
approach results to be rather practical. One first expresses Horn functions in terms of single series
of one-variable Gaussian or confluent hypergeometric functions. Then, one makes use of compact
expressions obtained previously with a differential equation approach,34,42 for their nth derivatives
with respect to parameters. For the considered 8 Horn functions, and for most parameters, the nth
derivatives can be easily written as single sums of generalizations of multivariable Kampé de Fériet
functions, noted as 2Θ

(n)
1 or Θ(n).

The methodology presented in this contribution can be extended—in the same systematic way—
to the study of the derivative with respect to their parameters of other two-variable, or three-variable,
hypergeometric functions. The starting point consists in expressing such series as a sum of 2F1

(possibly 1F1, or even pFq) functions, and then apply the expressions presented in Refs. 34, 42, and
43 for the derivatives with respect to their parameters of these one-variable hypergeometric functions.
We have mentioned how the methodology can be applied, for example, to other Horn functions, such
as G1, G2, and H4; for other ones, such as G3, intricate summation indices are difficult to treat in a
similar way and need a thorough investigation.

With a study of autoionization of atoms, we have provided a physical illustration in which the
successive derivatives of an F1 function with respect to the first and third parameters appear in a
Born-like expansion. The Coulomb interaction of the emitted electron with nuclear charges is built
up, step by step, through the expansion coefficients; the latter are obtained from the Appell derivatives
evaluated at zero nuclear charges. Such an approach finally provides the interference occurring as a
consequence of the scattering of the emitted electron with each individual nucleus.

Besides this application, the mathematical results presented here should be useful in a wide
range of physical and mathematical problems in which one or several parameters of two-variable
Horn functions play a particular role.
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