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Helicity dynamics in stratified turbulence in the absence of forcing

C. Rorai,1,2 D. Rosenberg,3 A. Pouquet,1,4 and P. D. Mininni1,5

1National Center for Atmospheric Research, P. O. Box 3000, Boulder, Colorado 80307, USA
2ICTP, Strada Costiera 11, 34151 Trieste, Italy

3National Center for Computational Sciences, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831, USA
4Department of Applied Mathematics, CU, Boulder, Colorado 80309-256 USA

5Departamento de Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IFIBA, CONICET,
Ciudad Universitaria, 1428 Buenos Aires, Argentina

(Received 27 November 2012; revised manuscript received 5 March 2013; published 12 June 2013)

A numerical study of decaying stably stratified flows is performed. Relatively high stratification (Froude
number ≈ 10−2–10−1) and moderate Reynolds (Re) numbers (Re ≈ 3–6 × 103) are considered and a particular
emphasis is placed on the role of helicity (velocity-vorticity correlations), which is not an invariant of the
nondissipative equations. The problem is tackled by integrating the Boussinesq equations in a periodic cubical
domain using different initial conditions: a nonhelical Taylor-Green (TG) flow, a fully helical Beltrami [Arnold-
Beltrami-Childress (ABC)] flow, and random flows with a tunable helicity. We show that for stratified ABC flows
helicity undergoes a substantially slower decay than for unstratified ABC flows. This fact is likely associated to
the combined effect of stratification and large-scale coherent structures. Indeed, when the latter are missing, as in
random flows, helicity is rapidly destroyed by the onset of gravitational waves. A type of large-scale dissipative
“cyclostrophic” balance can be invoked to explain this behavior. No production of helicity is observed, contrary
to the case of rotating and stratified flows. When helicity survives in the system, it strongly affects the temporal
energy decay and the energy distribution among Fourier modes. We discover in fact that the decay rate of
energy for stratified helical flows is much slower than for stratified nonhelical flows and can be considered
with a phenomenological model in a way similar to what is done for unstratified rotating flows. We also show
that helicity, when strong, has a measurable effect on the Fourier spectra, in particular at scales larger than
the buoyancy scale, for which it displays a rather flat scaling associated with vertical shear, as observed in the
planetary boundary layer.
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I. INTRODUCTION

Stratified flows are encountered in many astrophysical and
geophysical settings. The ratio of inertial forces to gravitational
forces is expressed by the dimensionless Froude (Fr) number:
Fr = U0/[NL0], where U0 and L0 are the characteristic
velocity and length scale of the flow, while N is the Brunt-
Vaı̈ssälä frequency. The Fr number can be also thought as
the ratio between the gravity wave period, τW = 1/N , to
the eddy turnover time, τNL = L0/U0. Geophysical flows are
generally highly stratified: In the atmosphere, Froude numbers
of the order of 10−1 or 10−2 are encountered, whereas in the
oceans they can be 10 times smaller. Such flows, due to their
deep connection to, and their ubiquity in, our environment
have been studied and reviewed extensively for their scaling
and statistical properties [1,2], as well as for their physical
structures [3,4].

When waves are fast compared to turbulent eddies (Fr � 1)
they can dominate the dynamics, lead to the formation of
stratified layers with strong vertical gradients, and intensify
mixing [5,6]. For this limiting case, a suite of approximations,
simpler and easier to integrate than the primitive equations,
has been developed using asymptotic expansions (see, e.g.,
Refs. [1,7–13]), two-point closures of turbulence [14–16], or
weak turbulence statistical approaches [17–19].

While the (isotropized) gravity wave period, τW , is not
scale dependent, the eddy turnover time, τNL, decreases when
moving to smaller length scales. In fact, nonlinear interactions
are more effective at small scales and one can define the

scale � at which τNL(�) = τW (�). This scale is called the
Ozmidov scale Loz to be defined below, and one expects that at
scales smaller than Loz, isotropy and classical turbulent scaling
recover.

Gravity waves (and inertia-gravity waves when rotation is
included) are essential to understand the dynamics of large
scales where most of the energy resides. Under the assumption
of stationarity, weak nonlinearities, weak dissipation, and
negligible forcing, a balance which involves the pressure
gradient and the gravity (together with the Coriolis force
in the presence of rotation) is obtained. Such a concept of
balance has proven useful in meteorology and oceanography,
and many variants and issues have been considered to study the
dynamics of synoptic scales. However, gravity waves couple
nonlinearly on slow time scales, as described by the weak
turbulence formalism [20,21], and undergo wave steepening
and breaking [2] through resonant interactions. This leads for
example to frontogenesis [22,23], as observed in the upper
atmosphere or in the oceans. Overturning is also present in
direct numerical simulations of stratified turbulence at high
resolution and high Reynolds number [24,25]. Thus, stratified
turbulence is known to play a role in the vertical mixing of deep
layers in the oceans, as observed, for example, in the central
Pacific ocean [26], as well as in river bends and estuaries [27].

In this study we focus on the role of helicity, the correlation
between the velocity field, u, and the vorticity, ω, in stratified
flows. Helicity has not received much attention outside
the realm of astrophysics when considering the growth of
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TABLE I. List of the runs, computed on grids with either n = 256 or n = 512 points per dimension. The name of the runs (“Initial v”)
indicates the initial velocity field and also summarizes some important properties (e.g., whether the Reynolds or Froude numbers were changed
with respect to other runs with similar initial conditions). All these calculations have U0 = 0.5, and dynamical parameters are evaluated at
t = 0; k0 is the wave-number range of the initial condition, ν is the viscosity and Re the Reynolds number, Fr is the Froude number, R
the buoyancy Reynolds number, η the Kolmogorov (dissipative) length scale, Loz and Lb are the Ozmidov and buoyancy length scales, and
� = 2π/(n − 1) is the grid resolution. Note that, in general, the Ozmidov length scale is not resolved, except for runs 5, 9 10, 15, and 16. All
other runs, except also the runs without stratification (Runs 6 and 12), have buoyancy Reynolds number of order unity.

Initial v k0 ν Re Fr R η Loz Lb �

1. TG 2–3 2.4e-04 ≈3000 0.022 1.452 0.0041 0.0083 0.35 0.0246
2. TGFr/2 2–3 2.4e-04 ≈3000 0.011 0.363 0.0041 0.0074 0.175 0.0246
3. ABC2C 3–4 3.0e-04 ≈3000 0.022 1.452 0.0044 0.0059 0.25 0.0246
4. ABC2C2Re 3–4 1.5e-04 ≈6000 0.022 2.904 0.0026 0.0059 0.25 0.0123
5. ABC2C2Fr 3–4 1.5e-04 ≈6000 0.044 11.616 0.0026 0.0168 0.50 0.0123
6. ABCN0 3–4 3.0e-04 ≈3000 ∞ ∞ 0.0044 ∞ ∞ 0.0123
7. ABC 3–4 3.0e-04 ≈3000 0.022 1.452 0.0044 0.0059 0.25 0.0246
8. ABC2Re 3–4 1.5e-04 ≈6000 0.022 2.904 0.0026 0.0059 0.25 0.0123
9. ABC2Fr 3–4 1.5e-04 ≈6000 0.044 11.616 0.0026 0.0168 0.5 0.0123
10. ABC4Fr 3–4 3.0e-04 ≈6000 0.088 46.464 0.0026 0.0474 1.0 0.0246
11. ABCFr/2 3–4 3.0e-04 ≈3000 0.011 0.363 0.0044 0.0021 0.125 0.0246
12. RNDN0 3–4 3.0e-04 ≈3000 ∞ ∞ 0.0044 ∞ ∞ 0.0123
13. RND 3–4 3.0e-04 ≈3000 0.022 1.452 0.0044 0.0059 0.25 0.0246
14. RND2Re 3–4 1.5e-04 ≈6000 0.022 2.904 0.0026 0.0059 0.25 0.0123
15. RND2Fr 3–4 1.5e-04 ≈6000 0.044 11.616 0.0026 0.0168 0.50 0.0123
16. RND4Fr 3–4 1.5e-04 ≈6000 0.088 46.464 0.0026 0.0474 1.0 0.0123
17. RNDk2 2 5.24e-04 ≈3000 0.022 1.452 0.0078 0.0104 0.437 0.0246

large-scale magnetic fields [28]. It is known that Ekman
pumping at solid boundaries can lead to the creation of helicity,
as measured in laboratory experiments as well as in numerical
simulations (see, e.g., Ref. [29]). However, for a purely rotating
flow, helicity is conserved with periodic boundary conditions
but such is not the case in the presence of stratification.

Helicity is estimated routinely in the atmosphere, in con-
junction with convective available potential energy (CAPE) to
gauge the possibility of supercell convective storms to become
strong [30], and it may be a factor to take into account in
the formation of hurricanes [31–33]. Taking the curl of the
geostrophic balance (or in the absence of rotation, the so-called
cyclostrophic balance) eliminates the pressure term and, thus,
also the thermodynamics that could enter through pressure
gradient coupling with density variations and, for example,
moisture. Thus, considering the dynamical role of helicity in
stratified turbulence may allow for a focus on the dynamics of
the atmospheric wind or oceanic current through decoupling
from the pressure field. Note that cyclostrophic balance implies
curvature of trajectories that is not due to rotation (which is
neglected here), as is also the case at low latitudes or at small
scales, for example, in tornadoes [34]. Helicity spectra have
also been measured in the planetary boundary layer [35]. The
large scale balance that arises in the presence of both rotation
and stratification is considered in Ref. [36]. It can then be
shown that the creation of helicity is ensured. For N/f � 3, it
is found to be proportional to N/f where f = 2	, with 	 the
imposed solid-body rotation.

More precisely, in this work we consider the effect of
helicity in freely decaying stably stratified turbulence using
direct numerical simulations. We show that energy undergoes
a slow decay for fully helical Beltrami flows (ABC), that

cyclostrophic balance at large scales can play an important
role in determining the decay of the flow, and that helicity has
an even slower evolution when compared with the energy.

In Sec. II we recall the incompressible Boussinesq equa-
tions for a stably stratified flow and we list some characteristic
length scales, dimensionless number, and energies relevant
to the problem under consideration. We shortly present the
numerical method used to integrate the equations, and we
describe the different initial conditions imposed, reporting, in
Table I, the initial parameters chosen for our calculations. In
Sec. III we mainly discuss the behavior of helicity for different
initial conditions, we relate it to the velocity distribution in the
horizontal and vertical directions, and we interpret these results
proposing a type of large-scale dissipative “cyclostrophic”
balance. In what follows, we study how the combined effects
of different residual helicity values, different initial conditions,
and different Froude and Reynolds numbers affect the temporal
decay of the total energy and the Fourier spectra for the total
and potential energy and for the absolute value of helicity.
Finally, our results are summarized in Sec. IV.

II. EQUATIONS AND METHODOLOGY

A. Mathematical model and relevant parameters

Stably stratified turbulence is studied here by means of
the incompressible Boussinesq equations. In the presence of
gravity g and absence of forcing, with θ being the potential
temperature fluctuations in units of velocity, the equations read

∂tu + u · ∇u = −∇P − Nθ ez + ν�u, (1)

∂tθ + u · ∇θ = Nw + κ�θ, (2)

∇ · u = 0; (3)
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where w is the vertical (z) component of the velocity in the
direction of gravity, P is the pressure, ν the viscosity, and
κ the thermal diffusivity. In this paper we take a unit Prandtl
number, Pr = ν/κ = 1. The square Brunt-Väisälä frequency is
given by N2 = −(g/θ )(dθ̄ /dz), where dθ̄/dz is the imposed
background stratification, which is assumed to be linear. No
filtering on the small scales (e.g., hyperviscosity) is applied, a
normal Laplacian being used for diffusion.

In the ideal case (with ν = κ = 0), the Boussinesq equa-
tions conserve the total (kinetic plus potential) energy,

1
2 〈|u|2 + θ2〉 = EV + EP ,

and the pointwise potential vorticity

Vpot = −Nωz + ω · ∇θ, (4)

which is a material invariant.
For strong waves (or weak nonlinearities), N � 1, and the

nonlinear term in equation (4) above can be neglected, i.e.,
we can write Vpot ≈ Vpot,L = −Nωz (where the subscript L

denotes “linearized”). In that case, the L2 norm of linearized
Vpot becomes proportional to 〈ω2

z〉 and is also conserved, an
invariance which is preserved by the Fourier truncation of the
numerical algorithm. Vpot,L is then proportional to the so-called
vertical enstrophy, 〈ω2

z〉, a situation akin (but not identical) to
the two-dimensional Euler case without stratification.

The volume integrated helicity,

H = 〈u · ω〉
is a topological quantity that characterizes the amount of
“twist” and linkage in the flow [37]. In the 3D Euler equations,
in the absence of stratification and of dissipation, helicity is an
invariant, as is the kinetic energy, but in the above equations it
is not. We nevertheless retain this diagnostic in order to make
connections to isotropic and homogeneous turbulence and to
rotating flows for which helicity is invariant as well.

Relative helicity σV measures the degree of alignment
between velocity and vorticity, and, as such, it can be viewed
as a proxy measure of the amount of nonlinearity in the flow,
since σV ∼ ±1 implies a Lamb vector −u · ∇u + ∇[u2/2] =
u × ω ≈ 0. Relative helicity can be expressed as

σV = H√
EV ZV

, (5)

where ZV = 〈ω2〉 is the so-called kinetic enstrophy, pro-
portional to the kinetic energy dissipation when viscosity
is restored. One can define similarly a potential enstrophy
ZP = 〈|∇θ |2〉, associated with the dissipation of potential
energy EP when κ �= 0.

Three characteristic length scales can be identified for this
problem: (i) the Kolmogorov length scale η, where dissipation
prevails for a Kolmogorov spectrum; (ii) the Ozmidov length
scale, Loz; and (iii) the buoyancy length scale Lb. For the initial
conditions, these length scales are defined, respectively, as

η =
(

ν3L0

U 3
0

)1/4

, Loz = U
3/2
0

N3/2

√
1

L0
, Lb = 2πU0

N
,

where U0 is the initial rms velocity, L0 = 2π/k0 is the initial
integral scale, k0 being the wave number where the initial
excitation is centered, and εV ≡ dEV /dt ≈ U 3

0 /L0 is used as
an estimate of the kinetic energy dissipation rate (under the
assumption that the Ozmidov scale is resolved).

Three relevant dimensionless parameters can also be
identified: (i) the Reynolds number Re = U0L0/ν; (ii) the
above-mentioned Froude number, Fr = U0/(L0N ); and (iii)
the buoyancy Reynolds number R = ReFr2.

We finally define the so-called reduced kinetic energy
spectra EV as a function of the wave numbers k, k⊥, and k‖;
they are, respectively, k = |k|, k⊥ = |k⊥| = |k| sin �, with �

the colatitude in Fourier space with respect to the vertical axis
of unit vector ẑ and k‖ the component of k in the z direction. If
Uij (k) is the velocity autocorrelation function in Fourier space,
we name its trace U (k). Under the assumption of homogeneity
we define the axisymmetric kinetic energy spectrum as

e(|k⊥|,k‖) =
∫

U (k)|k| sin �dφ = e(|k|,�), (6)

where φ is the longitude with respect to the x axis; then we
can define [38]

EV (k⊥) =
∫

e(|k⊥|,k‖)dk‖, (7)

EV (k‖) =
∫

e(|k⊥|,k‖)dk⊥, (8)

EV (k) =
∫

e(|k|,�)|k|d�. (9)

Similar definitions hold for h(|k|,�), the axisymmetric helicity
spectrum which is based on the antisymmetric part of the
velocity correlation tensor [38]. From h(|k|,�) we then derive
the definitions for H (k), H (k⊥), and H (k‖). Similar definitions
hold as well for the potential energy distribution and for the
total energy distribution.

B. Numerical model

The numerical simulations are carried out using the
Geophysical High-Order Suite for Turbulence (GHOST) code
[39,40]. It is a pseudospectral framework available to the
community and hosts a variety of partial differential equation
(PDE) solvers optimized for studying turbulence in two-
dimensional (2D) and three-dimensional (3D) geometries, for
neutral and conducting fluids (in the magnetohydrodynamic
and Hall-magnetohydrodynamic approximations), and with
solid-body rotation and stratification in the Boussinesq ap-
proximation. GHOST also includes a passive scalar solver, as
well as surface quasigeostrophic and shallow water solvers
and several types of subgrid scale models. In the 3D case,
the grid is a cubic [0,2π ]3-periodic box, and with a second-
order explicit Runge-Kutta (RK) time-stepping scheme; tests
were conducted using a fourth-order explicit RK scheme that
showed neither qualitative nor quantitative differences when
compared with the second-order scheme at the resolutions
used in this paper. Dealiasing is done by using a standard
2/3 rule. The importance of performing computations for this
system in a cubic box with equal grid spacing in the horizontal
and vertical directions was emphasized and demonstrated
in Ref. [41]. We do not use a subgrid model and use an
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explicit time-stepping method for these computations because
of the necessity to resolve all spatial and time scales. For
the code, a hybrid MPI-OpenMP parallelization methodology
was developed [39], with tests up to 98 000 compute cores on
grids of up to 61443 points; the code also has a third level
of parallelization with the recent addition of GPU-accelerator
support for the FFTs.

C. Initial conditions

A variety of runs were conducted at moderate Reynolds
number in a 3D cubical domain, with isotropic discretization of
nx = ny = nz = n = 256 or n = 512 points. The database of
the runs is presented in Table I, with parameters characterizing
the initial conditions we employed. Other runs were performed
that confirm the conclusions of this work but which, for the
sake of brevity, are not described in detail.

Three sets of initial velocities were investigated: Taylor-
Green (TG), Arnold-Beltrami-Childress (ABC), and random
isotropic. The TG velocity field is given by

vTG
x = vTG

0 sin(k0x) cos(k0y) cos(k0z),

vTG
y = −vTG

0 cos(k0x) sin(k0y) cos(k0z), (10)

vTG
z = 0,

and is globally nonhelical (σV ≡ 0 at t = 0).
The ABC initial condition for the velocity is specified as

vABC
x = vABC

0 [B cos(k0y) + C sin(k0z)] ,

vABC
y = vABC

0 [C cos(k0z) + A sin(k0x)] , (11)

vABC
z = vABC

0 [A cos(k0x) + B sin(k0y)] .

As a superposition of Beltrami vortices (for which u =
±ω/k0), it is fully helical (σV = 1). Another approximately
Beltrami initial condition was taken, namely the vABC written
above with vABC

z ≡ 0 at t = 0, in order to be able to compare
with the evolution of the TG flow which also has vz = 0
initially. This second helical initial condition is called ABC2C
(two components). The simulations were started using a
superposition of these flows (TG, ABC, or ABC2C) for the
wave-number interval reported in Table I.

We also examined random isotropic initial conditions
(RND) [42]. The random initial velocity field is generated as
follows. First, all Fourier modes with wave vector k such that
they were in a spherical shell with k1 � |k| � k2 were excited,
while the rest of the modes were set equal to zero (with k1

and k2 being, respectively, the minimum and maximum wave
numbers k0 in Table I). In each mode in the shell, the same
rms velocity was excited, but a different phase was used for
each wave vector k, obtained from a random number generator
with uniform distribution. Care was taken when computing the
amplitude of the x, y, and z components of the velocity for each
wave number to ensure the incompressibility condition, which
in Fourier space is equivalent to k · u = 0. This procedure
results in a random velocity field with approximately zero
helicity. To control the initial value of the helicity, we used the
method described in Ref. [38]. In practice, two random vector
fields are created using the procedure explained above, say v1

and v2. The initial velocity field u(k) for each wave vector k
then is obtained by correlating the velocity and the vorticity of

the two fields in the following way:

u(k) = vRND
0 {cos(α)v1(k) + sin(α)v2(k)

+∇ × [sin(α)v1(k) + cos(α)v2(k)]/k}. (12)

The relative helicity of the resulting isotropic and random
velocity field is then sin(2α), and a random velocity field with
maximal helicity (i.e., maximal velocity-vorticity correlation)
is obtained therefore when α = π/4.

In the expressions (10), (11), and (12), we choose vTG
0 =

vABC
0 = vRND

0 = 1, and, for all the flows, the components of
the initial velocity are multiplied by a factor f0, such that the
initial kinetic energy per unit volume is normalized to U 2

0 ,

f 2
0

V

[∫
V

(
v2

x + v2
y + v2

z

)
dV

]
= U 2

0 . (13)

Given Eq. (13) and the definition of the relative helicity,
Eq. (5), the ABC flow has σV (t = 0) = 1, while the ABC2C
flow displays σV (t = 0) = C2/[C2 + (A2 + B2)/2], which,
for the choice A = 0.9, B = 1, C = 1.1, gives σV (t = 0) ≈
0.57. The choice of A �= B �= C allows for a more rapid
development of the flow and for turbulence to set in by breaking
more efficiently the symmetries present in the A = B = C

case.
The dimensionless Reynolds number Re, for the TG, ABC

and random flows, are defined as

ReTG = U02π

k0

√
3ν

, ReABC,RND = U02π

k0ν
.

The
√

3 factor in the definition for the TG flow comes from the
fact that the individual Fourier shells are populated in different
ways, for a given k0, for the TG vs ABC and random flows
(see, e.g., Ref. [43]).

In each run the initial value of the potential temperature
is θ (t = 0) = 0, so buoyancy fluctuations entirely develop
from the initial velocity field. Note that initial conditions need
not be balanced since the time step for these runs is small
enough to resolve the gravity waves that develop in each case.
A reason for using balanced initial conditions is related to
the fact that one may want to investigate the development of
imbalanced motions to start as a result of the turbulent mixing
that develops, rather than by choice of initial conditions. On
the other hand, the nonlinear terms will eventually develop
these unbalanced motions as nonlinear coupling takes place
before and up to the peak of enstrophy.

III. RESULTS

A. The temporal decay of helicity

Here we examine the temporal behavior of the flows
whose initial conditions are given in Table I. For some of the
simulations, the ratio between the potential energy and the total
energy at the peak of the enstrophy, the value of the relative
helicity at the initial time σ 0

V , at the peak of the enstrophy, σ ∗
V ,

and at t = 20, σ ∗∗
V , are reported in Table II.

A hint as to the outcome one may expect from the time
evolution of helicity is obtained by considering the dynamical
equations. By taking the inner product of Eq. (1) with ω and
volume averaging, it can be shown that the time derivative of
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TABLE II. Some relevant parameters for a selected set of the runs
listed in Table I. The ratio of potential to kinetic energy is given at
peak of enstrophy t∗, while the relative helicity is reported at t = 0
(σ 0

V ), at the peak of the enstrophy (σ ∗
V ), and at t = 20 (σ ∗∗

V ). Note the
increase of relative helicity over time in all stratified cases, after an
initial startup phase.

Initial v [EP /ET ]∗ σ 0
V σ ∗

V σ ∗∗
V

1. TG 0.01 0.0 0.0 0.0
6. ABCN0 0.00 0.99 0.13 0.10
7. ABC 0.15 0.99 0.22 0.76
12. RNDN0 0 1.00 0.13 0.08
13. RND 0.18 1.00 0.02 0.11
15. RND2Fr 0.18 1.00 0.04 0.13
17. RNDk2 0.17 1.00 0.11 0.70

the total helicity is

dH

dt
= −2N〈θ ωz〉 − 2νZH , ZH = 〈ω · ∇ × ω〉, (14)

with ZH the helical enstrophy (sometimes called superhelicity
[44]), a pseudoscalar as helicity itself. Note that, locally
(as opposed to globally), helicity can be produced through
alignment of vorticity and shear [45]. However, globally and
for an initially helical flow, ZH is responsible for the viscous
decay of helicity. In the absence of dissipation, helicity is
conserved for nonstratified flows, while the first term on the
right-hand side of Eq. (14) can act as a source or a sink for
stratified flows, thus breaking the conservation.

In Figs. 1(a) and 1(b) we first show the temporal evolution
of the kinetic enstrophy, ZV (t), and potential enstrophy, ZP (t)

(proportional to dissipation of kinetic and potential energy).
All the flows have Fr ≈ 0.022, with, as initial conditions, an
ABC flow, an ABC2C flow, or a TG flow. For comparison,
one case with ABC initial conditions is computed with no
stratification. The time in all the figures is expressed in units
of the initial eddy turnover time τNL = 2π/(k0U0). We see
that the production of enstrophy, and, therefore, the transfer of
energy to small scales, is damped substantially in the presence
of stratification, both for the ABC and TG initial conditions,
although its maximum is not considerably delayed. This is
expected because the effect of waves through the buoyancy
forces is to reduce the nonlinear interactions, as well as to
suppress, in part, the vertical velocity component. Observe
that the stratified TG flow displays a significantly stronger
peak for the kinetic and potential enstrophy than the stratified
ABC-like flows for which the nonlinear terms are (initially)
equal to zero.

In Figs. 1(c) and 1(d) the temporal evolution of the total
helicity and relative helicity for the same flows is shown. In
the absence of stratification and for ABC initial conditions,
helicity decays rather rapidly (exponentially after an initial
nonlinear phase) and is close to zero for t > 6. On the contrary,
the stratified ABC and ABC2C flows display slow decay of
helicity, with strong oscillations at first when vz(t = 0) �= 0,
linked to gravity waves. Finally, we observe that the TG flow
has zero initial helicity, and none is created by stratification. It
is interesting that in the stratified cases helicity decays almost
linearly with time, and much more slowly than the energy,
which, as will be shown later and as is often the case for
turbulent flows, decays as a power law with time.

As already mentioned, in the absence of stratification the
relative helicity σV (t) decays rapidly, the flow becoming closer
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FIG. 1. (Color online) Temporal evolution of the kinetic enstrophy (a), potential enstrophy (b), total helicity (c), and relative helicity (d) for
several initial conditions, namely an unstratified ABC flow (run 6, ABCN0, dotted line, red) and three flows with Fr ≈ 0.022: an ABC (run 7,
solid black line), an ABC2C (run 3, dash-dotted green line), and a TG flow (run 1, dashed blue line). The helicity of the TG flow, initially zero,
remains negligible (dashed blue line), whereas for the two other stratified and helical flows, the helicity decay is remarkably slow compared to
the nonstratified case (dotted red line). Note the quasimaximal helical state [σV (t) ≈ 1] reached in the ABC2C case (dash-dotted green line).
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FIG. 2. (Color online) Temporal evolution of the kinetic enstrophy (a), potential enstrophy (b), total helicity (c), and relative helicity (d)
for random initial conditions: an initially unstratified flow (run 12, RNDN0, dotted red line), a flow with Fr ≈ 0.022 (run 13, RND, dashed
blue line), a flow with k0 = 2 and Fr ≈ 0.022 (run 17, RNDk2, solid black line), and a flow with Re = 6000 and Fr ≈ 0.044 (run 15, RND2Fr,
dash-dotted green line). Note that all flows are initially close to maximum helicity (see Table I).

to being mirror symmetric (σv ≈ 0). On the other hand, when
gravity is switched on and the initial helicity is nonzero, σV (t)
approaches its maximum possible value of unity. This may be
simply due to the fact that helicity decays more slowly than
energy, leading to a growth of their ratio. More precisely, it can
be seen from the data shown in Fig. 1 (and later in Fig. 7) that
dtH � (dtEV )1/2(dtZV )1/2, hence, in Eq. (5) the denominator
increases much faster than the numerator, causing σV to grow.

The flows analyzed until now are well ordered, centered at
large scales and with phase coherence between modes at t = 0.
We also examined initial conditions with randomized phases,
yet maintaining a high initial relative helicity (see Table II).
In Figs. 2(a) and 2(b) the behavior of ZV (t) and ZP (t) for
random flows with k0 = 3–4 or k0 = 2 is shown. It is seen
that the unstratified flow displays a higher peak of the kinetic
enstrophy, as noticed before, followed by the less stratified case
(Fr ≈ 0.044); while, when Fr ≈ 0.022, the case with k0 = 2
has a lower peak than the case with larger k0. This is likely due
to the fact that when k0 = 2 the flow preserves some helicity,
which inhibits the energy decay. A similar behavior is seen for
the potential enstrophy: the peak is higher for the less stratified
case and is lower when helicity is better preserved.

In random flows, the time evolution of the helicity and the
relative helicity reveals a more complicated behavior than in
ABC and TG flows. It is indeed observed that if the injection
wave number is k0 = 2 (as well as when k0 = 1, not displayed),
then, consistently with what we reported in the ABC cases,
the relative helicity grows. However, as shown in Figs. 2(c)
and 2(d) (see also the zoom on early-time evolution in Fig. 3),
for smaller-scale initial conditions, the relative helicity decays
to a value close to zero in the initial period dominated by

gravity waves. If, however, the Fr number is increased, a
small growth of the relative helicity is observed also for the
k0 = 3–4 case. A similar run at twice the Reynolds number
(using a grid with a resolution of 5123 points) reveals no
difference in the helicity behavior. The reason why random
flows at k0 = 2 behave similarly to ABC flows is likely due
to the fact that their initial conditions resemble an ABC
flow, especially with regard to the velocity distribution, with
rather well-identified large-scale structures; in the case of
the ABC flow, corresponding to three Beltrami waves (also
called “Roberts flows”), it consists of quasiperiodic cylindrical
vortices (see Ref. [46] for a visualization of the ABC flow at
t = 0). For higher initial k0, the randomness (and the existence
of more modes that can be excited in a given Fourier shell)
destroys these well-organized structures.

Different visualizations of the x and z components of the
velocity, are given, respectively, in Fig. 4 and Fig. 5 for the
ABC2Re and RND2Re flows (run 8 and 14, respectively, see
Table I). Note that the horizontal cylindrical vortices, present
in the ABC flow at t = 0, are being sheared and develop
into a zigzag shape at the peak of dissipation, reminiscent
of the zigzag instability found in laboratory experiments [47].
However, this does not appear as being as well defined in the
random runs. At later times the x component of the velocity
is redistributed in horizontal layers of alternating sign; this
structure is much better ordered for the ABC flow but is still
visible for random flows. It is clear from inspection of Fig. 5
that the vertical velocity keeps its cylindrical structuring in the
ABC2Re flow, whereas it becomes more turbulent in the case
of the RND2Re flow. It is also observed that, at a later stage,
the ABC vertical columnar structures that survive alternate
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FIG. 3. (Color online) Zoom for Figs. 2(c) and 2(d) on the early-time evolution of helicity H (a) and relative helicity σV (b). Line labels
are as described in the caption to Fig. 2.

sign in time, suggesting a coupling with internal gravity
waves.

Finally, the effect of changing the Reynolds and Froude
number on the time evolution of helicity for an ABC flow is
shown in Fig. 6. By increasing the value of these dimensionless
numbers, the total helicity increases accordingly. At fixed

FIG. 4. (Color online) Distribution of the x (horizontal) velocity
vx for the ABC2Re flow (run 8, left) and the RND2Re flow (run 14,
right) at times (from top to bottom) t = 0, t = t∗ (i.e., at the peak of
dissipation), and t = 20. Light corresponds to low negative values,
dark to high positive values. The vertical direction is indicated by the
upward (blue) arrow. The three axes are shown separately. Observe
the strong shear layers that have developed by the peak in dissipation
and which later on begin to smooth out.

Froude number, the evolution appears to be slower for the
higher Reynolds number, whereas at fixed Reynolds number,
the decay of helicity appears to be independent of Froude
number. This would indicate that helicity dynamics is not
governed solely by stratification but rather more strongly by
dissipation (see also the discussion in the next subsection). The
same phenomenon is observed, even if in smaller proportion,
in the case of random flows.

FIG. 5. (Color online) Distribution of the vertical velocity vz

for the ABC2Re flow (run 8, left) and the RND2Re flow (run 14,
right) at times (from top to bottom) t = 0, t = t∗, and t = 20. Light
corresponds to low negative values, dark to high positive values.
Observe the more turbulent flow in the random case at t∗.
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FIG. 6. (Color online) Temporal evolution of the total helicity for
ABC flows with Re = 6000 and Fr = 0.022 (run 8, ABC2Re, solid
black line), Re = 6000 and Fr = 0.044 (run 9, ABC2Fr, dashed-
dotted green line), and Re = 3000 and Fr = 0.022 for reference
(run 7, ABC, dotted red line). The decay of helicity is slower at
higher Reynolds number for the same Froude number, whereas it is
comparable for both Froude numbers for the same Reynolds number.

B. Cyclostrophic balance

By measuring separately the first and second terms on the
right-hand side of the dH/dt expression given in Eq. (14),
we find that, at early times, characterized by high-amplitude
gravity waves, the first term dominates. After the peak of
enstrophy, the two terms are small and balanced and cause
dH/dt ≈ 0. For the ABC2C flow with vz(t = 0) = 0, there is
no need for radiation of gravity waves to adjust to large-scale
balance and the two terms are small and comparable at all
times. This may explain the large values of residual helicity at
late stages.

We observe that both the ABC and the random k0 = 2
flows initially excite smaller amplitude oscillations of the first
term of Eq. (14) than do the k0 = 3–4 random flows. These
oscillations cease roughly at the peak of the enstrophy, when
nonlinear coupling of waves takes over the linear phase. If the
oscillation amplitude is large, H (t) goes to zero even before the
peak of enstrophy (this is observed for the k0 = 3–4 random
flows), an irremediable situation in the case of decaying flows,
while, if the oscillation amplitude is small, H (t) will have a
nonzero residual value at the peak of enstrophy, and from there
on it will decay very slowly (ABC and k0 = 2 random cases).

Increasing the Reynolds number does not seem to modify
the behavior of H (t) before the peak of the enstrophy, because
the dynamical evolution in this first stage is plausibly wave
dominated. If the Froude number is varied instead, from Fr =
0.022 to Fr = 0.044, the initial oscillations are reduced and
now the random case with k0 = 3–4 also sees a growth of
the relative helicity (see Fig. 2). We have to conclude that
the growth of relative helicity, or, similarly, the slow decay
of helicity, is nonmonotonic with Froude number since in the
case N = 0, a decay of σV (t) is observed. Another distinction
which may help interpreting the different behavior of helicity
in the ABC flow and the random flow, is that while in ABC
flows helicity is organized in large-scale coherent structures,
in the structureless random flow it is not (except for k0 = 2).

We are thus led to conjecture that, similarly to the
geostrophic balance in rotating stratified turbulence, another
large-scale balance, linked to dissipation, can take place in he-
lical flows in the presence of stratification alone. Such viscous
cyclostrophic balance would be consistent with dH/dt ≈ 0,
as observed for the Froude numbers considered. By neglecting

the time derivative and the nonlinear term in Eq. (1), taking
the curl of the reduced equation and dotting it with velocity,
we arrive at the following balance equation:

Nu · ∇ × (θ ez) = −νu · ∇2ω = νu · ∇ × ∇ × ω. (15)

Note that at this stage, there is no space average being
computed; however, upon space integration, this gives the
relationship between the product of temperature and vertical
vorticity and the super helicity, as derived before, a balance
that may hold at large scales where the waves dominate the
dynamics. This balance cancels the two terms on the right-hand
side of Eq. (14), thus explaining the slow decay of helicity
when it is initially at large scales. What happens with this
balance when the buoyancy Reynolds number is increased
will require runs at higher resolution (or lower stratification)
than what is considered in the present paper and will be the
topic of a subsequent study (see Ref. [25] for a large run
where the Ozmidov scale is clearly resolved). However, it is
interesting to note that viscous forces are known to play other
important roles in stratified turbulence, such as when gravity
waves break and alter the conservation of total energy and of
potential vorticity, leading to the creation of dipones in Vpot

(see Ref. [48]).

C. Energy decay

We now turn our attention to the temporal evolution of
energy. We display in Figs. 7 and 8 the decay of the total energy
for a variety of initial conditions and Froude numbers (see
captions for details). Computations are performed for roughly
30 turnover times (and, thus, for 3000 Brunt-Vaı̈ssälä periods,
for Fr = 0.01); some power laws are added to guide the eye.
When examining separately the temporal decay of the potential
and kinetic energy, they evolve in similar ways but with strong
oscillatory energy exchanges, while the oscillations due to
gravity waves disappear when considering the total energy.

In Fig. 7 it is striking to notice that the decay of energy
can be very different for different flows with the same external
parameters (i.e., Reynolds and Froude numbers). If t∗ is the
time at which dissipation sets in, that is, the maximum of
enstrophy, the decay in the absence of stratification would

10−1 100 101
10−2

10−1

t

ET

−2
−1/3

−1

FIG. 7. (Color online) Temporal evolution of the total energy,
with different scaling laws given as indications. ABC flow (run 7,
solid black line), ABC2C flow (run 3, dash-dotted green line), and
TG flow (run 1, dashed blue line), the latter two having initially
vz = 0. All runs have Re ≈ 3000 and Fr ≈ 0.02 except for the ABC
flow with N = 0 which is shown for comparison with a dotted (red)
line (run 6, ABCN0). Note the particularly slow decay for ABC runs
3 and 7.
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FIG. 8. (Color online) Temporal evolution of the total energy ET (t), with different scaling laws given as indications for (a) TG flows at
different Froude numbers, Fr ≈ 0.011 (run 2, dashed blue line) and Fr ≈ 0.022 (run 1, dotted red line); (b) ABC flows with Re = 6000 and
Fr = 0.022 (run 8, dash-dotted green line), Re = 6000 and Fr = 0.044 (run 9, solid black line), Re = 3000 and Fr = 0.011 (run 11, dashed
blue line), and Re = 3000 and Fr = 0.022 (run 7, dotted red line); (c) random flows with Re = 6000 and Fr = 0.022 (run 14, solid black line),
Re = 6000 and Fr = 0.044 (run 15, dash-dotted green line), and Re = 3000 and Fr = 0.022 for reference (run 13, dotted red line). Note the
significantly slower decay in (b) for the case of the ABC flows.

follow a ∼ (t∗ − t)−2 law (dotted line) given that the growth of
the integral scale is prevented by being in a “box-limited” case,
that is, k0 ≈ kmin = 1. Considering the nonhelical TG flow, the
decay seems to follow a power law ∼(t∗ − t)−1, after an initial
ideal (inviscid) phase. This result is expected on the basis of the
slow-down of nonlinear interactions (leading to energy transfer
and its decay) because of waves, and a similar power-law decay
has already been observed for stratified flows [24], for rotating
flows [49], as well as for flows in the presence of a magnetic
field [50]. For the ABC stratified flow, the decay of energy is
substantially slower, with a power law of −1/3 as opposed to
−1. On the other hand, we recall that helicity decays linearly
and at a very slow rate, as shown in the preceding section (see
Fig. 1 and Fig. 2).

The slow decay of energy has been observed previously for
rotating turbulence in the presence of helicity and the different
power laws one may expect have been reviewed for a variety
of cases taking into account the invariance of both energy and
helicity [51]. A (t∗ − t)−1/3 law is found on phenomenological
grounds for helical rotating flows based on the fact that helicity
plays a role in the dynamics: It dominates the energy transfer
to small scales and alters the spatial scaling laws for the energy
spectra and for higher-order structure functions as well [52,53]
(see also Ref. [54] for a review). The similar decay law found
in this paper for ABC-like stratified flows may be due to the
fact that, as shown here, the helicity is quasiconserved by
the dynamics, due to a cyclostrophic balance, and, thus, leads
to the same slow decay. We thus conclude that, for flows
with either rotation or stratification, the presence of helicity
considerably slows down the energy decay, and measurably

so, leading to persistent structures, whereas for the unstratified
nonrotating case, helicity delays the onset of the decay but
does not alter its rate of decay [51].

In Fig. 8 we examine the possible variation of the decay rate
of energy with several factors: Froude and Reynolds numbers,
as well as TG, ABC, and random initial conditions. We observe
that, for the TG flow, the decay is first faster (∼t−1) and
then slows down; this could be due to the fact that, as time
evolves and energy decays, the Froude number of a given
flow becomes substantially smaller; note that the later decay
in Fig. 8(a) corresponds to an exponential regime, as can be
easily verified, displaying the data in lin-log coordinates (not
shown). If the Froude number is decreased the decay is delayed
(dashed-line), while still following the same power law. A
similar effect is observed for ABC flows in Fig. 8(b) where
results for two different Reynolds numbers are reported: the
higher the Reynolds number, the shallower the energy decay.

For the random cases [Fig. 8(c)], when k0 = 3–4, helicity
has become negligible by the peak of the enstrophy, as
previously observed, and the decay follows an approximate
t−1 law. When k0 = 2 there are too few modes to excite in
building a random initial condition, and at early times the
randomness of such flows is rather weak, with well-ordered
columns in the initial conditions, reminiscent of the ABC flow
itself (see, e.g., Fig. 4). Helicity then does not go to zero, and
the decay follows, as in the ABC case, a −1/3 power law (this
case is not shown).

In general terms, it seems reasonable to conclude that, for
stratified flows, if helicity vanishes by the time of occurrence
of the peak of the enstrophy, the decay will follow a −1 power
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law, while if the initial helicity value is high and it survives
up until the maximum of dissipation, the decay will follow a
−1/3 power law.

D. Energy and helicity spectra

The effect of strong and large-scale helicity on the temporal
decay rate of the total energy is, thus, striking. We now
address the related question of the possible role of helicity on
energy distribution among Fourier modes. In the anisotropic
case, the analysis becomes quite arduous since one has to
consider the Fourier decomposition along perpendicular and
parallel directions (referring to the imposed stratification in the
vertical), and the spectra of kinetic and potential energy and of
helicity. Note that other decompositions of the data have been
advocated in the literature (see Refs. [14,55] and Ref. [4] for a
recent exposition); indeed, because of incompressibility, two
scalar functions suffice to define the kinetic energy spectra
and a commonly used decomposition is that in toroidal and
poloidal modes.

In Fig. 9 we show the isotropic (k), parallel (k‖), and
perpendicular (k⊥) total energy spectra, ET , together with the
parallel and perpendicular potential energy spectra, EP , for
four ABC flows with different Froude and Reynolds numbers
(see caption). The spectra are plotted at the peak of enstrophy
t∗ and are averaged over ≈0.3–0.4 eddy turnover times after t∗.
As general remarks, we note that the energy is rather strongly
peaked at k0, and we observe that, at high wave numbers, the
spectra are more developed when the Froude number is higher,
since nonlinear interactions are comparatively more efficient.
The survival of the initially excited large scales is expected,
since both wave interactions and helicity can inhibit the energy
transfer to smaller scales. This fact may explain the rather
shallow spectrum at intermediate wave numbers, followed
by the very steep spectrum at high wave numbers, observed
in Figs. 9(a) and 9(b). In the isotropic energy spectrum
[Fig. 9(a)], the transition between the rather flat behavior and
the steep high-wave-number scaling law is marked by a “knee”
around k ≈ 30, which is possibly coincident with the buoyancy
wave number kb: kb ≈ 25 for Fr = 0.022 and kb ≈ 13 for
Fr = 0.044. The same sharp break is observed in the total and
potential parallel energy spectra; it seems entirely attributable
to the behavior of the flow with respect to variations in the
vertical direction, a fact that strengthens its identification
with kb.

The perpendicular spectra consistently behave with a k−3

power law, as found in several numerical studies for this
parameter regime [2,56].

Flat spectra have already been documented in the literature
for stratified turbulence and various interpretations have been
provided. A flat energy spectrum has been derived in Ref. [24]
on the basis of a superposition of independent horizontal
layers, each with a Gaussian profile, as a model of the vertically
sheared horizontal layers associated with the zigzag instability
[47] (as well as with geostrophic balance when one takes
rotation into account). Indeed, the thickness of these layers
is thought to be the buoyancy scale, as advocated in [47] using
a scaling argument that states that the Froude number based on
a vertical length scale has to be of order unity. This has already
been studied in a series of direct numerical simulations (see,
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FIG. 9. (Color online) Isotropic (a), parallel (b), and perpen-
dicular (c) total energy spectra and parallel (d) and perpendicular
(e) potential energy spectra for ABC flows with Re = 6000 and
Fr = 0.022 (run 8, solid black line), Re = 6000, and Fr = 0.044 (run
9, dash-dotted green line), Re = 6000 and Fr = 0.088 (run 10, dashed
blue line), and Re = 3000 and Fr = 0.022 (run 7, dotted red line).
Slopes are indicated as a reference. In this and subsequent figures,
a black arrow indicates a sharp break (or knee) in the spectra. Note
that the rather flat spectrum in the total energy stems from vertical
variations [(b) and (d)], whereas the perpendicular spectra [(c) and
(e)] are close to a k−3

‖ scaling for all values of parameters.

e.g., Refs. [16,41] for more details). Here we hypothesize that
flat spectra may be related to the presence of high helicity
values as we discuss below commenting on Fig. 10.

The knee we have identified in the evolution of energy
spectra (indicated by a black arrow in the figures) as a function
of k‖ is also not a new feature of stratified turbulence. It has
been attributed to a change of regime for the total energy
(or its horizontal component) at high resolution (specifically
with the dissipation wave number sufficiently resolved) at the
buoyancy scale [57]. On the other hand, in Ref. [56], both
the wave mode (corresponding to the vertical velocity) and
the vortex mode (corresponding to the horizontal velocity)
display a sharp break in terms of k‖ for highly stratified flows,
identified as the buoyancy scale. Our data lead us to argue (see
below) that another, rather independent, phenomenon may be
happening as well, namely the role played by the helicity
distribution among modes.

The isotropic, parallel, and perpendicular helicity spectra
are shown in Fig. 10 for the same ABC flows (note that the
absolute value of helicity is displayed). Similarly to the total
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FIG. 10. (Color online) Isotropic (a), parallel (b), and perpen-
dicular (c) helicity spectra for the same flows as in Fig. 9: run 8
(solid black line), run 9 (dash-dotted green line), run 10 (dashed blue
line), and run 7 (dotted red line). Note the flat spectra at large scales,
stemming again from vertical variations. Such flat spectra have been
observed in the nocturnal planetary boundary layer [35]. The arrows
highlight a sharp break in the spectra discussed in the text.

and parallel isotropic energy spectra are the following points:
(i) the spectrum is flat at large scale and (ii) a knee is present
for the total and parallel helicity. In addition we also observe a
secondary change in the spectra at a smaller scale which seems
to coincide with a change of sign of helicity. Since, according
to the Schwartz inequality we have H (k) � kEV (k), and since
helicity is large for these flows, it is reasonable to think that
the behavior of the energy spectra in these runs is influenced
by the behavior of helicity.

As the temporal data indicates that the ABC flow behaves
differently from random flows, we now examine the spectral
behavior for the random case. In Fig. 11 the energy spectra for
random flows centered initially on wave number k0 = 3,4 are
presented. We recall that at the peak of enstrophy, the residual
helicity is close to zero for these runs. In these cases, there is
no clear signature of an abrupt slope change for the energy.
The higher the Re and Fr numbers, the shallower the spectra
at small scales. The peak at k0 is also noticeably reduced with
respect to the ABC cases, indicating more efficient energy
transfer from the energy-containing scales.

Finally, in Fig. 12, the helicity spectra for the random cases
initially centered at k0 = 3 and 4 are shown. The value of
helicity is much smaller than for the ABC runs, as noted
in Table II: The residual relative helicity σV at the peak of
enstrophy is close to 2%, whereas for the ABC runs it is close
to 20%. At the end of the runs, these values are, respectively,
≈11% and ≈80%, i.e., almost as strong as it can be in the
latter case. A slope change (sharp break) is still identifiable
at a wave number again comparable to the buoyancy wave
number kb, in particular in the parallel spectra, but the helicity
is now too weak to significantly influence the behavior of

100 101 102
10−8

10−6

10−4

10−2

k

ET

(a)
−2

100 102
10−8

10−6

10−4

10−2

k⊥

ET

100 102
10−8

10−6

10−4

10−2

k||

ET

(b) (c) −2−2

100 102
10−8

10−6

10−4

10−2

k||

EP

100 102
10−8

10−6

10−4

10−2

k⊥

EP

(d) (e)
−2 −2

FIG. 11. (Color online) Isotropic (a), parallel (b), and perpen-
dicular (c) total energy spectra, and parallel (d) and perpendicular
(e) potential energy spectra for random flows with Re = 6000 and
Fr = 0.022 (run 14, solid black line), Re = 6000 and Fr = 0.044
(run 15, dash-dotted green line), Re = 6000 and Fr = 0.088 (run 16,
dashed blue line), and Re = 3000 and Fr = 0.022 (run 13, dotted red
line). Slopes are indicated as a reference. No knee (sharp break in the
slope) in the spectra is discernible, contrary to ABC flows.

the energy spectrum. Note also that at scales larger than the
buoyancy scale (but smaller than the initial condition scale),
the helicity spectrum is again flat, likely due to the layered
structure in the vertical, whereas the perpendicular spectrum
is steep. Only for Run 16 with the highest Froude number
is there a noticeable departure from a flat spectral law. This
remark can be used in interpreting the recent data on helicity
spectra in the atmosphere. Indeed, we note that, at night when
the planetary boundary layer is more stable, flat spectra for the
helicity have been clearly identified as well [35].

To conclude, it seems likely, for helical flows here rep-
resented by ABC initial conditions, that it is the helicity
which is responsible for the change of slope in the energy
spectrum close to the buoyancy scale. Assuming that the
Schwarz inequality is fulfilled, a flat helicity spectrum leads
to EV (k) ∼ k−1, compatible with what we observe for the
energy in the ABC case. A similar result obtains for the
random initial condition centered on k0 = 2. This point will
need further studies at high resolution so different energy and
helicity balance can take place in flows with sufficient scale
separation.
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FIG. 12. (Color online) Isotropic (a), parallel (b), and perpendic-
ular (c) helicity spectra for the same random flows as in Fig. 11: run
14 (solid black line), run 15 (dash-dotted green line), run 16 (dashed
blue line), and run 13 (dotted red line).

IV. CONCLUSION

We have performed numerical simulations of strongly
stratified turbulence (see Table I for parameters) imposing
both helical and nonhelical initial conditions and we have
shown that when helicity is preserved at large scales it produces
measurable effects. This is observable in both the energy decay,
which is found to be substantially slower in the helical case, and
in the energy spectra, which, for helical flows, display a flat dis-
tribution with a sharp break in spectral slope in the vicinity of
the buoyancy scale Lb. Beyond Lb, the spectra are significantly
steeper. These knees are clearly identified in the parallel spectra
and seem to be close to the buoyancy scale, in agreement with
the interpretation of Lb as the scale at which Fr ≈ 1.

Thus, for helical stratified turbulence, the energy decay is
slowed down by the presence of helicity in a way reminiscent
to that observed in the rotating case. However, it should be
noted that helicity is an ideal invariant of rotating flows,

whereas it is not a priori conserved for ideal stratified flows.
While in the former case the slow-down in the decay is
associated with a direct cascade of the helicity, in the latter
case a very slow (linear in time) decay of helicity (resulting
in a quasiconservation) can be attributed to a cyclostrophic
balance where dissipation and gravity equilibrate at large
scales once the nonlinear terms start transferring energy to
small scales after an initial wave-dominated regime. These
results are obtained in cases where the evolution of large scales
is somewhat inhibited, because the initial scale of the flow is
comparable to the overall size of the computational box, the
so-called box-limited conditions in which the growth of the
integral scale is blocked.

Moreover, in highly turbulent flows such as those found in
geophysics and astrophysics, the eddy turnover time becomes
shorter than τW at smaller scales, for a sufficiently large
Reynolds number. In that case, isotropic turbulence may
recover, beyond the so-called Ozmidov scale Loz ∼ [ε/N3]1/2.
Assuming further that this scale is larger than the dissipation
scale �diss ∼ [ε/ν3]1/4 leads to the condition that the buoyancy
Reynolds numberR = ReFr2 be larger than unity. It was found
recently that power laws of the energy spectra scale with R, as
opposed to the Froude number itself [58]. The condition R �
1 is easily fulfilled in geophysical flows but difficult to realize
in numerical simulations, where the highest to-date resolution
(and, thus, scale separation) is found in Ref. [25], realized on a
grid of 40962 × 2048 points; similarly, laboratory experiments
function at moderate R [59]. Further studies of that regime are
necessary but will require substantial numerical resources.
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A. M. Soward, J. Fluid Mech. 167, 353 (1986).
[47] P. Billant and J.-M. Chomaz, Phys. Fluids 13, 1645 (2001).
[48] P. Haynes and M. McIntyre, J. Atmosph. Sci. 42, 2021 (1990).
[49] T. Teitelbaum and P. D. Mininni, Phys. Rev. Lett. 103, 014501

(2009).
[50] S. Galtier, H. Politano, and A. Pouquet, Phys. Rev. Lett. 79,

2807 (1997).
[51] T. Teitelbaum and P. D. Mininni, Phys. Fluids 23, 065105 (2011).
[52] P. Mininni and A. Pouquet, Phys. Fluids 22, 035105 (2010).
[53] P. Mininni and A. Pouquet, Phys. Fluids 22, 035106 (2010).
[54] A. Pouquet and P. Mininni, Philos. Trans. R. Soc. 368, 1635

(2010).
[55] P. Bartello, J. Atmos. Sci. 52, 4410 (1995).
[56] Y. Kimura and J. R. Herring, J. Fluid Mech. 698, 19 (2012).
[57] M. L. Waite, Phys. Fluids 23, 066602 (2011).
[58] P. Bartello and S. Tobias [J. Fluid Mech. (to be published)].
[59] M. L. Waite, Modeling Atmospheric and Oceanic Flows: In-

sights from Laboratory Experiments and Numerical Simulations
edited by T. von Larcher and P. Williams (American Geophysical
Union, Washington, DC (in press)).

063007-13

http://dx.doi.org/10.1080/03091929.2012.696109
http://dx.doi.org/10.1080/03091929.2012.696109
http://dx.doi.org/10.1063/1.868214
http://dx.doi.org/10.1017/S0022112097008641
http://dx.doi.org/10.1017/S0022112003004531
http://dx.doi.org/10.1146/annurev-fluid-122109-160807
http://dx.doi.org/10.1016/S0377-0265(99)00043-3
http://dx.doi.org/10.1017/S0022112064001355
http://dx.doi.org/10.1029/JC082i009p01397
http://dx.doi.org/10.1029/JC082i009p01397
http://dx.doi.org/10.1016/0167-2789(96)00114-5
http://dx.doi.org/10.1017/S0022112009993272
http://dx.doi.org/10.1017/S0022112009993272
http://dx.doi.org/10.1017/S0022112096008713
http://dx.doi.org/10.1080/14685248.2012.702909
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122121
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122121
http://dx.doi.org/10.1146/annurev-marine-120308-081015
http://dx.doi.org/10.1146/annurev-marine-120308-081015
http://dx.doi.org/10.1016/j.physrep.2005.06.005
http://dx.doi.org/10.1017/S0022112099005637
http://dx.doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2
http://dx.doi.org/10.1134/S1028334X1009031X
http://dx.doi.org/10.1134/S1028334X1009031X
http://dx.doi.org/10.1175/1520-0493(1998)126<2959:VOSRHD>2.0.CO;2
http://dx.doi.org/10.1007/BF02915517
http://dx.doi.org/10.1029/1999JD900387
http://dx.doi.org/10.1029/1999JD900387
http://dx.doi.org/10.1134/1.2039983
http://dx.doi.org/10.1134/1.2039983
http://dx.doi.org/10.1103/PhysRevE.87.033016
http://dx.doi.org/10.1103/PhysRevE.87.033016
http://dx.doi.org/10.1146/annurev.fl.24.010192.001433
http://dx.doi.org/10.1146/annurev.fl.24.010192.001433
http://dx.doi.org/10.1017/jfm.2012.99
http://dx.doi.org/10.1017/jfm.2012.99
http://dx.doi.org/10.1016/j.parco.2011.05.004
http://dx.doi.org/10.1016/j.parco.2011.05.004
http://dx.doi.org/10.1238/Physica.Topical.116a00123
http://dx.doi.org/10.1238/Physica.Topical.116a00123
http://dx.doi.org/10.1017/S0022112004000977
http://dx.doi.org/10.1017/S0022112078000658
http://dx.doi.org/10.1103/PhysRevE.86.036319
http://dx.doi.org/10.1103/PhysRevE.86.036319
http://dx.doi.org/10.1002/qj.200212858318
http://dx.doi.org/10.1103/PhysRevLett.100.085003
http://dx.doi.org/10.1017/S0022112086002859
http://dx.doi.org/10.1063/1.1369125
http://dx.doi.org/10.1175/1520-0469(1990)047<2021:OTCAIT>2.0.CO;2
http://dx.doi.org/10.1103/PhysRevLett.103.014501
http://dx.doi.org/10.1103/PhysRevLett.103.014501
http://dx.doi.org/10.1103/PhysRevLett.79.2807
http://dx.doi.org/10.1103/PhysRevLett.79.2807
http://dx.doi.org/10.1063/1.3592325
http://dx.doi.org/10.1063/1.3358466
http://dx.doi.org/10.1063/1.3358471
http://dx.doi.org/10.1098/rsta.2009.0284
http://dx.doi.org/10.1098/rsta.2009.0284
http://dx.doi.org/10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2
http://dx.doi.org/10.1017/jfm.2011.546
http://dx.doi.org/10.1063/1.3599699



