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The punctual character and random nature of the impurity
positions in depletion regions lead to inhomogeneities that can
significantly affect the potential intergranular barriers at
polycrystalline semiconductors and, in general, of potential
barriers at any semiconductor interface. This would reflect in
Arrhenius plots for the electrical conductivity that become
curved due to fluctuations of the intergranular barrier heights.
Experimental results for polycrystalline tin oxide can be fitted
assuming thermionic emission conduction at grain boundaries
with a Gaussian distribution of barrier height fluctuations.

However, resorting to a computational numerical model, we
found that spatial fluctuations in barrier heights due to the
discreteness of the donors and their statistical distribution at
the depletion region differ from a Gaussian distribution. The
type of obtained fluctuations, considering thermionic emission
conduction, cannot explain the Arrhenius plots for the
electrical conductivity found experimentally, especially at
low temperature. Conversely, the tunneling contribution to
conduction, without resorting to fluctuations, presents the
observed trends.

� 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction It is accepted from long ago that the
electrical conduction in polycrystalline semiconductors is
dominated by intergranular potential barriers that have a
Schottky-type nature [1–9]. In particular, oxide semi-
conductors regularly present a dominant density of oxygen
vacancies that confer a n-type character to the grains. Most
researchers assume that electrical conduction is dominated
by thermionic emission and then the conductance is
generally described by [10]

G ¼ G0 expð�eVs=kTÞ; ð1Þ

where eVs is the band bending, T the temperature, k the
Boltzmann constant, and G0 would be the electrical
conductivity for no band bending. With Eq. (1) (i.e.,
assuming an Arrhenius relation) the barrier height f, defined
as eVSþEC�EF, can be estimated; EC is the conduction
bandminimum at the bulk and EF is the Fermi level position.
Thus, the conductance (ln G) versus the reverse function of
temperature (1/T) should show a straight line [11].
Interestingly, experimental results on polycrystalline

semiconductors do not regularly show such behavior as
Arrhenius plots deviate from straight lines, especially at low
temperatures [12].

To explain the observed temperature dependence of the
electrical conductivity, a variety of reasons have been
proposed. Among them, it has been claimed that the
Arrhenius plots are curved due to fluctuations in barrier
heights [13, 14]. Indeed, it is customary to model the
electrostatic potential in a Schottky barrier by a one-
dimensional quadratic potential, as it is obtained from a
jellium of charge in the depletion region. However, the
punctual character and random nature of the impurity
positions lead to inhomogeneities that can significantly
affect the conductivity.

In this theoretical and experimental work, we specifi-
cally study the effect of intergranular barrier height
fluctuations on thermionic emission to explain the
temperature dependence of the electrical conductivity in
polycrystalline tin oxide. In particular, with a computational
numerical model, we determine the spatial fluctuations in
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barrier heights due to the discreteness of the donors and their
statistical distribution at the depletion region. The effects on
conductivity are then compared with experiments carried
out on polycrystalline tin oxide films. We found that, as
observed for a variety of polycrystalline semiconductors and
semiconductor interfaces, experimental deviations from the
Arrhenius behavior can be fitted assuming a Gaussian
distribution of barrier height fluctuations. However, with
numerical simulations, we determined that fluctuations do
not present a Gaussian distribution and then they cannot
explain the electrical conductivity found experimentally.
Finally, we showed that the tunneling contribution accounts
for the observed trends in the Arrhenius plots.

2 Electrostatic potential Although well known, for
the sake of clarity, we now shortly review the intergranular
double Schottky barriers as it is usually described without
fluctuations. Although different types of defects are present
in SnO2, oxygen vacancies, which behave as electron
donors, are considered dominant. There is an intergranular
density of states that causes an exchange of electrons with
the interior of the semiconducting grains, thus forming a
space charge layer close to the surface. By changing the
concentration and/or the energy distribution of the
intergranular states, the space charge region is modulated
and thus the conductivity is directly affected.

Conduction mechanisms have been interpreted in
analogy to those in metal-semiconductor contact diodes.
Accordingly, the electrical properties of polycrystalline
semiconductors are usually described with a simple one-
dimensional model representing the interface between two
grains. By solving Poisson’s equation for the depletion
approximation, the relationship between the band bending
and the depletion region width v is [1]

Vs ¼ eNd

2ere0
v2: ð2Þ

Figure 1 depicts the double Schottky barrier model that
is generally accepted. Using Eq. (1) (i.e., assuming an
Arrhenius relation) the band bending, or the barrier height f,
is regularly estimated. Indeed, by plotting the conductance
(ln G) versus the reverse function of temperature (1/T), an
activation energy value is obtained [11]. However, the

underlying assumption in the above analysis is that the
potential barrier has the same height and shape along
the whole interface. In fact, this is an incorrect picture
because the potential barrier arises from the Coulomb
potential due to all present charges and then fluctuations
must be present. The relevance of these fluctuations will be
analyzed after presenting some experimental results.

3 Experimental Commercial high-purity SnO2

(Aldrich, medium particle size 0.4mm) was ground until
a medium particle size of 0.130mm was obtained as
determined using the intersection method from SEM
images. The resulting powder was thermally treated up to
380 8C using a heating rate of 1 8Cmin�1. Later, the powder
was cooled up to 25 8C and a paste was prepared with an
organic binder (glycerol). The used solid/organic binder
ratio was 1/2, and no dopants were added. Thick, porous film
samples were made by painting onto insulating alumina
substrates on which electrodes with an interdigitated shape
(platinum film 200 nm thick, after 25 nm of titanium as an
adhesion layer) were deposited by sputtering. The alumina
substrates were 96% dense.

After painting, samples were thermally treated for 1 h in
air at 100 8C. This treatment was performed in order to
evaporate the organic binder and to improve the films
adhesion on the alumina substrate. Later, samples were
thermally treated up to 380 8C for 1 h in an air atmosphere
using a heating rate of 1 8Cmin�1. After thermal treatment,
the film was cooled down to 25 8C. Finally, some of the
samples were kept at 380 8C for 4 h in a N2 atmosphere with
5% H2. Samples were labeled SO2 (samples only exposed to
dry air) and SH2 (samples exposed to hydrogen).

To image the tin oxide surfaces, a JEOL JSM 6460-S
scanning electron microscope was employed. From SEM
characterization of film surfaces, shown in Fig. 2a, porous
microstructure composed of a relatively wide distribution of
grain sizes was noticed (130 nm). By SEM cross-section
examination, it was determined that the film-thickness was
approximately 150mm (Fig. 2b).

After thermals treatment in different atmospheres, films
were characterized using X-ray diffraction, XRD – Philips
(PW1830), with a PANalytical X’Pert PRO diffraction
system employing CuKa radiation (l¼ 0.1542 nm) at 40 kV
and 40mA. Samples were scanned between 20 and 808with
a step size of 0.028. Figure 3a shows the XRD pattern of a
film before treatment. In their original state, the chemical
composition and crystal structure of the films match very
well with that of tetragonal rutile SnO2. Most of the
observed peaks correspond to the diffraction planes typical
of the SnO2 cassiterite phase (PDF no. 01-071-0652). The
diffractogram also shows other minor peaks that can be
attributed to the substrate: alumina (PDF no. 00-011-0661)
and Ti2O (PDF no. 01-73-1582) as an adhesion layer
consisting of 25 nm of titanium was deposited in making the
electrodes. The codes correspond to the International Centre
for Diffraction Data (ICCD) (1998) Powder diffraction file
database, Newtown Square (USA) [15]. No changes in

Figure 1 Diagram for the intergranular double-Schottky barrier
model. The band bending is eVS, f the height of the barrier, and v
is the width of the depletion region.
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phases or composition were observed after oxygen or
hydrogen treatment.

Raman spectroscopy was carried out to verify that the
material composition does not change after film conforma-
tion. The spectra were recorded at room temperature with a
Renishaw in Via Reflex spectrometer system equipped with
charge-coupled device (CCD) detector of 1040� 256 pixels
and coupled to a Leica microscope with a 100� (0.9 NA)
Leica metallurgical objective. An Ar laser line (514 nm,
50mW) was used as excitation source in combination with a
grating of 2400 grooves/mm. Figure 3b shows Raman
spectrum for the film before gas treatments. The film shows
the bands characteristics of SnO2. Peaks at 470, 632, and
777 cm�1 have been assigned to the Eg, A1g, and B2g

vibrational modes of SnO2 in tetragonal rutile structure,
respectively [16, 17]. Also, using this technique, no changes
were observed after oxygen or hydrogen treatment (spectra
are not presented, they are similar to that of Fig. 3b).

After preparation, samples were placed in the measuring
cell, and inside an isolating recipient with liquid nitrogen for
cooling purposes. Gaseous nitrogen was flown the entire
time to ensure no contact with ambient oxygen. The lowest
temperature reached was �123 8C and then increased
separating the sample from the liquid nitrogen. External
heaters were used for higher temperatures, without
removing the sample. Measurements were made after
reaching steady state at different temperatures. An Agilent
34401A multimeter was used for the DC electrical
conductance measurements. Given the resistance values,
we used the two-point resistance measurement method.
Finally, a Hewlett Packard impedance analyzer model
4184A was used for capacitance measurements.

Figure 4 shows the conductance measured in nitrogen of
the oxygen treated (SO2) and hydrogen treated (SH2) samples
versus the inverse of temperature, from 150 up to 330K. In
this temperature range, the conductivity change for the SH2
sample as a function of temperature is relatively small; the
activation energy at the highest temperatures can be
estimated 0.19� 0.01 eV. The SO2 sample shows a much

Figure 2 (a) SEM micrograph of the film showing a porous
structure with an average grain size of 0.130mm as determined
using the intersection method. (b) Micrograph of the film cross-
section that presents an average thickness of �150mm.

Figure 3 (a) X-ray diffraction pattern in the range 20–808 (2 h). A
tin oxide tetragonal crystalline system is only observed in the
powder used in our samples. (b) Raman spectrum of the film
(initially conformed/without gas treatments).
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lower conductance and the activation energy at the highest
temperatures corresponds to an activation energy of
0.41� 0.02 eV. Higher temperatures were not explored to
avoid gas adsorption/desorption that can take place during
the heating and cooling processes. Both Arrehnius plots
show a curvature at low temperatures. In the case of SO2, we
could not measure at low temperatures as the conductivity
was below the detection limit. Similar results have been
obtained by many authors and for a variety of polycrystal-
line semiconductors [18–24].

4 Potential height fluctuations The thermionic
emission theory for a Schottky barrier leads to the following
current density/voltage relation [25]

J ¼ A�T2 exp � f

kT

� �
exp

eV
kT

� �
� 1

� �
; ð3Þ

where A� is the Richardson constant. Thus, the conductance
for an applied voltage V<< kT can be computed using
dJ/dV

G ¼ eA�

k
T expð�f=kTÞ: ð4Þ

Many researchers assume that the fluctuations of barrier
heights present a Gaussian distribution of the form [25–31]

PðfÞ ¼ 1

u
ffiffiffiffiffiffi
2p

p exp
�ðf� f0Þ2

2u2
; ð5Þ

where f0 is the mean value and u the standard deviation of
the barrier height. Thus, the electrical conductance,
assuming a thermionic emission mechanism, can be

calculated with

G ¼ eA�

k

Z 1

0
PðfÞFðfÞdf; ð6Þ

where F(f)¼ exp(�f/kT).
According to the geometry of our sensors, the electrical

resistance can be related to that of semi-infinite electrodes,
coplanar with a gap separating them. With the results of
Ref. [32] we can calculate the resistance for our geometry

R � p

lssinh�1ð2e=DÞ ; ð7Þ

where D is the width of the inter-electrode pathway, e is the
film thickness, l is the length of the electrodes, and s is
the conductivity. For our geometry, R�p/(3ls) and then the
measured conductivity is s¼pG/(3l) [33]. To compare the
experimental results with those resulting from a thermionic
emission conduction, we have to consider the presence of
grains and intergranular barriers. The conductivity of a
single cubic grain of size d would be Jd/V as there is an
intergrain barrier per grain. Therefore, the conductance in
terms of the current density and the applied voltage to a
single intergranular barrier is G� 3dlJ/(pV). Equation (7)
indicates that the resistance presents a weak dependence
with the film thickness; for example, a sample 20% thicker
implies a lower value or R of about 7%. Since we are dealing
with a varying thickness with positive and negative
fluctuations of about 20%, the expected error is even
smaller. On the other hand, the temperature dependence of
Fig. 4 is determined with the same film and then the
resistances at all temperatures are weighted by the same
factor. This error is not relevant here, as it does not affect
any of the conclusions of this work.

Figure 4 shows the fitting of the experimental results
assuming thermionic emission conduction by means of
Eqs. (5) and (6). The mean value of the barrier height f0 and
its standard deviation u are adjustable parameters. Reported
fittings correspond to f0¼ 0.95 eV and u¼ 0.143 eV for the
sample SH2, and f0¼ 0.95 eV and u¼ 0.126 eV for the
sample SO2. Results are very sensitive to the fitting
parameters to the point that uncertainties in their
determination are below 1%. Interestingly, experiments
are reproduced by changing its standard deviation and using
the same mean value of the barrier height. This is consistent
with a previous work that shows that samples exposed to
different gas treatments and measured in the same
atmosphere present different conductance but the same
barrier height [34].

The model indicates that larger deviations in the barrier
height directly affect the conductance, especially at low
temperatures. The reason is that, as the barrier height
deviation increases, the transfer of electrons across the
interface occurs at regions with lower barriers. This can be
clearly detected by plotting the integrand in Eq. (6). In
Fig. 5, curve (a) corresponds to sample SH2 and curve (b) to

Figure 4 Conductance for the hydrogen (SH2) and oxygen (SO2)
treated samples as a function of temperature from 150 up to 330K.
Lines are fittings to the experimental results assuming thermionic
emission conduction.
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sample SO2 at 333K. It is clearly seen that electrons mostly
overcome the barrier at places where the barrier is
remarkably smaller than its mean value. The product P
(f)F(f) presents a maximum at fmax that can be analytically
determined,

fmax ¼ f0 �
u2

kT
: ð8Þ

The arrows in Fig. 5 show the position of fmax. For large
values of the dispersion u and/or low temperatures, Eq. (8)
predicts a negative fmax, which is mathematically correct
but it has no physical sense. This result indicates that most
electrons overcome the barrier in the proximities of f¼ 0 as
shown in the inset of Fig. 5.

In fitting experimental data, as we did in Fig. 4, two
main assumptions are taken for granted: (i) the thermionic
emission is the dominating electrical conduction mechanism
and (ii) fluctuations of barrier heights present a Gaussian
distribution. In principle, a Gaussian distribution seems a
sound choice. However, this distribution is only valid for
independent events; this is not the present case. As clearly
stated in Ref. [35], a Gaussian distribution for barrier
heights represents a first choice or a first approximation to
model nonuniformities in the interface potentials. We were
then motivated to check the validity of assumption (ii).

5 Numerical simulations We calculated the elec-
trostatic potential due to a double Schottky barrier, arising
from a random distribution of dopants in the depletion

regions [36, 37]. FollowingMahan [36], we approximate the
electrostatic potential of a random distribution of point
charges (ionized dopants). We built a parallelepiped of size
x� y� z shown schematically in Fig. 6. The width of the
parallelepiped z is 2v, where v is the depletion region width
from Eq. (2). We randomly distribute a finite number of
donors inside the parallelepiped in�v� z�v except in the
plane z¼ 0 that corresponds to the grain-boundary. Then,
we associate to each charge an equal and opposite charge in
the interface, at the grain-boundary; with this arrangement
there is charge neutrality (see Fig. 6). For our simulations we
use a mesh of 200� 200� 100 and distribute approximately
1150 charges using a barrier height f0¼ 0.8 eV and a doping
concentration Nd¼
1024m�3 which are typical values in tin oxide.

The barrier height for a given position in the plane of the
barrier is defined as the maximum electrostatic potential in
the direction normal to this plane (z direction) for every
point in the parallelepiped. The Coulomb (1/r) potential
does not include the contributions of the core electrons of
the donors, they are bound electrons at the immediate
proximity of the point charge. An approximate potential can
be generated by cutting off the 1/r potential at a distance Rs,
which is close to the Bohr radius [38, 39]. In our
simulations, we replace the potential with a constant inside
this radius. The choice of Rs was made by using the next
argument. If we consider the charge density as constant
within Rs, the potential will behave inversely with the
distance outside Rs, and quadratically inside Rs. Therefore,
we choose Rs such that the constant potential value inside is
approximately the potential reached if the charge were
distributed uniformly in Rs. We found that Rs must be
approximately 14 Å for tin oxide. Taking into account this
cut off, we compute the electrostatic potential in every point
of the system as the sum of the Coulomb potentials
generated by all charges. As above, it is expected that this
approximation also leads to an error by excess.

A sample subsection of the barrier height as a function
of position in the y direction for a fixed x is shown in Fig. 7
on a mesh of 200� 200� 100 points with a doping
concentration Nd¼ 1024m�3 and an average barrier height
f0¼ 0.8 eV. Periodic boundary conditions were used to

Figure 5 Integrand P(f)F(f) of Eq. (4) as a function of barrier
height. Sample conductivity is proportional to the integral of P(f)
F(f). As the dispersion in the barrier heights increases, electrons
mostly overcome the barrier at places of the interface with barrier
heights much lower than its mean value. The inset shows that at
low temperatures most electrons cross the interface at places were
the barrier is close to be zero. Arrows indicate the P(f)F(f)
maxima.

Figure 6 Schematic diagram of the numerical simulation
geometries and the arrangement of the punctual charges.
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avoid edge effects. Other doping concentrations, doubly
charged dopants, other sizes of the parallelepiped and
barrier heights were tested to check the finite size effects and
the mesh sensitivity of the results; we found that fluctuations
do not vary substantially.

The relative frequency or normalized probability
density, for 20 observations, is shown as empty circles in
Fig. 8. To do this, data were binned in intervals of 1meV.
The probability density has a maximum close to f0 and a
standard deviation of �0.1 eV due to fluctuations. At first
sight, the probability density looks quite similar to a
Gaussian distribution. Fitting with a Gaussian (the solid line
in Fig. 8) shows that this approximation fails for small and
large values of the barrier heights due to a slight asymmetry
of the found distribution.

It seems that a Gaussian approximation is not a bad
starting point as it reproduces quite well the central part of
the distribution. However, the inset of Fig. 8 shows the

probability density for the barrier height in a log-linear
scale, making more evident the difference between
numerical simulation results and the approximation. In
particular, the simulation corresponds approximately to an
interface equivalent to a square with a side of 0.6mm, which
is a much larger surface than the typical intergrains of our
films. Interestingly, the barrier height is never below
0.53 eV or above 1.31 eV.

In nature, many outcomes that depend on the sum of
independent events approximate the Gaussian distribution.
This is valid if respected the assumption that the sample is
obtained containing a large number of observations, each
observation being randomly generated in a way that does not
depend on the values of the other observations and then they
are uncorrelated. This is not valid in our case because barrier
heights do not adopt uncorrelated values since potentials
cannot change abruptly; note that the barrier height arises
from summing Coulomb potentials. The point is that if
barrier heights follow a Gaussian distribution, there would
be a non-zero probability of having very low barriers. For
example, for a Gaussian distribution, the probability of
having a zero barrier height if f0¼ 0.95 eV and u¼ 0.143
eV, needed to fit the results corresponding to sample SH2, is
7.3� 10�10. Thus, for an intergrain of 100� 100 nm2, the
potential would be zero in an area equivalent to a square
with a side of 2.7� 10�3 nm, which has no physical sense.
In other words, there is no charge distribution that is able to
generate the needed potential. Our results show that the
probability density for the barrier heights differs signifi-
cantly from a Gaussian as |f�f0| increases (see Fig. 8).
Furthermore, there is a cut off in the probability density for
small barrier heights, indicating that very low barriers are
not present in the system.

It could be argued that the probabilities of having very
low barriers are very small and then the observed differences
are not relevant. This is the point of the present work, the
inclusion of low barrier values, even with low probability,
can notably affect the conductance, since electrons mostly
overcome the barrier at its lowest values. In Fig. 9 we plot
the product P(f)F(f), directly related to conductivity
through Eq. (6), for a temperature of 333K, as in the
previous section, but now we use the barrier height
distribution P(f) obtained with our numerical simulation
(results of Fig. 8). Figure 9 shows that, while the main
contribution to conduction corresponds to barrier heights
around fmax, below the average value f0, the difference
f0�fmax is remarkably smaller compared to the results
found in Fig. 5 (where the probability density was
considered Gaussian). In the inset of Fig. 9, we show the
product P(f)F(f) for a lower temperature, T¼ 150K, the
maximum fmax decreases but it does not differ considerably
from the result corresponding to T¼ 333K.

A simple model, as the one we presented, captures the
essence of the problem showing that fluctuations of barrier
heights due to the punctual character and random nature of
the impurity positions at depletion regions do not present a
Gaussian distribution. With the found type of fluctuations it

Figure 7 A sample portion of the barrier height as a function of
the position for a back-to-back Schottky barriers. The doping
concentration is Nd¼ 1024m�3 and the average barrier height is
f0¼ 0.8 eV.

Figure 8 The normalized barrier height density distribution in
eV�1, as a function of barrier height in a linear–linear scale. The
solid line is the fitting with a Gaussian function. The inset shows
the same plot in a log-linear scale.
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is not possible to fit experimental results assuming
thermionic emission as the dominating electrical conduction
mechanism.

It is known that the actual carrier concentration and
mobility are a function of temperature. However, their
dependences on temperature partially compensate each
other and the resulting effect on conductivity is not enough
to reproduce experiments [40]. On the other hand, usually a
so-called bricklayer model with cubic-shaped grains of
identical size is assumed, which constitutes a simplification
of the real microstructure. The actual randomness of the
structure produces preferential paths for the electrical
current leading to a lower global resistance, but the error
made is around 10%, which is very small to be responsible
for the observed results [41]. Other explanations for the
curvature in the log (conductivity) v. 1/T plots must be
proposed.

6 Tunneling contribution to conduction It is
known that it is possible for electrons with energies below
the top of a barrier to penetrate it by quantum-mechanical
tunneling. Tunneling probability increases with the electron
energy as electrons find a thinner and lower barrier. In
opposition, the number of electrons decreases with energy.
Thus, there is a maximum contribution at a given energy
above the bottom of the conduction band. This contribution
to electrical conduction is known as thermionic-field
emission [42].

As mentioned, a double Schottky barrier model is
widely accepted to describe polycrystalline semiconductor
intergrains. However, many researchers consider grain

boundaries of essentially zero width, while others take into
account a non-negligible disordered layer at the grain
boundaries, such that the electron transport occurs in two
steps. Since the main conclusions will not differ, for the sake
of simplicity we will adopt here the second assumption.

The tunneling current can be calculated with

Jtunneling ¼ A�T
k

Z f

0
FðEÞPðEÞdE; ð9Þ

where F(E) is now the Fermi-Dirac distribution and P(E) is
the transmission probability, which can be determined by
means of the Wentzel–Kramer–Brillouin approxima-
tion [43]. Typical dopant concentrations make therm-
ionic-field emission the most relevant conduction
mechanism in many cases.

Figure 10 shows the expected conductivity for the same
parabolic barrier in all cases without fluctuations and height
equal to 0.95 eV (the same as the mean value used in our
fittings assuming thermionic emission conduction) and
several dopings. In all cases shown the tunneling contribu-
tion is the dominant conduction mechanism in the studied
temperature range. Indeed, at T¼ 333K the thermionic
contribution is about 400 times smaller than that corre-
sponding to tunneling for the lowest studied doping.
Experimental data of Arrhenius plots on various semi-
conductors, as found in Ref. [16], show a similar trend. In
Fig. 10 we also include our experimental data of Fig. 4. We
do not present fittings using other barrier heights, but it is
seen that, with the used value, results can be reproduced
quite well.

In calculating the electrical conductance assuming
thermionic emission, see Eq. (6), P(f), which is the

Figure 9 P(f)F(f) using the barrier height distribution P(f)
obtained with our numerical simulation (results of Fig. 7). Sample
conductivity is proportional to the integral of P(f)F(f). Note that
the contributions to the conductivity arise from narrow values of
barrier heights. The inset shows that at low temperatures electrons
cross the interface at places with not very different barrier heights.
Arrows indicate the P(f)F(f) maxima.

Figure 10 Arrhenius plots of electrical conductivity in which
thermionic and thermionic-field contributions are included. We
considered parabolic barriers without fluctuations with height
equal to 0.95 eV. Experimental results of Fig. 4 are also shownwith
fittings corresponding to dopings equal to SH2, is 9� 1024 for SH2
and 5.3� 1024m�3 for SO2.

Phys. Status Solidi C (2017) (7 of 9) 1700069

www.pss-c.com � 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Contributed

Article



distribution of barrier heights due to fluctuations, plays the
same role than P(E), which is the transmission probability,
in Eq. (9). Interestingly, P(E) presents, for E<f0, a
dependence with E very similar to a Gaussian. At low
temperatures most electrons overcome the barrier at
energies below the barrier top. Thus, using a Gaussian as
a weighting function for thermionic emission, the observed
temperature dependence of Arrhenius plots can be fitted.
However, the tunneling contribution is the dominant
conduction mechanism for large-doped samples, especially
at low temperatures, and also reproduces the observed
Arrhenius plots.

6 Conclusions We have analyzed the effects of
intergranular barrier height fluctuations on thermionic
emission in the electrical conductivity of polycrystalline
tin oxide. We found that experiments carried out on
polycrystalline tin oxide films can be reproduced with a
Gaussian distribution for the barrier height fluctuations
using only a thermionic mechanism. Then, we determined
the spatial fluctuations in barrier heights due to the
discreteness of the donors and their statistical distribution
at the depletion region of a back-to-back Schottky barrier
with a computational numerical model. Interestingly, we
found that barrier height fluctuations do not follow a
Gaussian distribution. In particular, fluctuations do not
generate very low barrier heights. Thus, fitting with a
Gaussian distribution leads to an artefact. Researchers adopt
a Gaussian distribution because it seems to be a reasonable
distribution. The problem is that it is not correct to apply it to
this case. The reason is that barrier heights do not come from
independent events. In short, for a typical grain size, the
probability of having a zero barrier height is practically null.
Conversely, a Gaussian distribution always leads to zones
with a zero barrier height. Even though the area is very
small, it would occur. Since what is relevant is its product
with a Boltzmann distribution, it results that the main
contribution, at low temperatures, comes from zones with
very low barriers, which in fact are nonexistent. We
conclude that the observed Arrhenius plot deviations from
straight lines, especially at low temperatures, cannot
be explained resorting to barrier height fluctuations because
they do not present a distribution that could be responsible
for the observed temperature conductivity dependence
assuming thermionic emission. Therefore, other causes
must be explored. Among them, the inclusion of the
tunneling contribution appears as a must as many experi-
ments are carried out using samples with large dopings for
which tunneling not only is non-negligible but also is the
dominant conduction mechanism. The observed tempera-
ture and doping dependences of the tunneling contribution
nicely reproduce the trends on experimental observations
for a variety of semiconductors.
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