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A B S T R A C T

This work presents a general formulation and implementation in solid-shell elements of the refined zigzag
theory and the trigonometric shear deformation theory in an unified way. The model thus conceived is aimed for
use in the analysis, design and verification of structures made of composite materials, in which shear strains
have a significant prevalence. The refined zigzag theory can deal with composite laminates economically, adding
only two nodal degrees of freedom, with very good accuracy. It assumes that the in-plane displacements have a
piece-wise linear shape across the thickness depending on the shear stiffness of each composite layer. The
trigonometric theory assumes a cosine variation of the transverse shear strain. A modification of this theory is
presented in this paper allowing its implementation with C0 approximation functions. Two existing elements are
considered, an eight-node tri-linear hexahedron and a six-node triangular prism. Both elements use a modified
right Cauchy-Green deformation tensor C where five of its six components are linearly interpolated from values
computed at the top and bottom surfaces of the element. The sixth component is computed at the element
center and it is enhanced with an additional degree of freedom. This basic kinematic is improved with a
hierarchical field of in-plane displacements expressed in convective coordinates. The objective of this approach
is to have a simple and efficient finite element formulation to analyze composite laminates under large
displacements and rotations but small elastic strains. The assumed natural strain technique is used to prevent
transverse shear locking. An analytic through-the-thickness integration and one point integration on the shell
plane is used requiring hourglass stabilization for the hexahedral element. Several examples are considered on
the one hand to compare with analytical static solutions of plates, and on the other hand to observe natural
frequencies, buckling loads and the non-linear large displacement behavior in double curved shells. The results
obtained are in a very good agreement with the targets used.

1. Introduction

The development and use of solid-shell elements have notably
increased in the last decade. Particularly by the use of enhanced
assumed strain (EAS) techniques in elements with reduced integration
on the shell plane (8-node elements). The solid-shell elements have
important advantages compared with shell elements as they allow to
use three-dimensional constitutive relations, to get rid of rotational
degrees of freedom, to modelize geometrical details and boundary
conditions more faithfully, to deal with contact conditions on the real
contact external surfaces, etc. Unfortunately this better geometric
representation involves a greater computational cost for the through-
the-thickness numerical integration. Solid-shell elements behave simi-

lar to shells elements based on the first order shear deformation theory
(FSDT) as they naturally include the transverse shear strains, although
the plane stress condition is imposed in an integral sense and not
point-wise as shell elements do.

According to the properties of the composite laminates and the
expected accuracy (in terms of stresses or displacements), different
approaches are considered for the structural analysis. For through-the-
thickness highly heterogeneous laminates, the classical laminated plate
theory (CLPT) leads to poor predictions. Similar unacceptable results
are obtained with the FSDT even if suitable shear correction factors
(SCF) are used to include the effect of the through-the-thickness
heterogeneity. The main drawbacks are derived from the assumption
of linear displacement across the thickness, which cannot intrinsically
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satisfy the interlaminar shear stress continuity (IC) and the surface
conditions prescribed by the equilibrium equations [6]. The CLPT and
FSDT are only advisable when the length-to-thickness ratio is high and
global structural responses are required [20,21]. A further improve-
ment in this direction comes from the higher order transverse shear
theories (HOT) that belong, as well as CLPT and FSDT, to the so-called
equivalent single layer theories (ESL). In these theories, the in-plane
displacements are suitable smooth functions of the transverse coordi-
nate, with the number of the published shear shape functions
assumption being large and varied (see for instance
[5,16,17,19,26,31,32]). HOT are more accurate than CLPT and
FSDT, but the continuity of the shear strains at interfaces leads to a
discontinuity in the shear stress distribution, and although, in princi-
ple, they do not require the use of SCF, for highly heterogeneous
laminates they lead to a very stiff behavior.

The most suitable technique for the analysis of composite materials
is the use of three-dimensional solid finite elements. However it
becomes prohibitively expensive as the number of layers in the
laminate increases (it can be as large as one hundred), in optimization
analysis or for non-linear problems. It is feasible to group multiple
layers within one single layer with combined properties in order to
maintain the number of degrees of freedom (DOFs) of the problem
within manageable limits as suggested in [18]. The accuracy in
transverse shear stresses can also be improved using hybrid elements
including stresses as additional DOFs [35].

Layer-wise approaches, in which the thickness of the laminate is
divided into a number of layers which may or may not coincide with the
physical number of layers, are more accurate than ESL theories. A
through-the-thickness approximation of the displacements at layer
level is assumed. A review of these techniques can be seen in [27].
These techniques have the same drawback of using three dimensional
solid elements as the number of layers increases.

For angle-ply laminates and those with a low order of heterogeneity
one can consider a smooth transverse shear variation across the
thickness as proposed by HOT including, for instance, the trigono-
metric shear deformation theory (TSDT) [5,17,24,25].

For sections with a high degree of heterogeneity, the analysis with
solid models and layer-wise approaches shows that the in-plane
displacement profiles are far from a smooth curve that could be
approximated by a polynomial of third order or higher. This has led
to the so called zigzag theories where the in-plane displacement
functions are only Co continuous with a zigzag profile, possibly with
strong discontinuities in the derivatives (associated to the transverse
shear strain) to fit the IC of adjacent layers with shear modulus that can
differ by several orders of magnitude. A review of the evolution of these
theories can be seen in [2]. More recently, a refined version of this
approach has been presented [29], where two hierarchical DOFs are
added to the five DOFs of the FSDT enhancing the linear through-the-
thickness interpolation. This approach leads to constant transverse
shear stresses at each layer (i.e. discontinuous) as they are computed
from the constitutive equations; however it allows dealing with
clamped boundary conditions, a limitation of the previous zigzag
theories in which it is based on.

This refined zigzag theory (RZT), that makes the use of SCF
unnecessary, has been implemented in 2D beam finite elements
[12,23,3,22], in flat plate finite elements [29,4,13,34,1] where a very
good approximation to the in-plane displacements has been reported,
in shell finite elements with linear kinematics [33] and with large
displacements and small strains [8]. The piece-wise constant trans-
verse shear stresses, calculated directly from the computed strains and
the constitutive relations for each layer, show frequently a poor
approximation. An accurate evaluation of shear stresses requires the
through-the-thickness integration of the in-plane equilibrium equa-
tions, which involves ad hoc schemes for the computation of the
derivatives of the in-plane stresses between finite elements. To avoid
the a posteriori integration of the equilibrium conditions and to

improve the predicting capabilities of the RZT, a mixed approach has
been developed for beams with linear kinematics [28]. Based on the
latter a so denoted RZTm

(3,2) has been developed for beams [15], where
the mixed approach is combined with improvements in both the in-
plane and transverse displacements interpolation. Smeared quadratic
and cubic terms are added to the piece-wise linear zigzag interpolation
that partially meets the stress boundary conditions at external surfaces
while a quadratic interpolation of the transverse displacement is
included. An extension to flat plates of the mixed approach, considering
two separate states of cylindrical bending, has been presented in [14].
Such mixed approach is not yet available for general double-curved
shells.

In this paper a general formulation for the mechanical analysis of
composite laminated structures is proposed. The model employs solid-
shell finite elements with large displacements and considers different
transverse shear strains approximations in a unified way. The elements
considered are a tri-linear 8-node hexahedron [9] and a 6-node
triangular prism [7] in which two refined zigzag approaches (RZT),
and a HOT (TSDT) are implemented. To attain this purpose the TSDT
kinematic is modified and suited to work with FSDT-shell and solid-
shell finite elements. In addition, this modification allows to unify the
general formulation presented in this paper. The scope of this work is
restricted to small elastic strains but large displacements and rotations.

An outline of this paper is as follows. Next section provides a short
description of the formulation of the solid-shell elements considered.
Then the additional displacement fields and the associated strains are
introduced. Resulting elasticity matrices for the new generalized stress
and strain measures are then evaluated. Several examples are pre-
sented in Section 5 to show the very good correlation with theoretical
results, with shell models and with 3D solid discretizations. Finally
some conclusions are summarized.

2. Solid-shell elements

Two prismatic solid-shell elements are considered, namely a
triangular (NN=6) and a quadrilateral (NN=8) based one. The original
and deformed geometries of the element are described by the standard
isoparametric approximations [36].

∑ ∑ξ ξ ξN Nx x X u( ) = ( ) = ( ) ( + )
I

NN
I I

I

NN
I I I

=1 =1 (1)

where XI , xI and uI are the original coordinates, the present coordinates
and the displacements of node I respectively. The shape functions ξN ( )I

are the usual Lagrangian interpolation functions in terms of the local
coordinates ξ ξ η ζ= ( , , ) of the corresponding master element
(ξ ξ η ζ= ( , , )I I I I are the coordinates of node I of the master element
in the parametric space, see Fig. 1)

• for the 8-node brick element

ξN ξξ ηη ζζ( ) = 1
8

(1 + )(1 + )(1 + )I I I I
(2)

• for the 6-node prism element the in-plane interpolation uses area
coordinates ξ ξ ξ ξ η ξ η( , , ) = ( , , 1 − − )1 2 3 instead

ξN ζ ξ I( ) = 1
2

(1 − ) = 1 .. 3I
I (3)

ξN ζ ξ I( ) = 1
2

(1 + ) = 4 .. 6I
I−3 (4)

Following a standard approach, at each point of interest the
Cartesian derivatives are computed using the Jacobian matrix
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ξ
J X X= ∂

∂
= ξ,

(5)

N NJ= ξ
I I
X,

−1
, (6)

At each element center a local Cartesian system is defined with the
first two axes in the plane tangent to the shell mid-surface, that may
coincide with principal directions of the laminate or any other
convenient condition (see Fig. 2)

R t t t= [ , , ]1 2 3 (7)

such that Cartesian derivatives with respect to this local system (Y) are

N NR=I T I
Y X, , (8)

that allows to compute the deformation gradient F in terms of the
present nodal coordinates (Latin indices i j, = 1 .. 3)

∑F N x=ij
I

NN

Y
I

i
I

=1
, j

(9)

and the components of the right Cauchy-Green tensor C

C F F=ij ki kj (10)

from which the Green-Lagrange strain tensor can be computed as

E C δ= 1
2

( − )ij ij ij (11)

As explained below, a modified version of tensor C is computed
using assumed strain techniques that in one case include an additional
DOF α, leading to an improved tensor C. The equilibrium equations to
solve (weak formulation) for large displacements are of the form:

∫g α δ dV gu S C C( , ) = 1
2

( ): + = 0
V

extu1 0
o (12)

∫g α δ dVu S C C( , ) = 1
2

( ): = 0
V

α2 0
o (13)

where S is the second Piola-Kirchhoff stress tensor. The second
equation is solved at element level and allows to condense the
additional DOF α in the solution scheme.

2.1. Improvements of the standard elements

To use these solid elements in large-displacement shell problems
their formulation must be substantially improved. In the sequel a
modified right Cauchy-Green C tensor is introduced where its compo-
nents, as well as the components of the deformation gradient, are all
written in the local system defined in (7).

The discretization process of a laminate with solid elements
involves two steps: a) a discretization of the shell middle surface with
triangles or quadrilaterals, b) a discretization in the thickness direction
with one or more solid elements from the element defined on the
middle surface. It will be assumed that the element connectivities are
introduced with the first local nodes 1 to NF ( NN= /2) associated with
the lower surface and the last NF nodes are above the first ones in the
thickness direction at a distance equal to the laminate thickness or a
fraction of it in case more than one element are used. In this way the
surface normal direction is practically coincident with the third
component t3 of local system defined in (7) (see Figs. 1–2).

As the strain measure considered above for the solid element is
defined in terms of the right Cauchy-Green tensor, an interesting
possibility is to modify the components of C (or E) directly associated
to the behavior to be improved. Distinguishing each component of C

Fig. 1. Solid-Shell Elements. Parametric space and Sampling points.

Fig. 2. Solid-Shell Elements. Node numeration and layer orientation.
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with a superscript

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

C C C
C C C
C C C

C =

m m s

m m s

s s t

11 12 13

21 22 23

31 32 33 (14)

where the components with an index m are components which mainly
influence the in-plane behavior, those with an index s are mainly
associated with the transverse shear behavior, while index t indicates
the component associated with the transverse normal strain. This
allows to split the deformation tensor into three parts

C C C C= + +m s t (15)

∑ ∑ ∑ tC C Ct t t t t t t= ⊗ + ( ⊗ + ⊗ ) + ⊗
α β

αβ
m α β

α
α
s α α t

=1

2

=1

2

=1

2

3
3 3

33
3 3

2.2. In-plane behavior

The membrane and bending behavior are defined in terms of the in-
plane components of C computed at the center of the lower and upper
surfaces. The values at the center of each face f are calculated as the
weighted average of the values computed at each mid-side point of the
face (Greek indices α β, = 1 .. 2):

∑ ∑C
A

J C J A= 1 =aβ
f

f
K

NF

K αβ
K

K

NF

K
f

=1 =1 (16)

where JK is the Jacobian determinant at each mid-side point K. Fig. 1
shows the sampling points K NF= 1 ..1 at the bottom face (f1) and
sampling points K NF= 1 ..2 for the upper face (f2) for both element
types. This average approximation of the first fundamental form of
each face surface may be seen as an assumed strain approach. The in-
plane components of the Green-Lagrange strain tensor at the face
center can be written as

∑E
A

J C C= 1
2

1 [ − ]αβ f
K

NF

K αβ
K

αβ
Ko

=1 (17)

C δ= 1
2

( − )αβ αβ (18)

with δαβ the Kronecker delta and the left index “o” denotes that is
computed at the original configuration. The in-plane components of the
right Cauchy-Green tensor at each face are linearly interpolated across
the thickness:

C ζ ζ C ζ C L C L C( ) = 1
2

(1 − ) + 1
2

(1 + ) = +αβ
m

αβ αβ αβ αβ
1 2 1 1 2 2

(19)

The associated tangent matrix Bm
f relating tensor components

increments with displacement increments δu stems from:

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

δ

C

C

C

L δ

C

C

C

L

C

C

C

δ
E
E
E

= + =
2

1
2 11

1
2 22

12

1

1
2 11

1

1
2 22

1

12
1

2

1
2 11

2

1
2 22

2

12
2

11

22

12
(20)

and

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
∑ ∑δ

C

C

C
A

J
N

N

N N

δ δ
f
f

f f
u B u= 1

( + )

=

f

f

f
f

K

NF

K
J

NF
K J

K J

K J K J

J
m
f

e
f

1
2 11

1
2 22

12
=1 =1

1 ,1

2 ,2

1 ,2 2 ,1 (21)

where the vector δue
f includes the nodes of the face f (lower or upper)

only. Then we can write as follows

L LB B B[ ] = [ ]m NN m m3×(3 ) 1 1 2 2
(22)

Note that each matrix is associated with a different set of nodes, as

matrix Bm
1 (Bm

2 ) multiplies only DOFs of the nodes in the lower (upper)
face.

Furthermore, assuming a constant Jacobian determinant across the
thickness (that strictly requires the same discretization of both lower
and upper surface and a constant thickness), and comparing with the
strain measures of shell theories, it is possible to compute the Green-
Lagrange strain tensor at the middle surface and the changes of
curvatures as

E E E= 1
2

( + )m
m m1 2

(23)

χ
h

E E= 1 ( − )b
m m2 1

(24)

that allows to write the in-plane strains across the thickness as (with
z ∈ [− , + ]h h

2 2 the local Cartesian coordinate in the normal direction):

χz zE E( ) = +m b (25)

while the associated tangent matrices can respectively be written as
(keep in mind that each Bm

f is associated to a different set of DOFs):

B B B= 1
2 [ , ]m m m

1 2
(26)

h
B B B= 1 [− , ]b m m

1 2
(27)

The numerical integration is performed with a single point in the
shell plane, this requires an stabilization scheme for the hexahedral
element. Here we will follow a similar strategy to that proposed in [10]
as described in [9].

2.3. Transverse shear strains

To approximate the components most relevant to the transverse
shear, an assumed natural strain (ANS) approach is used for each
(upper and lower) face. A linear interpolation in natural coordinates of
mixed (natural in the plane and local Cartesian in the normal direction)
strains is adopted. Mid-side points are used as sampling points where
the tangent-to-the-side shear strain components are computed. More
details can be found in [7] for the 6-node prism element and in [9] for
the hexahedron. The interpolations may be written at each face as:

⎡
⎣⎢

⎤
⎦⎥

C
C ξ η ξ ηP c P c P c= ( , ) = + ( , )∼ ∼ ∼ξ

η

H3

3
0

(28)

where c∼ gathers the shear strains at the sampling points and P are the
linear (in terms of natural coordinates) interpolation polynomials.
These polynomials P are evaluated at the center of each face for the
numerical integration (P0) and the resulting strains are linearly
interpolated across the thickness. The difference (P P P− = H

0 ) is used
for hourglass stabilization purposes in the case of the hexahedron. The
interpolated components in (28) allows to write

C CC t t t t t t t t= ( ⊗ + ⊗ ) + ( ⊗ + ⊗ )s
ξ

ξ ξ
η

η η
3

3 3
3

3 3 (29)

where t t t[ ]ξ η 3 are the dual base vectors of the local mixed triad
⎡
⎣⎢

⎤
⎦⎥t t t[ ] =ξ η ξ η y

X X X
3

∂
∂

∂
∂

∂
∂ 3

that allows to compute the modified (improved)

Cartesian components

C C Ct C t t t t t t t t t t t= · · = ·[ ( ⊗ + ⊗ ) + ( ⊗ + ⊗ )]·α α
s

α ξ
ξ ξ

η
η η

3 3 3
3 3

3
3 3

3

(30)

where denoting by a t t= ·i
j

i
j (with i = 1, 2, 3 and j ξ η= , , 3) we can

write

C C a a a a C a a a a C a C a= ( + ) + ( + ) = +α ξ α
ξ ξ

η α
η

η ξ α
ξ

η α
η

3 3 3
3

1
3

3 3 3
3

1
3 3

3 3 (31)

Finally using the condition a δ=i i
3 3 we have
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⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

C
C

a a
a a

C
C

C
CJ= =

ξ η

ξ η
ξ

η
p

ξ

η

13

23

1 1

2 2

3

3

−1 3

3 (32)

where J p
−1 is the inverse of the Jacobian matrix of the isoparametric

interpolation restricted to the tangent plane at each face. Then these
values are interpolated across the thickness at the element axis.

L LC C C= +s s s1 1 2 2 (33)

where Csf results from (32) computed at face f.

2.4. Transverse normal strain

To avoid numerical locking due to the Poisson effect (transverse
normal strain due to in-plane strains) an enhanced assumed strain
(EAS) approach is considered. Note first that at the element center the
component C C

33 can be computed from

∑ Nf x=C

I

NN
IC I

3
=1

,3
(34)

then the enhanced version is defined here as:

C αz C αzf f= · + 2 = + 2C C C
33 3 3 33 (35)

For the linear interpolation (1) the transverse component C C
33 is

constant in the normal direction. With the enhanced version

E z C E αz( ) = 1
2

( − 1) = +C
33 33 33 (36)

The variation of this Green-Lagrange strain component is

∑δE δC δ zδα N zδα δ zδαf f f B u= 1
2

= · + = + = +C C

I

NN
I C C

e33 33 3 3
=1

,3 3 3
(37)

where N =I N
Y,3

∂
∂

I

3
are the shape functions derivatives with respect to the

shell normal coordinate computed at the element center, f = |ξC
Y
x

03
∂
∂ =3

is

the deformation gradient component in the normal direction also
computed at the element center and δue gathers the displacements of
the NN nodes of the element (i.e. δ δ δu u u[ ] = {[ ] , [ ] }e

T
e
f T

e
f T1 2 ).

Note that for a flat plate with linear kinematics, Eq. (36) can be seen
as

E z E αz
u
z

u u
h

αz
u
z

( ) = + = ∂
∂

=
−

+ = ∂
∂

z z
T

z
B

z
33 33

0
(38)

where uz
T and uz

B are the normal displacement at the top and bottom
surface respectively. This expression can be integrated across the
thickness leading to

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

∫u z u
u u

h
αz dz u z

h
u z

h

αh z
h

( ) = +
−

+ = 1
2

1 − 2 + 1
2

1 + 2

−
8

1 − 2

z z
B

h

z z
T

z
B

z
B

z
T

− /2

2 2

(39)

that allows to interpret the EAS parameter α as an element-wise (non-

conforming) hierarchical DOF uΔ = −z
αh

8

2
at the element center.

3. Additional displacement field

The above described elements have a linear variation across the
thickness of all the strain components. To enhance such interpolation,
an additional (hierarchical) displacement vector field is included. These
additional displacements are introduced in the local convective co-
ordinate system with components in the tangent plane Y Y( , )1 2 only,
namely

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑

∑ ϕ ψ

u Y Y Y
u Y Y Y

N Y Y
ϕ Y

ϕ Y
ψ

ψ

Y Y Y N Y Y Yu

( , , )
( , , )

= ( , )
( )

( )

( , , ) = ( , ) ( )

a

a
I

NF
I

I

I

a

I

NF
I I

1 1 2 3

2 1 2 3 =1
1 2

1 3

2 3

1

2

1 2 3
=1

1 2 3
(40)

with the condition that the associated shape functions ϕ z( )α are null at
both upper and lower surfaces

⎛
⎝⎜

⎞
⎠⎟ϕ h±

2
= 0α

(41)

The functions ϕα have units of length while the amplitude ψα is
nondimensional. Three options has been considered here for ϕ, two
are associated with refined zigzag theories and the third one with the
trigonometric shear deformation theory. The RZT splits the transverse
shear stresses into a discontinuous and a continuous part

τ z G η G β ψ G η τ z( ) = + [(1 + ) ] = + ( )αz
k

αz
k

α αz
k

α
k

αz
k

α αz
k

1 (42)

where η γ ψ= −α α
b

α is a shear strain measure (with γα
b the transverse

shear strain computed using only the base displacements (1)) constant
or linear across the thickness and thus leading to stress discontinuities
between layers, while τ z( )αz

k is assumed continuous. The first option,
denoted here by RZT, is the approach in the original work or Tessler
[29] where the slopes β ϕ=α α z, are assumed constant at each layer thus

allowing to compute βα
k as a function of the shear elasticity modulus Gαz

for each direction tα of the composite laminate. Denoting by ϕ ϕ z= ( )α
k

α
k

(with zk the coordinate of the top of layer k, see Fig. 3.a for an
example), it can be found that:

∫ ∑βdz ϕ ϕ β h= − = = 0
h

N
α
k

k
0

(43)

β
ϕ ϕ

h
h

G h
G

=
−

=
∑

− 1α
k α

k
α
k

k
αz
k i

αz
i

−1

(44)

ϕ z ϕ β z z z z z( ) = + ( − ) ≤ ≤α α
k

α
k k k k−1 −1 −1 (45)

It has been shown that this piece-wise linear approximation leads to
very good results for sandwich sections with large ratios between the
Gαz

k of each layer.
The second RZT approach, that will be denoted here by RZT(3), is

due to Iurlaro et al. [15]. In this case the continuous τ z( )αz
k is

additionally constrained to nullify at both external surfaces. These

Fig. 3. Additional displacements. (a) ϕα function (b) total in-plane displacement Uα (c)

total shear strain γα.
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two additional conditions are satisfied by augmenting the piece-wise
linear zigzag function with smeared quadratic and cubic terms (see [15]
for details):

ϕ z φ z ρ z z χ z ω z z z z( ) = ( ) + ( − ) + + ≤ ≤α α
k k

α
k k k k−1 −1

0
2

0
3 −1 (46)

ρ
φ φ

h
=

−
α
k α

k
α
k

k

−1

(47)

The third option is a sinusoidal function that will be written as
(ϕ ϕ=1 2 in this case):

⎛
⎝⎜

⎞
⎠⎟ϕ z h πz

h
z( ) =

2
sin −

(48)

⎛
⎝⎜

⎞
⎠⎟β z π πz

h
( ) =

2
cos − 1

(49)

This approach may be associated to a modified version of the TSDT.
The TSDT [32] pertains to HOT and in its original form requires C1

approximations. For the unified formulation proposed in this work, this
approach is modified and rewritten considering the standard kine-
matics of FSDT and the compatibility with TSDT. Such compatibility is
achieved after equaling the sum of shear strains and/or the displace-
ments at free top and bottom layer surfaces (see Appendix). This third
function leads to a continuous transverse shear strain that nullifies at
the external surfaces only if ηα vanishes.

None of the approximations ensures meeting of the IC condition,
nor of the stress boundary conditions at surfaces. In the RZT(3)
approach both conditions are satisfied if the strain measure ηα vanishes.
For homogeneous sections the RZT functions as defined above are null
but a simple technique allows to obtain non-trivial functions [30]; in
contrast the trigonometric approach is independent of the material. It
must be noted that the implementation presented here allows to easily
include other through the thickness interpolation functions with a
minimum cost of additional codification.

Fig. 3.a shows the different ϕ functions considered here for a three
layer laminate, while 3.b-c show a possible configuration of in-plane
displacements and shear strains resulting from the sum of the linear
interpolation in (1) and the additional displacements in (40). It is noted
that the additional displacements are only in the in-plane directions
Y Y( , )1 2 of the convective system and note that as they are hierarchical
displacements they do not interfere with rigid body motions. In
contrast the base displacements are in the global Cartesian system
and must be kept in such system to preclude problems with rigid body
motions, especially if the focus is on geometrically non-linear pro-
blems.

The additional displacements lead to additional strains in both in-
plane and transverse shear components as described next.

3.1. In-plane strains

The total in-plane strains (the expression below includes the
transverse normal strain E33 that has an important influence into the
in-plane stresses) results the sum of the different contributions:
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(50)

Where the symbol εαβ has been used to denote the total strain, to
emphasize that it is assumed small and can be computed as the sum of
the different contributions. Above 14 is the identity matrix of order 4
and the additional strains have been expressed as the product of the
matrix Φ and array ψ∇ defined respectively by
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Using for the additional in-plane strains a similar approximation to
that used for the original in-plane strains (Eq. (16)) the gradient ψ∇ is
computed at each mid-side point and is then averaged at the center

∑ψ
A

J ψ= 1
α β f

k

NF

K α β
K

,
=1

,
(52)

such that the matrix relating incremental additional strains with
incremental additional displacements can be written as:
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that allows to define additional stabilization strains, necessary for the
hexahedral element only:

ψ ψ ψ= −KH K
1,2 1,2 1,2 (54)

3.2. Transverse shear strains

The total transverse shear strains are
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where 12 is the order 2 identity matrix and a diagonal matrix β has been
defined.

To avoid numerical locking, an ANS approach for ψ is considered,
that is almost identical to that used for Cs. The differences are that ψ
does not vary along z (such variation is implicit in β) and that the
definition of the component ψα is simpler than that of Cα3. Then tangent
components of ψ computed at each mid side point (middle surface) are
linearly interpolated as in (28).

4. Equivalent elasticity matrices and stress measures

For a linear elastic composite laminate the internal strain energy
per unit of middle surface can be written as a quadratic form of the
generalized strains defined in (50) and (55):

∫ ∫ε σ γ τ ε ε ε εW dz dzS D S S D S= 1
2
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that allows to obtain conjugated generalized stresses. The constitutive
matrices Dp and Dt used above (that change from layer to layer) result
from a standard full 3D elastic relation split into in-plane (including
transverse normal strain) and transverse shear behavior. For the shell
in-plane components we can define
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Using the notation z z z= ( + )k
k k1

2
+1 and ϕ ϕ ϕ= ( + )k

k k1
2

+1 , these
integrals for the RZT case (β constant in each layer k) result (with
NL the number of composite layers):
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While for the transverse shear components we can define
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Where
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Thus the integrated forces and moments can be written as;
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In a more detailed manner:
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To emphasize the relation between stresses and integrated forces,
note that N is:
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and that M is:
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Note also that the first three components of N and M represent
what is usually understood as membrane forces and bending moments
in shell theories, while the fourth components in N and M do not
appear in shell theories based upon the plane stress hypothesis. N33

will be null if the plane stress condition were imposed point-wise, while
the fourth component in M is the balance equation for the internal
DOF α of the EAS approach. Besides
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represents the transverse shear forces.
The in-plane gradient of the additional displacements leads to

additional integrated moments
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while due to the out-of-plane gradient of the additional displacements,
additional transverse shear forces also appear:
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It must be emphasized that the strain measures ( χ ψE , , ∇m ) are
associated with the middle surface and are constant in the element (one
in-plane integration point is considered). But the transverse shear
strains cs are linear across the thickness and although ψ are associated
to the middle surface, the different slopes βα

k at each layer lead to
different transverse shear strains across the thickness, that is evidenced
in the definition of matrix Dt

IJ .

5. Examples

The examples below are mainly intended to show that the results of
plate cases converge to analytical or numerical results reported in the
literature for the RZT, i.e. the objective is to validate the implementa-
tion in solid-shell finite elements. They are not intended to assess the
RZT by comparing profiles of displacements and stresses across the
thickness of the laminate, as this has already been extensively done by
other authors. Besides, when non-linear geometric analysis of sand-
wich curved shells is considered, comparisons are made against
numerical models discretized with solid finite elements. In that case
those examples are intended to show that the deformed configurations
are broadly similar in both models but no comparison of stresses or
displacements profiles across the thickness of the laminate are
intended. The two solid-shell elements presented above are respec-
tively denoted by SH (hexahedron) and SP (triangular prism). For
numerical comparisons, results obtained with shell elements combined
with the RZT as shown in [8] are used, these are a four-node
quadrilateral (denoted here as SQ) and a linearly interpolated six-node
triangle (denoted here as ST). Also the eight-node solid element
presented in [11], denoted here as S8, is used. This solid element uses
an ANS approach for the transverse shear strains that allows to
consider elements with a high aspect ratio between the in-plane and
the normal directions. Element S8 can then be used to model shell
structures including two or more elements across the thickness.

The transverse sections considered in the examples are mainly
sandwich laminates although an angle-ply laminate is also taken into
account. So three types of materials are involved, those to be used as
external layers, those to be used as the core of sandwich sections and an
orthotropic lamina for angle-ply assemblies. Tables 1–2 show the
properties of these material, that include four stiff materials (1,2, 6 and
7) used as external walls of sandwich sections, four soft materials (4, 5,
8 and 9) used as the core part of sandwich sections and an orthotropic
lamina (3). Three symmetric and two asymmetric sections are con-

Table 1
Orthotropic material properties used in the laminates (EI and GIJ in GPa).

Mat E1 E2 E3 ν12 ν13 ν23 G12 G13 G23

1 50 10 10 0.05 0.05 0.25 5 5 5
2 131 10.34 10.34 0.22 0.22 0.49 6.895 6.205 6.895
3 20 1.0 0.833 0.25 0.00 0.00 0.6 0.6 0.5
4 10−5 10−5 0.07585 0.01 0.01 0.01 0.0225 0.0225 0.0225
5 0.01 0.01 0.07585 0.01 0.01 0.01 0.0225 0.0225 0.0225
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sidered. Table 3 shows the stacking sequence of the symmetric
sandwich sections, all of them with 5 layers, where α (in degrees)
indicates the angle of material direction 1 with local laminate direction
1. The Table 4 shows the stacking sequence of the two asymmetric
sections, a sandwich one made with isotropic materials and an angle
ply.

5.1. Cantilever beam under end point load

A simple cantilever beam under a point load is initially considered.
Although this is not the focus of this element, the example allows a
detailed comparison of the results obtained with an expensive solid
model and the present formulation. This example for a wide range of
aspect ratios has been analyzed in [22]. Here the geometric parameters
considered are: length L = 200 mm, section width b = 40 mm and
thickness h = 20 mm, while the applied load is P N= 20 . The section
used is number 4, a three-layered asymmetric sandwich laminate (see
Table 4), where the core is eight times thicker than each face sheet. This
example was chosen because the results obtained with beam finite
elements including the RZT approach are in excellent agreement with
the analytical ones. In this case a solid finite element model using
element S8 is used for comparison. It includes 20 equal elements along
the length and four elements for each layer leading to 240 elements and
546 nodes. All the displacement DOFs are constrained at the root and,
in order to avoid an ad hoc distribution of the point load over the 26
nodes at the end section, all the nodes at the free end are constrained to
displace by the same value in the normal direction (leading to
u = 0.027888 mmz

L ). For the present formulation (RZT(3) is used), 20
equal elements are also considered in the discretization and the same
constraints of the solid model are applied at the root and at the loaded
end (u = 0.027877 mmz

L is obtained in this case). The difference in the
tip displacement is less than 0.04%. A detailed comparison of the
results from both models is presented for the section at mid span, i.e.
far from both boundaries. Fig. 4a shows a plot of the displacement
profiles across the thickness. It can be seen that the axial displacements
(u1) are practically coincident. The average transverse displacements
(uz) are different. At the beam axis the displacement obtained with the
solid model is u = 0.011234 mmz

S8 while with the present element it is
slightly less u = 0.011216 mmz

SH . For an easier comparison of the
profiles in Fig. 4a, the results obtained with the solid model S8 are
shifted −0.000018 mm to match the displacement of the SH model at the
beam axis. It can be seen that in doing so the profiles are coincident.
The quadratic variation of the u z( )z

SH is computed using equation ((39).
Fig. 4b plots the axial and transverse shear stresses. The axial stresses
σ z( )11 are almost coincident for both models. For the shear stress τ1z
four curves are plotted: a) S8-τ1z is the value obtained with the solid
model, it must be noted that the ANS of element S8 leads to constant
shear stress across the element thickness, for that reason, the same
values appear at two different integration points; b) Int-τ1z is the value
obtained integrating the equilibrium equation in z direction from the
axial stress SH-σ Y z( , )11 1 ; c)SH-τ1z is the value obtained consistently
from the present element kinematics using the constitutive equation at
each layer; and d)SH-τ1zC is the latter's continuous component τ z

k
1 (see

Eq. (42)). The excellent correlation between S8-τ1z and Int-τ1z is a
consequence of the excellent correlation in σ11. It is worth noting that
the continuous part SH-τ1zC is also coincident with those results. As
the whole RZT(3) formulation does not meet the boundary conditions at
the external surfaces, the curve SH-τ1z over predicts shear stresses at
the bottom layer and under predicts shear stresses at the top layer.

5.2. Simply supported square plate under sinusoidal load

The second example considered is a simple supported square plate
under sinusoidal load for which an analytical solution based on the
FSDT plus the RZT was given in [13]. The transverse section
corresponds to sandwich laminate 1 with a total thickness of t=0.5m.
The side of the square plate is a=10m so the aspect ratio is a h/ = 20.
The transverse load, applied at the top surface, has a sinusoidal
variation in both in-plane directions with a maximum amplitude
q kPa= 10 at the center and null at the simply supported sides.

One quarter of the plate is discretized due to double symmetry with
the center of the plate located at the origin of the coordinate system.
The simply supported boundary condition implies that the nodes on

Table 2
Isotropic material properties used in the laminates (E in GPa).

Mat E ν

6 730 0.25
7 219 0.25
8 0.00689 0.00
9 0.730 0.25

Table 3
Symmetric laminates stacking sequence.

Mat hk[%] α

1 5 0
1 5 90
4 80 0
1 5 90
1 5 0

(1)

Mat hk[%] α

1 5 0
1 5 90
5 80 0
1 5 90
1 5 0

(2)

Mat hk[%] α

2 4.1667 0
2 4.1666 90
6 83.334 0
2 4.1666 90
2 4.1667 0

(3)

Table 4
Asymmetric laminates stacking sequence.

Mat hk[%]

6 10
9 80
7 10

(4)

Mat hk[%] α

3 25 0
3 25 30
3 25 −30
3 25 90

(5)
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the upper surface (T) have identical displacements to the nodes on the
lower surface (B) but with the opposite sign:

Boundary u B
1 u B

2 uz
B uT

1 u T
2 uz

T ψ1 ψ2

Y = 01 0.0 0.0 0.0
Y = 02 0.0 0.0 0.0
Y a= /21 u− B

1 u− B
2 u− z

B 0.0

Y a= /22 u− B
1 u− B

2 u− z
B 0.0

.
A structured mesh, with a uniform increment in both directions of

Δ = 0.15625m has been considered, that implies 33 nodes per side,
1089 nodes over each surface and 1024 hexahedral 8-node elements
(SH) or 2048 prismatic 6-node elements (SP) and 8259 DOFs. Due to
the sandwich-type properties of the laminate, the RZT interpolation
has been considered.

The normal displacement at the plate center indicated in the
Reference [13] is

u D
a

q mm(0, 0) = 0.1118 × = 0.6742z
11
4 0

Table 5 shows the displacement of the central point (average of
upper and lower surface) obtained with both elements developed here
and other models for comparison purposes. The results show a very
good correlation between shell and solid-shell elements enhanced with
the RZT kinematic in both cases. Fig. 5 illustrates the amplitude of the
additional displacements for the two solid-shell elements presented
here.

5.3. Clamped square plate under uniform load

The same geometry of previous example but under uniform load
q KPa= 1 and clamped boundary was also considered. In this case the
comparison is made against a finite element model of standard 20-node
solid elements (S20) with a mesh of16 × 16 × 9 elements (one element
per layer for the outer layers and five elements for the core). For the
latter model, used as a reference, the displacement of the center of the
plate is w = 0.6936 mmmax

S20 (average between bottom and top surfaces).
The results in Table 6 show a very good correlation between the solid,
the solid-shell and shell models. Note the very low values predicted by
standard shell theories FSDT (with the isotropic SCF = 5

6 ) and CLPT.

5.4. Natural frequencies of a clamped-free cylindrical panel

This example is intended to assess the importance of the additional
displacements for the global response of the structure when the section
is an angle-ply laminate. The geometry of the shallow cylindrical panel
is shown in Fig. 6. The length is L = 300 mm, the radius is
R = 1000 mm, and the subtended angle is α = 0.2. The thickness of
the panel is h = 10 mm, leading to an aspect ratio αR h/ = 20. The panel
is clamped along the curved sides and free along the straight sides. The
section considered is the asymmetric four-layer angle-ply laminate 5
(see Table 4). It must be noted that lumped mass matrices (with a mass
density ρ = 2000 kg

m3) were considered in the analysis leading to different
rotatory inertia in shell and solid-shell models. For all the models, the
mid-surface is discretized with 60 elements along the cylinder axis and
40 elements along the parallel. The other finite element models used
for comparison are the shell element SQ with and without RZT and a
solid model including eight S8 elements across the thickness (2
elements per ply). Table 7 shows the first twelve natural frequencies f
for the different numerical models beginning with the values obtained
with the solid model (S8) fS8. For an easier comparison the table is
completed with the percentage differences with respect to the solid

model frequency, i.e.
⎛
⎝⎜

⎞
⎠⎟100 × − 1f

f S8 . The angle-ply laminate does no

lead to high ratios between the shear modulus of the different layers as
for sandwich shells (G G/ = 1.213 23 in this case). That is why the shell
stiffness (and consequently the natural frequencies) does no differ very
much between the alternative numerical models. The percentage
differences between present element and the solid model are generally

Fig. 4. Three-layer cantilever beam. (a) Displacements (b) Stresses.

Table 5
Simple supported square plate under sinusoidal load.

Ref. SH+RZT SP+RZT SQ+RZT ST+RZT FSDT CLPT

uz 0.6742 0.6722 0.6738 0.6740 0.6752 0.2472 0.2350
uz[%] 100.00 99.70 99.94 99.97 100.14 36.67 34.85
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not greater than the differences between the shell model and the solid
model. Finally the vibration modes associated with natural frequencies
9-12 are plotted in Fig. 7, where the contour-fill of the component
along the global X Z=3 coordinate is also shown. The vibration modes
obtained are almost identical to those obtained with the solid model
(not shown).

5.5. Spherical sector with line loads

To test the present formulation in double curved shells with
geometric non-linearities, a simple spherical sector as shown in
Fig. 8 with radius R m= 10 and an angle α = 30o was analyzed. The
applied loads are uniform line loads parallel to the X Y− plane (see the
orientation axis in the figure), outward along meridian A-A ( X+ ) and C-
C ( X− ) and inward along meridian B-B ( Y− ) and D-D ( Y+ ).

The section considered is number 2 with a total thickness t=0.2m.
The reference line load q0 is MN m1 / . The finite element discretization
covers one fourth of the geometry with 40 divisions in the parallel
direction and 13 along the meridian, leading to 1230 nodes and 520
hexahedral elements or 1040 prismatic elements. In this case compar-
isons are made against a 3D solid element model (S8) with the same
surface discretization but 6 element layers across the thickness.

The maximum inward displacement considered is 3 m (30% of the
radius). Fig. 9 plots the inward (larger) and outward displacements of
the loaded points of the free lower border (average between top and
bottom surfaces). The results obtained with solid elements (S8) are
assumed as “target values”, but the results obtained with shell elements
(SQ with RZT) are also included for comparison. The results obtained
with the prismatic element including the RZT kinematic (SP) show a
very good correlation with those obtained with both shell elements and
solid elements. The hexahedral element including the RZT kinematic
(SH) results show a more flexible behavior that may be due to the
reduced integration.

5.6. Buckling of a cylindrical shell

This example is intended to study the stability of a clamped
cylindrical shell under axial and external pressure loads. The geome-
trical parameters of the cylinder are radius R=10m, length L=20m and
thickness t=0.25m while the transverse section is defined by the
laminate 2 where the stiffer direction is associated with the cylinder
axis. Only one eighth of the total cylinder has been discretized (one
quadrant and half the length) enforcing symmetry conditions on three

Fig. 5. Amplitude of the additional displacement in Y1 direction (ψ1). (a) SH element (b) SP element.

Table 6
Clamped square plate under uniform load.

S20 SH+RZT SP+RZT SQ+RZT ST+RZT FSDT CLPT

uz 0.6936 0.6881 0.6912 0.6916 0.6985 0.1134 0.0954
uz[%] 100.00 99.21 99.65 99.71 100.71 16.35 13.75

Fig. 6. Clamped-free cylindrical panel.

Table 7
Clamped-free cylindrical panel. Natural frequencies and percentage differences.

Mode S8 SQ+RZT SH+RZT SH+RZT3 SH+TRIG FSDT

1 42.12 0.776 0.450 0.499 0.331 0.714
2 45.24 0.401 0.328 0.101 −0.109 0.288
3 87.13 0.207 −0.580 −0.724 −0.763 −0.039
4 107.80 1.276 0.743 0.828 0.475 1.148
5 111.64 0.906 0.547 0.371 −0.004 0.729
6 146.49 0.791 −0.247 −0.599 −0.800 0.424
7 183.72 0.406 −1.415 −1.490 −1.401 −0.100
8 197.34 1.710 0.920 1.055 0.512 1.500
9 202.01 1.413 0.728 0.633 0.068 1.161
10 222.79 0.652 −1.301 −1.679 −1.711 0.031
11 234.68 1.330 0.009 −0.355 −0.762 0.877
12 294.60 1.140 −0.981 −1.563 −1.766 0.426
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sides and a clamped boundary condition at the remaining side. The
objective of these assumptions, that arbitrary restrict the bifurcation
modes to these symmetries, is to have a manageable solid (S8) finite
element model for comparison purposes. The discretization with SH
elements includes 5246 nodes and 2520 elements resulting from a
structured mesh with 60 equal divisions along the quadrant considered
and 42 divisions along half the cylinder length. As the transverse
section is of the sandwich type, the RZT interpolation is used for the
additional in-plane DOFs. The solid model used for comparison has the
same discretization of the middle surface and 7 elements across the
thickness.

Table 8 shows the critical loads for both axial load and external
pressure for the different numerical models. A very good correlation
can be seen between the results obtained with the solid model, the shell
model (SQ+RZT) and the solid-shell models presented here. The Table
also includes for reference the buckling loads obtained using the CLPT
and the FSDT with the isotropic shear factor 5/6.

Fig. 10 shows the buckling modes due to axial load while Fig. 11
shows those due to external pressure. It can be seen that not only the
critical loads are similar, but the buckling modes are also similar for the
different models considered. In contrast the buckling modes obtained
using the CLPT or the FSDT (SCF=5/6) lead to different buckling
modes (not shown).

6. Conclusions

A general formulation for the mechanical analysis of composite
laminated structures with large displacements is proposed in this work.
The model employs solid-shell finite elements and considers the RZT
and a modified TSDT in a unified way. The elements considered are a
tri-linear hexahedron and a 6-node triangular prism. Both elements
use as strain measure a modified right Cauchy-Green deformation
tensor, where 5 (those associated with the in-plane and transverse
shear strains) of its 6 components are computed at the center of both
the lower and upper surfaces using assumed strain techniques and are
linearly interpolated across the element thickness. The sixth compo-
nent (transverse normal strain) is computed at the element center and
enhanced with an additional degree of freedom using the enhanced
assumed strain (EAS) technique.

The main aspects of the implementation are:

• The additional displacements are hierarchical displacement compo-

Fig. 7. Clamped-free cylindrical panel. Vibration modes 9-12.

Fig. 8. Spherical sector with line loads.

Fig. 9. Spherical sector with line loads.
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nents in a convective local systems defined over the shell middle
surface.

• The constitutive models are restricted to small elastic deformations
thus making it unnecessary to distinguish between different strain
measures.

• The strains are computed as the sum of those due to changes in the
element configuration plus those due to the hierarchical displace-
ments.

• The ANS approach used for the transverse shear strains in the
original elements is also used for the additional shear strains.

• For the hexahedral element, the stabilization schemes used for the
additional strains are similar to those used in the original element,
for both the in-plane and transverse shear strains.

• A lumped mass matrix has been used for the computation of natural
frequencies.

The main conclusions that can be drawn are:

• For the linear examples considered, both static equilibrium analysis
and natural frequencies computation, the elements presented here
lead to results similar to those obtained with both shell elements
based on a seven parameter approach (5 from the FSDT plus 2
hierarchical DOFs) and solid elements.

• For double curved shells with geometrical non-linearities, the
comparisons with solid elements show a very good correlation.

• Linear buckling analysis of cylindrical shell shows an excellent
correlation between solid and solid-shell models for both critical
loads and buckling modes. It also shows the strong limitations of
classical approximations (FSDT and CLPT) for sandwich shells.

• The ANS used for transverse shear strains avoids the numerical
locking. The stabilization schemes for the reduced integrated SH
element also work properly.

Acknowledgment

First author acknowledges the financial support from CONICET
(Argentina) and SeCyT-UNC. This work has also been supported by
European Research Council through of Advanced Grant: ERC-2012-
AdG 320815 COMP-DES-MAT “Advanced tools for computational
design of engineering materials”, by the Spanish Ministerio de
Economía y Competividad through the project: MAT2014-60647-R
“Multi-scale and multi-objective optimization of composite laminate
structures (OMMC)”, and by International Center for Numerical
Method in Engineering (CIMNE). All this support is gratefully
acknowledged.

Appendix A .

The trigonometric shear deformation theory (TSDT) kinematic assumption for plates [32] may be recast for symmetric laminates as (α = 1, 2)

Fig. 11. Buckling mode under external pressure (a) S8; (b) SH; (c) SQ.

Table 8
Critical loads.

Model Axial Load [MN/m] External Pressure [MPa]

S8 7.040 0.3888
SQ+RZT 7.093 0.3988
SH+RZT 6.983 0.4056
SP+RZT 7.221 0.4053
FSDT 20.529 0.6583
CLPT 20.614 0.6616

Fig. 10. Buckling mode under axial load (a) S8; (b) SH; (c) SQ.
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(68)

where uz are the transverse displacement of the middle surface (assumed uniform across the thickness) and φ± h
α2 are additional in-plane

displacements at the external surfaces. The associated transverse shear strains are
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where γα
tr vanish at external surfaces.

The first order shear deformation theory (FSDT) assumes a linear variation of in-plane displacements in terms of the normal plate rotation (θα)
and leads to a constant shear strain

u z zθ( ) =α
f

α (70)
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+α
f z

α
α

(71)

The augmented FSDT kinematic defined by Eq. (48) particularized for flat plates is

⎡
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Note that both the TSDT and the augmented FSDT has a cosine variation of the shear strain across the thickness, and are identical only if φ ψ=α α
and η γ ψ= − = 0α α

f
α (i.e. when the augmented FSDT shear vanishes at external surfaces). Now equaling the average transverse shear strain across

the thickness for TSDT and augmented FSDT approaches
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As expected the additional displacements for the FSDT do not modify the average shear strain (this is true for any continuous additional
displacements that satisfies (41)) and both approaches have the same average shear strain as long as Eq. (74) is satisfied. If we now compare the in-
plane displacements at the external surfaces when (74) is satisfied
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This shows that if Eq. (74) is satisfied, the proposed augmented FSDT kinematic leads to the same in-plane displacement at the plate external
surfaces.

Note that for flat plates the TSDT is a three-parameter theory while the augmented FSDT leads to a five-parameter theory that does not assure
that transverse shear strains will vanish at the external surfaces, and a more flexible behavior is expected.
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