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ABSTRACT
Cell biology is increasingly evolving to become a more formal and quantitative science. The field of
intracellular transport is no exception. However, it is extremely challenging to formulate mathematical and
computational models for processes that involve dynamic structures that continuously change their
shape, position and composition, leading to information transfer and functional outcomes. The two major
strategies employed to represent intracellular trafficking are based on “ordinary differential equations”
and “agent-” based modeling. Both approaches have advantages and drawbacks. Combinations of both
modeling strategies have promising characteristics to generate meaningful simulations for intracellular
transport and allow the formulation of new hypotheses and provide new insights. In the near future, cell
biologists will encounter and hopefully overcome the challenge of translating descriptive cartoon
representations of biological systems into mathematical network models.
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Moving towards a more formal and quantitative
cell biology

Cells are extraordinarily complex nano-machines capable of
performing a broad set of functions, each subject to sophisti-
cated regulatory control. Despite the exponential growth in our
knowledge of the molecular mechanisms underlying cell func-
tions, our understanding of how these machines work is in
many cases fragmentary and qualitative. Our hypotheses about
the function of a given factor in a cell process are usually
expressed as “it is involved“, “it is required“, “it participates“,
“it is part of the mechanism“, and so on. Only seldom the func-
tion is described in detail, quantitatively, systematically and
inserted in a well-defined, formally described cellular mecha-
nism. In other words, following the intuitive definition of mod-
els proposed by Gunawardena1 (Table 1), most cell biologists
build their research and design their experiments based on
informal (or conceptual2) models.

Moving cell biology to a more quantitative discipline is, in
essence, progressing our thinking and methodologies beyond the
purely empirical to incorporate mathematical models in our
research. This necessity has been emphasized numerous times.3–5

Remarkable efforts in moving cell biology in this new direction
are exemplified by excellent books – Cell Biology by the
Numbers6 and Physical Biology of the Cell7 and a slew of recent
papers (ex.8). Even approximated estimations of absolute number
of molecules, cellular structures and organelles, kinetic and
dynamic parameters, will be fundamental for a thorough under-
standing of the mechanisms underlying the sophisticated behav-
ior of the cell.

Computational cell biology is an advancing field, where dif-
ferent mathematical tools are employed to analyze and organize
the large amount of data generated with advanced technologies

such as imaging, omics and high throughput screening. Hence,
an increasingly large group of scientists trained in computer
science, mathematics, statistics and data science are now enter-
ing the field of cell biology. This is a remarkable opportunity to
advance cell biology towards a more formal science.

Developing formal models for cellular processes is at the
interface of cell biology and physics/math/computer science.
An appropriate selection of mathematical tools, along with the
specification of the biological hypothesis is required to build
these models. Some fundamental questions that need to be
addressed include, but are not limited to: (1) what kind of
model to use; (2) what elements should be included; (3) what is
the functional interplay between the elements; and (4) what set
of parameters is to be included. Thus, the development of for-
mal models for cellular processes opens up a promising field
for synergistic interaction between the experimentalists and the
physics/math/computer science-oriented scientists. Such inter-
actions between diverse groups of scientists with their unique
skill sets, will foster the development of a new, more formal
and quantitative field of cell biology.

Formal models for intracellular transport

Computational modeling tools are essential for understanding the
underlying mechanisms and emergent properties in cell biology,
and the field of intracellular trafficking is no exception. However,
the dynamic nature of organelles makes the formulation of
hypotheses challenging since it is difficult to develop simple mod-
els for the organelles of the endocytic and secretory pathways:
these organelles change position, shape, and undergo processes
such as fusion and fission in addition to simultaneously altering
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their composition through a complex network of interactions
among lipids and membrane-associated and soluble proteins.

Available methods for model development

Currently, a large set of computational modeling technologies
and tools are available,9 but not all are user-friendly and most
require at least some basic programming skills. In regard to
modeling based on Differential Equations (DE), few exceptions
exist that include powerful and easy-to-use platforms for
computational cell biology. For example, COPASI10 provides
user friendly interfaces for ordinary differential equations
(ODE)s, and Cell Designer11 allows the design of complex
interacting networks of factors using simple and intuitive
graphical notations. Both platforms are fully compliant with
the Systems Biology Markup Language (SBML),12 a standard
for expressing mathematical models. Therefore, COPASI and
Cell Designer can be used in combination with other tools
compatible with this language.

A limiting factor for most of the DE modeling platforms
is that the network of interactions is examined in a homo-
geneous space. However, some software can be used to sim-
ulate the spatio–temporal dynamics of processes in a cell,
e.g., Virtual Cell (VCell).13 In VCell, the shape of the com-
partments can be specified by analytical geometry equations,
or can be derived from imported images, such as 3D confo-
cal microscope stacks. Then, the spatial and temporal
behaviors of substances can be analyzed in a relatively easy
to use program. However, compartments in VCell are static
structures, and what is recorded is the diffusion and molec-
ular interactions occurring at different coordinates of the
model. This is a significant limitation for intracellular trans-
port where the position and shape of organelles change
continuously as the membrane-bound structures move in
the cytosol and undergo fusion with other organelles and
fission by pinching off vesicles and tubules.

Another modeling technology, agent-based modeling
(ABM) uses “agents” to represent the elements in biological
processes. An agent can be anything from a single molecule,
such as a receptor or a ligand, to a complete organelle. Agents
can have different composition, properties, undergo dynamic
changes, including movements in 2D or 3D spaces. The change
in the agents or the interactions between agents can be specified
with simple rules. For example:

“If there is an endosome in a given position, and another endosome
is present nearby, and if their membrane domains are compatible,
fuse them to form a single organelle containing all the membrane-
associated and soluble components of the original two endosomes”.

Table 1. Gunawardena definitions for formal and informal model.

Model “some form of symbolic representation of our
assumptions about reality”.

Informal Model “one in which the symbols are mental, verbal, or pictorial,
perhaps a scrawl of blobs and arrows on the
whiteboard”.

Formal Model “one in which the symbols are mathematical”. More
specifically we will consider here as formal models,
mathematical model (system of equations) and
simulations (computer-based imitation of a system).

Figure 1. ABM simulation of intracellular transport modeled in NetLogo. The ABM “rules” for fusion and fission are described in.28 In brief, three endocytic compartments
carrying different Rab membrane domains were modeled. Each compartment is formed by several individual organelles (tubules and vesicles, represented by rectangles
and circles in the right and middle panels). The organelles move randomly (or along microtubules, yellow straight lines) in the 2D space. Two nearby organelles can fuse
if they carry compatible domains. An organelle can divide forming a tubule and a vesicle, or generate an internal vesicle if it contains enough membrane for these topo-
logical transformation. Rabs membrane domains change composition by series of reactions involving cytosolic Rabs. At step 0, a soluble and a membrane bound markers
were loaded in the Rab A compartment. Left panel. Snapshot after 8380 steps. In each step, organelles have the opportunity of moving, fusing, dividing, forming an inter-
nal vesicles, and changing Rab composition. The color of each organelle (tubule or vesicle) represents its Rab content: Rab A (green), Rab B (red) and Rab C (blue). The
resulting color depends on the relative amount of these proteins on the membranes. For example, the large organelle at the bottom is enriched in Rab C. Middle panel.
Same simulation at step 8385. Color code was changed to reflect the content of the fluid phase (green) or the membrane-associated (red) markers. Notice that the soluble
marker is concentrated in the large organelle labeled with Rab C and that the membrane-associated marker is limited to small tubules. Black organelles lack soluble or
membrane markers. Plasma membrane is at the top and nucleus at the bottom. The width of the gray square at the left bottom correspond to 100 nm. Numbers in brack-
ets indicate the amount of internal vesicles of each organelle. Right panel. The graph shows the distribution of the fluid phase marker (in arbitrary units) associated with
Rab A (green), Rab B (red) and Rab C (blue) organelles along the simulation. Notice that the marker is initially in Rab A structures; along the simulation it is transferred to
other organelles and finally concentrates in Rab C structures.
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A valuable characteristic of the ABM methods is that the
rules are somehow intuitive and approximate the way of think-
ing in informal models. Another advantage is that the “visuali-
zation” of the process is meaningful for cell biologists (Fig. 1).
Notwithstanding, the huge flexibility of the ABM models has
its drawbacks. Agents can be almost anything; hence the plat-
forms for modeling lack specificity and in order to model a cell
biological process, the rules need to be programmed. This in
turn requires more than basic knowledge of programming.
There are numerous ABM softwares with different characteris-
tics that are freely available (https://en.wikipedia.org/wiki/Com
parison_of_agent-based_modeling_software). NetLogo has an
especially simple coding language; yet, basic programming
skills are necessary (https://ccl.northwestern.edu/netlogo/).
Repast is a more flexible and general platform, but it requires
the working knowledge of Java or CCC (https://sourceforge.
net/p/repast/wiki/Home/). In contrast to DE methods, ABMs
lack a common language with common syntaxes that would
make the rules, and hence the underlying hypotheses, transpar-
ent. Finally, although molecular interactions and chemical reac-
tions can be programmed using “rules” in ABM, this is not
accomplished as easily as with DE-based models, especially
when complex networks of interactions are to be modeled.

The combination of ABM and DE-based models is not
frequent.14,15 The ENteric Immunity Simulator (ENISI)16 is a
simulator of the gastrointestinal tract mucosal immune
responses, where cells are modeled as agents in Repast and
complex signal transduction networks are solved in COPASI.
The combination of the two methods has proved to be a very
powerful tool to identify key cells and molecular factors that
modulate the immune response to H. pylori17,18 and C.
difficile.19

Examples of published models for intracellular
transport

Most papers published about the molecular mechanisms of
intracellular transport do not include an explicit mathematical
model. In general, the informal models proposed to represent
the findings are limited to select relevant components distrib-
uted in a few organelles and arrows indicating either transport
or interactions. Although comparatively scarce, several formal
models for intracellular transport have been published, in most
cases, as proof of principle of different transport mechanisms.
This is particularly evident for the formal models addressing
the maturation/vesicular transport controversy surrounding
Golgi biogenesis and transport.20-22 Formal models have also
been used to distinguish between different hypotheses compati-
ble with experimental data.23,24

Most of the published models to describe intracellular trans-
port use ODE. A seminal example is the paper by Heinrich and
Rapoport25 where they showed that transport among stable
non-identical compartments can be achieved by a combination
of SNARE-dependent fusion and coat-dependent budding. Less
abundant are models based on ABM. The spatial and temporal
dynamics of autophagic organelles, and the cellular network of
mitochondria have been simulated using ABM implemented in
NetLogo.26,27 In addition, the efficiency and basic requirement

of fusion/fission-dependent intracellular transport of fluid
phase markers was assessed by an ABM programmed in Visual
Basics.28 More mechanistic ABMs have been used to analyze
the molecular crowding effect and the influence of the cytoskel-
eton on intracellular transport.29,30 Integrated models that
combine ABM and DE are rare; an example is the development
of a model to study mitophagy,31 in MATLAB.

Concluding remarks

Tools for modeling using ODE are freely available and are rela-
tively user-friendly. Networks of molecular interactions, or sig-
naling cascades can be easily modeled without significant
formal training in computer programming. Platforms for
ABM, on the other hand, are too generic to be used to generate
formal models for intracellular transport, and would need
some basic programming skills. Thus, there is an urgent need
to develop more user-friendly tools in the future to allow even
the modeling novice to integrate mathematical approaches into
their research. However, the emergence of computational tools
alone will not be sufficient to develop and formalize the prob-
lems in quantitative cell biology. It is crucial that the research-
ers start to adapt and transform their conceptual way of
thinking about the biological processes into more formal math-
ematical models. In order to do that, training modules and
workshops are necessary to facilitate interaction between cell
biologists and modeling/mathematical scientists (ex: the
recently organized “Finding your inner modeler” workshop
described in this volume of Cellular Logistics). In essence,
building a formal model is not harder than to propose a
thoughtful informal one. Initially, the parameter space that
needs to be estimated may seem daunting to an experimental-
ist, but soon he/she will realize that most of them can be nar-
rowed to an acceptable range, based on bibliography or
common sense, or can be derived from “doable” experiments.
Another concern is that there may be too many unknowns in
the process. In the informal models, these undisclosed parts of
the mechanism are treated as a black box (we have some
understanding of its behavior, but not of its composition or
mechanistic details). Thankfully, the same strategy can be pro-
grammed into a formal model. Finally, formal models are easier
to be falsified than informal ones. This is an extremely valuable
characteristic, but only if we are ready to update/modify/dis-
card our models when they are inconsistent with experimental
data. As written by Gunawardena “…formal models are not
descriptions of reality; they are descriptions of our assumptions
about reality; they are only as good as their assumptions…”.1
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