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A B S T R A C T

The aim of this work is to describe the electronic and magnetic properties of graphene in a constant magnetic
field, in the long wavelength approximation with random disorder. Taking into account the Zeeman effect, the
electronic density of states for each spin is found and the de Haas van Alphen oscillations (dHvA) are found. The
magnetic field is found to modulate the de Haas-van Alphen magnetization through the ratio of the Zeeman
coupling and pseudospin-Landau coupling. In turn, the Pauli magnetization is studied showing that the Zeeman
splitting and disorder introduces a dHvA oscillation period that depends on the magnetic field strength and
generalizes the Onsager relation. In turn, a beat frequency appears that does not depend on B but increase
linearly with the chemical potential. These results, which are different from those obtained in the standard
nonrelativistic 2D electron gas, are attributed to its anomalous Landau level spectrum in graphene.

1. Introduction

Since its experimental isolation in 2004, graphene has become one
of the most studied and promising material in solid state physics ([1–
3]). Its interesting properties lie in his 2D hexagonal structure, made of
two interpenetrating sublattices A and B that act as a pseudospin
degrees of freedom [4]. With no impurities or defects, the conduction
and valence bands touch at two inequivalent points at the corners of
the Brillouin zone with the valence band full and the conduction band
empty in the ground state [3]. Furthermore, in pristine graphene the
density of states at the Fermi energy is zero, and thus the graphene is a
semiconductor with zero band gap, or a semi-metal [5]. When a
magnetic field is applied to graphene, discrete Landau levels are
obtained [6] and these are not equidistant, as in classical electron
gas. In turn, the large distance between the fundamental and first
excited Landau levels allows the Quantum Hall effect to be observed in
graphene at room temperatures ([7–9]). Moreover, the Landau levels
create an oscillating behavior in the thermodynamics potentials. It is
found that the magnetization oscillates as a function of the inverse
magnetic field, the so called de Haas van Alphen effect (dHvA)
([10,11]). The different frequencies involved in the oscillations are
related to the closed orbits that electrons perform on the Fermi surface
[12] and is a powerful tool for mapping the electronic states at the
Fermi energy [13]. It has been predicted in graphene that magnetiza-
tion oscillates periodically in a sawtooth pattern, in agreement with the

old Peierls prediction [14], although the basic aspects of the behavior of
the magnetic oscillations for quasi-2D materials remains yet unclear
[15]. In contrast to 2D conventional semiconductors, where the
oscillating center of the magnetization M remains exactly at zero, in
graphene the oscillating center has a positive value because the
diamagnetic contribution is half reduced with that in the conventional
semiconductor [16]. From an experimental point of view, carbon-based
materials are more promising because the available samples already
allows one to observe the Shubnikov-de Haas effect ([17,18]) and then
may be easier to interpret the quantum oscillations in its transport
properties. Because the dHvA signal in 2D systems are free of the kz
smearing, it should be easier to obtain much rich information about the
electron processes. On the other side, it is well known that pristine
graphene is ideal. Real world samples of graphene are essentially
impure, as they always contain some amount of resonant impurities or
ripples. Considering pristine graphene, these defects can break the
pseudospin symmetries, depending on the matrix elements in the
external potential [19]. The problem of scattering from subtitutional
impurities in the presence of a magnetic field does not have yet a
satifactory solution, although it is known that broadening of Landau
levels in the electronic density of states is good approximation valid in
weak magnetic fields [20]. This broadening has the technical advantage
that if one consider first the dHvA oscillations with Dirac delta shaped
Landau levels, the introduction of impurities implies to convolute the
different quantities of interest with the appropriate distribution func-
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tions [14]. However, this is a simplification that is only valid if all the
Landau levels have the same width. To obtain better theoretical
approximations in this work the Born approximation will be used to
compute the self-energies [21]. This work will be organized as follow:
In section II, the magnetic Green function with diagonal on-site
energies will be computed for graphene. In section III, single-site
approximation will be applied and a system of coupled Soven equation
will be found and solved. The discussion of the results is shown in
section IV and the principal findings of this paper are highlighted in the
conclusion. In Appendix the main theory used in the manuscript is
explained.

2. Single-site approximation

For a self-contained lecture of this paper, the self-consistent Born
approximation will be explained in this section in order to obtain the
generalization to the results obtained in [22], Eq. (68) to Eq. (72). The
Hamiltonian in the two inequivalent corners of the Brillouin zone in the
long wavelength approximation reads

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
H v

π iπ
π iπ

π iπ
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where π p eA= −i i i, being Ai the vector potential. This approximation
holds for E E< C where E v k t eV= ∼ ∼ 2.7C F C (see [22] above eq.
(24)). By considering that ByA = (− , 0, 0) and by writing the wave
function as ψ e ϕ y= ( )ikx , then px transform as p k→x . By making the

following transformation y y l y kl= + = +
eB

k
eB B B

2x , the last

Hamiltonian can be written as
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where a y= ( + ∂ )y
1
2

and a y= ( − ∂ )y
† 1

2
. This Hamiltonian can be

written in terms of two copies of identical valley Hamiltonians

H ω σ a σ a ω σ a σ a= ( + ) ⊗ ( + )L L0 +
†

− −
†

+ (3)

where σ σ iσ= ±x y± acts on the sublattice basis and where ω v=L F
eB
2

is the cyclotron frequency. The tensor product is introduced to denote
the valley subspaces. In order to simplify the problem, we can consider
only the K valley. Because the magnetic field can interact with the spin
of electrons, then we can add the Zeeman Hamiltonian by adding the
spin space. Then, the Hamiltonian will be a 2×2 block diagonal matrix,
where the first block is for spin up and the second block for spin down,
both for the same K valley.1 The wave function can be written as
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where the coordinate representation of k n, is r k n e ϕ y| , = ( )ikx
n k, ,

where ϕ y( )n k, is the wave function of the harmonic oscillator.2
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and where H y( )n k, are the Hermite polynomials. After straightforward
manipulations, the eigen problem reduces to

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

ω ω n
ω n ω

ω ω n
ω n ω

c
c
c
c

E

c
c
c
c

− 0 0
− 0 0

0 0
0 0

=

z L

L z

z L

L z

1
2
3
4

1
2
3
4

(6)

Then, the eigenvalues can be written as

s ω α ω nϵ = − +n
α s

Z L
( , ) (7)

where α =+ 1(−1) for the conduction (valence band), s =+ 1(−1) for the
spin up (spin down). The eigenfunctions read
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where L A=2 , where A is the area of the graphene sheet. In the basis
that diagonalize the Hamiltonian, the Green function reads

∑ ∑G
z

ψ ψ= 1
− ϵα s k n n

α s k n s α k n s α0
= ± 1, = ± 1 ,

( , ) , , , , , ,
(9)

where z is a complex number that can be written as z E is= + , where E
is the energy and s is some real and positive number. At this point we
can include disorder as random impurities in our model in the most
simple way in order to gain a physical understanding of its effects. By
considering an impurity potential in the coordinate representation (see
Eq. (59) of [22]) V r V δ r R I( ) = ∑ ( − )N

i
i0

=1 , where Ri are the random
positions of the impurities and I is the identity matrix, it can be shown
that when configurational averaging is applied over the random
positions of the impurities, the system restore translation invariance
and the configurational averaged Green function G can be written in
terms of the self-energy (see [24])

G k z G k Σ k z( , ) = [ ( ) − ( , )]0
−1 −1 (10)

where … means configurational averaging. In turn, it can be shown
that in the self-consistent Born approximation, the self-energy at first
order in the impurity concentration c N N= /i can be written as (see [24]
eq.(3.59))

∑Σ z cV G k( ) = ( )SCBA

k
0
2

(11)

where we are neglecting skeleton diagrams where impurity lines
crosses and the sum in k represent the sum in all the quantum
numbers of the system. In the case of graphene with magnetic field,
our Hamiltonian depends on the momentum k in the x direction, the n
label of the Landau levels, the spin and conduction and valence band. If
we consider the sum over the Landau levels and k then last equation
becomes

∫ ∑Σ z cV dk
π

G α s n k z( ) =
2

( , , , , )α s
n

Q

, 0
2

=0 (12)

where the self-energy depends on the conduction-valence band and
spin and Q is the Landau level cutoff that is determined by the equation
ω ω Q E+ =Z L C. The impurity-averaged Green function
G α s n k z( , , , , ) can be written in the spectral representation as3

G α s n k z
δ z Σ z

( , , , , ) = 1
(2 − )

1
− ϵ − ( )n n

α s
α s,0

( , )
, (13)

where we have introduced the self-energy diagonal matrix elements
Σ z( )α s, . Eq. (12) contains four independent self-consistent equations for
the self-energies. Nevertheless, by following Eq. (11) we must sum over1 Other effects such as spin-orbit coupling has been considered (see [23]), where the

spin-orbit coupling can be tuned by electric fields.
2 The factor δ(1 − )n,0 is introduced to discriminate the ground state which con-

tributes only in the A sublattice for the K valley. If we had considered the K′ valley, the
contribution is on the Bsublattice.

3 In order to apply Eq. (10), the self-energy is considered diagonal in the spectral
representation.
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the remaining indices α and s. Summing in α, we obtain two spin
dependent self-energies equations

∑Σ z cV D
δ

z s ω Σ z
z s ω Σ z ω n
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2( − − ( ))
( − − ( )) −s n
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0
2

=0 ,0
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By performing the sum in n, last equation reads

∑σ cv D sη σ
sη σ n

= 2 (ϵ + − ) 1
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where σ =s
Σ
ω

s
L
, v = V

ωL
0 , η = ω

ω
z
L
and z = = ϵz

ωL
are all dimensionless

variables and where ϵ = E
ωL
. The dimensionless averaged Green

function, now denoted as g z( ) reads

∑g z
z sη α n σ

( ) = 1
+ − −s α n s, , (16)

where g z ω G z( ) = ( )L and G z G α s n k z( ) = ∑ ( , , , , )s n α, , . The total

density of states can be computed as Iρ g z(ϵ) = − ( )
π
1 . The typical

values for the couplings are ω B T meV∼ 36.29 [ ]L and
ω B T meV∼ 0.1 [ ]Z (see [25,26]), then η B∼ 0.0027 , which for typical
values of B implies η < 1. As a brief example of Eq. (15) we can
consider an extreme particular and artificial case in which
Q η= (ϵ − ) = 0c

2 . where E ωϵ = /C C L, which implies that there is a
unique Landau z s ω α ω Σ

1
+ − −z L s

level for each spin. The magnetic field

strength that obeys Q=0 is such that η = ϵC which implies a non-
feasible magnetic field strength in the laboratory, but it can give insight
in the way the self-energy affects the clean density of states. By using
Eq. (15), the self-energy can be computed exactly from the following
equation

σ
cv D
sη σ

=
2

ϵ + −s
s

0
2

(17)

and the solution reads

σ
sη sη cv D

=
ϵ + ± (ϵ + ) − 8

2s

2
0
2

(18)

Last result is similar to the self-energy of the Falicov-Kimball model
without static disorder(see [27]). There are two possible solutions for
σs given by the sign of the third term of last equation and we have to
select the one with the correct analytic properties. Because the possible
imaginary part of σs originates in the square root term, then by using
Eq. (18) we must consider only the negative solution. By introducing σs
in Eq. (16), the dimensionless full Green function g ω G= L then reads

∑g
sη sη cv D

(ϵ) = 4
ϵ + + (ϵ + ) − 8s

2
0
2

(19)

As it is known, the poles of the Green function contains the information
of the spectral dispersion relation for the system and the lifetime of the
quasiparticles. In Fig. 1, the electronic density of states can be seen for
c=0.02 and different values of v0. In turn, in the same figure the spin
polarized self-energies are shown. There are two peaks around η± for
values of v → 0 as it is expected. When the spin-polarized imaginary
parts of the self-energy overlap in energy, then the density of states
overlap and we obtain and the system undergoes the so-called split-
band metal-insulator transition. This transition can be obtained by
noting that the imaginary part of the self-energies contributes con-
siderably to the DOS and in turn, as it was discussed above, the
particular values where σs jumps from 0 to an small negative imaginary
number is given by the condition that the argument of the third term of
Eq. (18) must be less than zero. Then the band edges occurs at the
critical values at which Iσ = 0s and are given by

sη cv Dϵ = ± 8cr 0
2

(20)

From each spin we obtain two values for ϵcr that corresponds to the

point in which σs crosses the horizontal axis. From those values, we are
interested in the two particular values that lie near the vertical line. By
substracting this values it is possible to obtain a metal-insulator
diagram c v− 0 where an overlaping of self-energies appear. This phase

is given by the equation cv D η8 =0
2 , which implies that v v= F c0

2 . In
the same way we can consider the case in which Q=1. The self-
consistent equation for the spin-polarized self energies reads

⎡
⎣⎢

⎤
⎦⎥σ cv

ηs σ
ηs σ

ηs σ
= 2

ϵ + −
+ ϵ + −

1 − (ϵ + − )s
s

s

s
0
2

2 (21)

Last equation contains four solutions for σs and two of them have the
desired analytical properties. In Fig. 2, the density of states is shown
for c=0.02 and different values for v0. For the lowest value of v0 the
DOS shows four remarkable peaks that are the localized states at

ηϵ = ± ± 1. For higher values of v0 the gap closes between the states
close to the Fermi energy and reaches the full metallic phase.

3. Magnetic oscillations for weak magnetic fields

In the case of very weak magnetic fields, we will consider that
Q → ∞ which implies to consider the totality of Landau levels.4 We will
restore the dimensions in order to keep track of the B dependence. The
free energy is defined as F Ω N= + μ , where μ is the chemical potential,
N is the number of electrons per unit area and Ω is the grand potential
that reads

∫Ω
β

ρ E e dE= − 1 ( )ln (1 + )β E μ
0

∞
− ( − )

(22)

where ρ E( ) is the density of states in the presence of magnetic field and
impurities, β kT= 1/ is the inverse temperature and μ is the chemical
potential. Through the grand potential, the magnetization can be
obtained as M = − Ω

B
∂
∂ . By using the general result of Eq. (16) and

summing in the conduction and valence band, the density of states can
be written as

I∑ ∑ρ E D
π

E sγ B Σ
E sγ B Σ γ Bn

( ) = −
2

2( − − )
( − − ) −s n

z s

z s l=0

∞

2 2
(23)

where we have neglected the asymmetry in the sublattice population of
the ground state, D AB ϕ= / 0 is the degeneracy of each Landau level and
γ meV T∼ 0.1 /z , γ meV T∼ 36 /l in graphene. By considering the general-
ization of the Poisson sumation formula (see eq.(1) of [29]), the sum in
n in Eq. (23) can be written as

∫∑ ∑f n f x e dx( ) = ( )
n

s
m a

s
mπix

=0

∞

=−∞

∞ ∞
2

(24)

where

f x
E sγ B Σ γ Bx

( ) = 1
( − − ) −s

z s l
2 2

(25)

and a is a number between −1 and 0. By introducing the coordinate
transformation x t= + μ

γ Bl
and considering that γ Bμ⪢ l for weak

magnetic fields, then the lower limit of integration of Eq. (24) can be
replaced by −∞. By applying residue theorem (see Appendix for
details), the density of states can be written as

I

⎡
⎣
⎢⎢

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎤
⎦
⎥⎥

∑

∑

ρ E D
γ B

i E sγ B Σ

mπ
γ B

E sγ B Σ

( ) = − 2 ( − − )

1 + 2 cos 2 ( − − )

l s
z s

m l
z s

2

=1

∞

2
2

(26)

By integrating by parts Eq. (22), the grand potential can be written as

4We will not consider spin mixing levels in the energy, although we have study the
phenomena in [28].
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∫Ω n E f E dE= − ( ) ( )
0

∞
, where n(E) is the integrated density of states

and f(E) is the Fermi-dirac distribution

∫n E ρ E dE f E
e

( ) = ( ) ( ) = 1
1 +

E

β E μ0 ( − ) (27)

By applying the Sommerfeld expansion for low temperatures, the
thermodynamical potential reads

∫ ∫Ω n E f E dE n E dE π
β

ρ μ O β= − ( ) ( ) = − ( ) −
6

( ) + ( )
μ

0

∞

0

2

2
−4

(28)

For the sake of simplicity we will assume that Σs does not depend on E,
then the function n(E) reads

⎛
⎝⎜

⎞
⎠⎟∑n E D

γ B
E sγ B Σ E( ) = − 2 1
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− − −
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s
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l
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Performing the integration

⎡
⎣⎢

⎤
⎦⎥∫ n E dE D
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μ μ Σ Σ( ) = − 2
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−
2

( + ) −
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l0 2

3 2
+ −

(30)

⎡
⎣
⎢⎢

⎡
⎣
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⎤
⎦
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⎤
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l
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2

where

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
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μ Σ sγ B S m
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l
s z

l
s z2 2

(31)

where S x[ ] is the Fresnel integral. Using that M = − Ω
B

∂
∂ , from Eq. (30),

the total magnetic oscillations at T=0 reads

M M B BM B= ( ) + ( )osc osc
(0) (1) (32)

where

Fig. 1. Left: Density of states and imaginary part of self-energy for the K valley and different values of v0 and where c=0.02 for B such that Q=0.

Fig. 2. Left: Density of states for the K valley and different values of v0 and where c=0.02 for B such that Q=1.
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⎡
⎣
⎢⎢

⎤
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and
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where the first term in Eq. (30) do not contributes to the
magnetization because D B/ do not depends on B. The oscillations do
not have a constant frequency when the Zeeman effect and disorder are
turned on. With no disorder and μ = 0, the frequencies involved in the

oscillations are ω m= ∼ (4 × 10 )m
πmγ

γ

2 −5z

l

2

2 with constant period in B.

Without Zeeman effect the oscillations shows a period with B1/ as mπμ
γ

2

l

2

2

in concordance with the B−1 Onsager relation for the period.
In turn, we can compute the Pauli magnetization M μ n n= ( − )S B + − ,

where ∫n ρ E dE= ( )
μ

± 0 ± are the spin populations and μB is the Bohr
magneton
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Without disorder we have

μ
M Σ

Dγ μ
γ

1 ( = 0) =
4

−
B

S
z

l
2

(38)

⎡
⎣
⎢⎢

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎤
⎦
⎥⎥∑D

mπ
mπ

γ B
γ B μ mπ

γ B
γ B μ1

2
sin 2 ( − ) − sin 2 ( + )

m l
z

l
z

=1

∞

2
2

2
2

In Fig. 3, the oscillating contribution Mosc(B) without disorder is
plotted as a function of B for μ eV= 0.1 and increasing number of
modes m.5 These theoretical are in concordance with the results
reported for epitaxial monolayer in graphene by [30] that cannot
account for the oscillations for small values of B. The sharp sawtooth-
like oscillating behavior of magnetization in graphene (see [31]) is
reached taking into account higher modes contributions. In turn, from
last equation it can be seen that two sine functions with different
arguments contributes. By rearranging the terms, the oscillating part
can be written as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

mπ
γ B

γ B μ mπ
γ B

γ B μsin 2 ( − ) − sin 2 ( + ) =
l

z
l

z2
2

2
2

(39)

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟mπ

γ B
γ B μ

mπγ μ
γ

−2 cos 2 ( + ) sin
4

l
z

z

l
2

2 2 2
2

Last result implies that magnetic oscillations are modulated by a beat
frequency that does not depend on B and depends exclusively with μ.

3.1. Self–energy contribution

In order to compute the contribution from the energy dependent
self-energy in the magnetic oscillations we can consider the Born
approximation Σ z cV G k( ) = ∑ ( )NSCBA

k0
2

0 where G0 is the bare Green
function with no disorder. Applying the Poisson summation formula in
Eq. (14), the self-energy equation reads

⎡
⎣
⎢⎢

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎤
⎦
⎥⎥∑Σ E

cV D
γ B

E sγ B mπ
γ B

E sγ B( ) =
2

( − ) 1 + 2 cos 2 ( − )s
l

z
m l

z
0
2

2
=1

∞

2
2

(40)

For the sake of simplicity we can consider the non-oscillatory part.

Fig. 3. Total magnetization without disorder for μ eV= 0.1 and different contributions of modes m.

5 We are using that μ eV= ϵ ∼ 0.1F as a first approximation for the chemical potential,
where we are neglecting the oscillating part of μ. The second oscillating term of the
chemical potential represent a small correction to the constant value of chemical
potential.
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Then

Σ
cV D
γ B

E sγ B=
2

( − )s
no

l
z

( ) 0
2

2
(41)

With this self-energy, Eq. (26) reads

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡

⎣
⎢⎢

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

⎤

⎦
⎥⎥

∑

∑

ρ E D
γ B

E sγ B
cV D
γ B

mπ
γ B

E sγ B
cV D
γ B

( ) = − 2 ( − ) 1 −
2

1 + 2 cos 2 ( − ) 1 −
2

l s
z

l

m l
z

l

2
0
2

2

=1

∞

2
2 0

2

2

2

(42)

This result is identical to the case Σ = 0s but with the renormalized

energy E sγ B χ E sγ B− → ( − )z z , where χ λ= 1 −imp where λ =
cV κ

γ

2

l

0
2

2 and

κ = A
ϕ0
. The frequency of oscillations is

ω mπ
γ B

χ μ sγ B= 2 ( − )m
s

l
imp z

( )
2

2 2

(43)

and the spin magnetization reads

μ
M

κγ μ
γ

λ m1 =
4

[1 + ] −
B

S
z

l
S
osc

2
(44)

where

⎡
⎣
⎢⎢

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎤
⎦
⎥⎥

∑ ∑m D s
mπ

mπ
γ B

μ λ sγ B λ

mπ
γ B

sγ B λ λμ

=
2

sin 2 ( (1 − ) + (1 + ))

− sin 2 ( (1 + ) − )

S
osc

s m l
z

l
z

= ± 1 =1

∞

2
2

2
2

(45)

without Zeeman effect, the magnetic oscillations behaves as

λ(1 − )mπμ
γ B

2 2
l

2

2 . In Fig. 4, the oscillating part of the spin magnetization

is shown for different values of λ. The value μ eV= 0.1 has been used
for the chemical potential. As B increases, the amplitude of the dHvA

oscillations is fixed in a constant non-zero value λ[1 + ]κγ μ

γ

4 z

l
2 , which is a

different behavior of those obtained in conventional semiconductor
2DEG, where it is well known that the oscillating center of the
magnetization remains exactly at zero. This difference can be atributed
to the reduced diamagnetic contribution on the magnetization in
graphene with respect to conventional semiconductors (see [16]). In
this case, althought the numerical calculations have been done for
lower values of B, the differences in the maximum and minimum of the
oscillations are in the order of 10 eV−5 . The linear behavior of the
oscillations in the magnetization is a consequence of the Zeeman effect,

which splits the dHvA oscillations in a magnitude of the order of the
Zeeman energy. The results obtained are similar to those found for
magnetoresistance oscillations in different systems (see [32]). By
applying Fourier transform on the magnetization obtained in Fig. 4,
the main peak is around ω T∼ 4 −1 which gives a fundamental
magnetic field f T T( ) ∼ ( ) ∼ 4ω

π2
−1 which is in the order of the results

obtained in [33] for graphite. In Fig. 3 the Zeeman energy and the
pseudospin-Landau coupling effects are present: the latter by decreas-
ing the Fermi level and introducing the magnetic oscillations and the
former by splitting these oscillations for both spins.6 The deformation
of the Fermi surface due to the impurities introduces new electron
orbits with small periods and in consequence, higher frequencies.
These new closed orbits appear as higher harmonics in the magnetic
oscillations. By applying Fourier transform to the magnetic oscillations,
these new frequencies can be obtained and the respective periods.
Then, it is possible to reconstruct the deformed Fermi surface. If we
consider only one spin, the density of states and the Fermi level induces
dHvA oscillations, which reflects the closed orbits in the Fermi surface.
When both spins are taking into account, the minimal differences
between the dHvA oscillations for each spin are enhanced in the total
magnetization due to the Zeeman splitting. In this sense, the magne-
tization due to the Zeeman splitting can be interpreted as a fine tuning
of the dHvA oscillations that intensify the effects of the impurities in
the electronic density of states and can be used experimentally to
obtain a detailed information about the Fermi surfaces involved in the
magnetic oscillations. A particular case of impurities is when V → −∞,
which is the case of vacancies. In [22], the case of vacancies is
considered in detail, where by using Eq. (16) and Eq. (18) of this
paper, the Green function with a finite small density of vacancies
n N N= /v v , where Nv is the number of vacancies and N the number of
carbon atoms, reads

G α s n k z G α s n k z n G z( , , , , ) = [ ( , , , , ) + ( )]v s0
−1

0
−1 −1 (46)

where ∫G z G α s n k z( ) = ∑ ∑ ( , , , , )s
dk
π α n

Q
0 2 = ± 1 =0 0 is the integrated clean

Green function. Then, Eq. (2) contains the term n G z( )v 0
−1 that can be

considered a complex number. In this sense, the Green function with
vacancies is identical to consider that the self-energy Σ z( )s can be
written as Σ z n G z( ) = − ( )s v s0

−1 . In fact, this can be seen by comparing eq.
(2) with Eq. (10). Then, all the machinery used to compute the
magnetization with self-energy included can applied for the case of
vacancies. In particular, we have computed the density of states for an
arbitrary self-energy (see Eq. (26)). To compute Σ z n G z( ) = − ( )s v s0

−1 , we

Fig. 4. Spin magnetization for μ eV= 0.1 and different values of λ =
cV κ

γl

2 0
2

2 .

6 In different systems, the crossover between Zeeman effect and Rashba coupling has
been studied (see [34]).
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can apply Poisson sumation formula as it was done in eq. (40) to
G z( )s0 . The non-oscillatory part of G z( )s0 reads

G E D
γ B

E sγ B( ) = 4 ( − )s
no

l
Z0

( )
2

(47)

then the non-oscillatory part of the self-energy reads

Σ E
γ n

κ E sγ B
( ) = −

4 ( − )s
no l v

Z

( )
2

(48)

which is different from result of Eq. (41) for the non-oscillatory part of
the self-energy in the case of impurities. In this case, in order to obtain
n μ( )s we must integrate ρ E( ), but the dependence in E is not simple as
in the case of impurities. For B=0, the density of states is singular in the
low-frequency regime. We consider that the vacancy case deserves a
deep study in order to compare the results with the magnetic
oscillations with impurities. Nevertheless, we can study the behavior
of the spin magnetic oscillations near the singularity. For this we have
to consider the density of states near the singularity, then we can

approximate E sγ B Σ E sγ B− − = − + ∼z s z
γ n

κ E sγ B
γ n

κ E sγ B4 ( − ) 4 ( − )
l v

Z

l v

Z

2 2
for

E sγ B− → 0Z . Considering this we can compute the integral of the
density of states and the spin magnetization

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

∑m n
γ B μ
γ B μ

n Ci
γ n mπ

Bκ μ γ B

Ci
γ n mπ

Bκ μ γ B

= ln (
−
+

) +
2 ( + )

−
2 ( − )

s
vac

v
z

z
v

m

l v

z

l v

z

=1

∞ 2 2

2 2

2 2

2 2
(49)

whereCi x( ) is cosine integral. The argument of the sinusoidal functions
reads

ω
γ n mπ

Bκ γ B
=

2 (μ ± )m
vac l v

z

2 2

2 2 (50)

which only in the case of vanishing Zeeman effect behaves as B−1.
These effects could be detected for the specific configurations

considered in this work, although other effects must be taken into
account for the final result such as intrinsic and extrinsic Rashba-orbit
couplings and magnetic moments originated by the orbital angular
momentum (see [35]) or temperature effects in the dHvA oscillations
(see [36]). From the experimental viewpoint, doping in graphene can
be obtained through electric doping by changing gate voltage (see [37])
or by chemical doping, which is discussed as surface transfer doping
and subtitutional doping (see [38]). For a general review of the
experimental procedure to obtain doping asymmetry in graphene see
[39] and the references therein and for the direct experimental
determination of the chemical bonding of individual impurity atoms
see [40]. In the case that p-type and n-type doping can be achieved in a

controlled way and where the experimental determination of the on-
site energies results in slightly different values, then it would be
possible to tune up population difference in both spins due to the
Zeeman effect. It has been shown that the Zeeman splitting can be
controlled by the strength of the magnetic field in the topological cones
with long range Coulomb impurities (see [41]).

4. Conclusions

In this work we have reported a theoretical study on the modulation
of de Haas-van Alphen effect in graphene by magnetic field taking into
account the Zeeman effect. The electronic properties of doped graphene
have been computed using the Born approximation for the self-energy.
The de Haas van Alphen oscillations have been found for each spin
using the Poisson summation formula. At the zero temperature, the
magnetization are predicted to oscillate periodically as a function of
reciprocal field B1/ when there is no disorder and no Zeeman effect.
When the Zeeman effect is considered, the oscillations changes and the
period become B dependent and the Onsager relation is recovered for
half-filling. In turn, the Pauli magnetization is computed by taking into
account the shift introduced in the electronic density of states due to
the Zeeman splitting and spin population. By combining this effect with
the dHvA oscillations, it is shown how the total magnetization increases
linearly for small values of B and the oscillations are on the order of the
Zeeman energy. In turn, a beat frequency modulates the dHvA
oscillations that depends linearly with the chemical potential. When
impurities are introduced randomly, Landau levels are broadening and
the frequency of the magnetic oscillations do not obey the Onsager
relation and depends quadratically with B. These effects are enhanced
in the Pauli magnetization and can be used to determine the Fermi
surface of low dimensional systems with impurities. These phenomena,
not available in the standard 2D electron gas, are a consequence of the
relativistic type spectrum of low energy electrons and holes in
graphene.
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Appendix A. Appendix

In order to solve the density of states ρ E( ) we can sum over the conduction and valence band as it was shown in Eq. (23).

I∑ ∑ρ E D
π

E sγ B Σ
E sγ B Σ γ Bn

( ) = −
2( − − )

( − − ) −s n

z s

z s l=0

∞

2 2
(51)

By using the Poisson summation formula and introducing the coordinate transformation x t= + μ
γ Bl

2

2 and considering that μ γ B⪢ l for weak

magnetic fields, then the lower limit of integration in the Poisson summation formula can be replaced by −∞, then

∫∑ ∑f n
γ B

e e
E sγ B Σ

γ B
t

dt( ) = 1
( − − )

− −n
s

l m

mπi μ
γ B

mπit

z s

l

μ
γ B

=0

∞

2
=−∞

∞ −2

−∞

∞ 2

2

2

l

l

2

2

2

2
(52)

Last equation can be solved using residue theorem, where the pole reads
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t a μ
γ B

ib= + −
l

0 0
2

2 0
(53)

where

R Ia
γ B

E sγ B Σ Σ= 1 [( − − ) − ]
l

z s s0 2
2 2

(54)

I Rb
γ B

Σ E sγ B Σ= 1 ( − − )
l

s z s0 2

where the imaginary part of the pole is located in the upper or lower half plane given the sign of IΣs. Then, by closing the contour, Eq. (52) reads

I I∑ ∑f n πi
γ B

θ Σ e θ Σ e( ) = 2 [ ( ) + (− ) ]
n

s
l m

s
mπi a ib

s
mπi a ib

=0

∞

2
=−∞

∞
2 ( − ) 2 ( + )0 0 0 0

(55)

I I∑πi
γ B

πi
γ B

θ Σ mπ a ib θ Σ mπ a ib= 2 + 4 [ ( )cos[2 ( − )] + (− )cos[2 ( + )]
l l m

s s2 2
=1

∞

0 0 0 0

where the integral in the semicircle Γ of radius R vanishes for R → ∞. With this result, the density of states reads

I∑ρ E D
γ B

i E sγ B Σ( ) = − 2 ( − − ) ×
l s

z s2
(56)

I I
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ θ Σ mπ a ib θ Σ mπ a ib1 + 2 [ ( )cos[2 ( − )] + (− )cos[2 ( + )]

m
s s

=1

∞

0 0 0 0

For simplicity, in Section 2 we will consider that IΣ < 0s , then we have to consider only the first term in the sum in m.
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