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Abstract. Information about barnacles as fossil components of hard substrate 21 

communities from middle latitudes in the Southern Hemisphere is scarce. Changes in 22 

these barnacle communities during episodes of extinction such as occurred during the 23 

Cretaceous/Paleogene (K-Pg) boundary are almost unknown. We describe encrusting 24 

and boring barnacles associated with Maastrichtian and Danian oysters, evaluate 25 

taphonomic processes involved, and report changes in their frequencies over time. A 26 

total of 1,174 valves belonging to nine oyster species, collected from the Jagüel and 27 

Roca formations of the Neuquén Basin, were analyzed. Presence/absence of barnacles 28 

or their bioerosional traces were recorded, frequencies of host incrustation and 29 

bioerosion were calculated, and taphonomic and statistical analyses were performed. 30 

Encrusting barnacles identified on the oyster shells were assigned to Verruca rocana 31 

Steinmann and their traces assigned to the ichnospecies Centrichnus concentricus 32 

Bromley and Martinell. Boring barnacles are represented by traces assigned to the 33 

ichnogenus Rogerella De Saint-Seine. A preliminary taphonomic analysis indicated that 34 

late Maastrichtian and early Danian shells showed fair-poor condition by abrasion and 35 

fragmentation as taphonomic attributes, while late Danian shells exhibited mostly good-36 

fair or mixed condition for both attributes. Verruca rocana shows no records during late 37 

Maastrichtian but high frequencies of encrusted valves after the K-Pg boundary.  Boring 38 

barnacles represented by the trace Rogerella exhibited a decline in abundance during 39 

early Danian but an increase at late Danian. Both encrusting and boring barnacles 40 

associated with oysters presented an increase in theirfrequencies during late Danian.  41 

Keywords:Cirripedia. Sclerobionts. Hard substrates. Oysters. Neuquén basin.  42 

Resumen. CIRRIPEDIOS INCRUSTANTES Y PERFORANTES A TRAVÉS DEL 43 

LÍMITE CRETÁCICO-PALEÓGENO EN PATAGONIA NORTE (ARGENTINA). 44 
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La información sobre cirripedios como componentes fósiles de las comunidades de 45 

sustratos duros de latitudes medias en el hemisferio sur es escasa. Los cambios en estas 46 

comunidades durante episodios de extinción como el que ocurrió durante el límite 47 

Cretácico/Paleógeno (K-Pg), son casi desconocidos. En este trabajo describimos los 48 

cirripedios incrustantes y perforantes asociados a ostras maastrichtianas y danianas, 49 

evaluamos los procesos tafonómicos involucrados, y registramos los cambios en su 50 

frecuencias de ocurrencia en el tiempo. Se estudiaron 1.174 valvas pertenecientes a 51 

nueve especies de ostras, recolectadas de las formaciones Jagüel y Roca de la cuenca 52 

Neuquina. Se registró la presencia/ausencia de los cirripedios o de sus trazas 53 

bioerosivas, se calcularon las frecuencias de incrustación y bioerosión y se realizaron 54 

análisis tafonómicos y estadísticos. Los cirripedios incrustantes identificados fueron 55 

asignados a Verruca rocana Steinmann y sus trazas asignadas a la icnoespecie 56 

Centrichnus concentricus Bromley y Martinell. Los cirripedios perforantes, están 57 

representados por trazas asignadas al icnogénero Rogerella De Saint-Seine. Los análisis 58 

tafonómicos indicaron que durante el Maastrichtiano tardío y Daniano temprano, las 59 

ostras muestran una condición intermedia a pobre para la abrasión y la fragmentación, 60 

mientras que las ostras del Daniano tardío exhibieron una condición buena-regular o 61 

mixta para ambos atributos. Verruca rocana no muestra registros durante el 62 

Maastrichtiano tardío pero sí presenta alta frecuencia de incrustación de valvas luego 63 

del límite K-Pg. Los cirripedios perforantes presentaron una declinación en la 64 

abundancia, para el Daniano temprano y un aumento en el Daniano tardío. Ambos 65 

grupos presentaron un aumento en sus frecuencias durante el Daniano tardío. 66 

Palabras clave. Cirripedia. Esclerobiontes. Substratos duros.Ostras. Cuenca Neuquina. 67 
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BARNACLES ( Cirripedia) are a major group of crustaceans that consists exclusively of 68 

sessile organisms (Glenner and Hasgaard, 2006). They are found today in all marine 69 

environments, distributed from the tropics to the poles and from intertidal zones to 70 

abyssal depths (Farrapeira, 2010). The radiation of cirripeds is reflected by the variety 71 

of biogenic and abiogenic substrates on which they are able to attach or bore (Pitombo, 72 

2010). Also, the existence of planktonic larval dispersal in some species combined with 73 

a permanent calcareous shell in adults provides an adaptive strategy to occupy and 74 

persist in diverse and physiologically challenging environments (Van Syoc, 2009). 75 

Cirripedia mainly consists of three well-defined superorders: Thoracica (encrusting or 76 

“true” barnacles), Acrothoracica (boring barnacles) and Rhizocephala (parasitic 77 

barnacles) (Glenner and Hasgaard, 2006; Pitombo, 2010). Thoracica and Acrothoracica 78 

use their feathery thoracopods (cirri) to suspension feed, whereas rhizocephalans are 79 

parasites of other crustaceans, especially decapods (Brusca and Brusca, 2005). 80 

Although encrusting barnacles have a fossil record dating back to the Cambrian (Foster 81 

and Buckeridge, 1987), verrucomorphs (i.e., barnacles with assymmetric plates) have 82 

the earliest known representative genera from the Cenomanian–Late Maastrichtian (i.e., 83 

Proverruca Withers, 1914) and from the Upper Santonian–Upper Campanian (i.e., 84 

Eoverruca Withers, 1935) (Buckeridge et al., 2008). During the Late Cretaceous, 85 

Verruca was restricted to Europe or Australasia, but migration via an open seaway 86 

along the south Pacific West Antarctic margin of Gondwana may have also provided the 87 

route for Verruca to reach southern South America (Buckeridge, 2011). The genus 88 

Verruca have an estratigraphic range from Maastrichtian to recent (Buckeridge et al., 89 

2008). 90 

Boring barnacles are known from the Upper Devonian (Rodriguez and Gutschick, 1977) 91 

mainly in the form of borings or cast of borings (Newman, 1987). They are limited in 92 
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distribution by hard substrates found largely in carbonate sedimentary rocks and on 93 

skeletons of marine invertebrates (Newman 1971; Kolbasov and Newman, 2005). 94 

Fossil hard substrate assemblages preserve mostly the sessile components of the original 95 

communities, particularly sclerobionts (sensu Taylor and Wilson, 2002), which encrust 96 

or bore into the shells of living and dead organisms (Taylor and Wilson, 2003; Brett et 97 

al., 2012) or mineralized skeletons, in general. These shells are sometimes the only 98 

available substrates for sclerobiotic communities in soft bottom environments. In this 99 

sense, oysters as hard substrates provide a good opportunity to study changes in  100 

abundance, and distribution of boring and encrusting organisms. 101 

Information about barnacles as fossil components of encrusting and boring communities 102 

associated with hard substrates from middle latitudes in Southern Hemisphere is scarce. 103 

In addition, changes in these communities during episodes of extinction like those 104 

occurred during the Cretaceous/Paleogene (K-Pg) boundary are almost unknown. The 105 

main aim of this work is to describe the encrusting and boring barnacles associated with 106 

Maastrichtian and Danian oysters, and to report changes in their abundances over the 107 

critical K-Pg transition. Also, other sclerobionts on valves were identified to know the 108 

assemblage composition and asses if there is a pattern of distribution of them in the 109 

considerated time intervals. 110 

GEOLOGICAL AND PALEONTOLOGICAL SETTINGS 111 

The Neuquén Basin (Fig. 1) covers approximately 120,000 km
2
 of central-western 112 

Argentina (Howell et al., 2005), including part of the provinces of Mendoza, 113 

Neuquén, Río Negro and La Pampa. The sedimentary infilling reaches a thickness of 114 

over 6,000 m and includes marine and continental deposits spanning the Late Triassic–115 

Paleocene (Casadío and Montagna, 2015).  116 
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During the Late Cretaceous, marine sedimentation occurred as a result of flooding from 117 

the Atlantic, which began during the Maastrichtian. The Atlantic Ocean then covered an 118 

estimated surface of 507,000 km
2 

of presently emerged Patagonia (Malumián and 119 

Caramés, 1995).  120 

In the northwest of the basin, the Malargüe Group records its greatest thicknesses 121 

outcropping at many localities situated at the foot of the Andes (Groeber, 1947; 122 

Dessanti, 1973, 1978; Legarreta et al., 1989, 1993; Parras et al., 1998). This group is 123 

composed from base to top by the Loncoche/Allen, Jagüel, Roca and Pircala/El Carrizo 124 

formations. 125 

During the past two decades, significant progress in the stratigraphic, sedimentological 126 

and paleontological knowledge of the Malargüe Group was made. Most of these 127 

advances are related to the interest generated by the 1980s in studying  the events  128 

around the K-Pg boundary. In this way, the Malargüe Group contains the  K-Pg 129 

boundary in both marine and continental facies and is considerated as a key to 130 

understand the changes occurring in ecosystems of the Southern Hemisphere mid-131 

latitudes during the Maastrichtian-Danian interval (Parras and Casadío, 1999). 132 

The sedimentary sequence studied in this work, consists of marine Jagüel and Roca 133 

formations recognized in eight localities (Fig. 1, appendix of Supplementary Online 134 

Information). These units would represent the final Atlantic transgressive- regressive 135 

phase of the sea that flooded the Eastern sector of the Neuquén Basin during the Late 136 

Cretaceous and the early Paleogene (del Río et al., 2011). The Jagüel Formation is 137 

composed of marine mudstones and claystones that represent an inner shelf (Casadío, 138 

1998). The Roca Formation transitionally overlaps this unit, and represents shallow 139 

marine environments deposited during a regressive phase, comprising marl rocks and 140 

bioclastic limestones with abundant skeletal fragments (del Río et al., 2011). 141 
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Among the bivalves recorded in Jagüel and Roca formations, oysters are the most 142 

conspicuous constituent of their fossil assemblages. The calcitic composition of valves 143 

enhanced the chance of preservation of this oyster in these deposits, and also  allowed 144 

the identification of the sclerobiotic communities associated with them.  145 

Oyster accumulations of the K-Pg transition from the Neuquén basin were studied by 146 

Casadío (1998). Taphonomic and facies data collected for this work are included in 147 

table 1. 148 

 [Figure 1] 149 

MATERIAL AND METHODS 150 

Nine oyster species ranging in age from late Maastrichtian to late Danian were studied 151 

(Figs. 2-4; Tab. 1) to analyze the abundance and distribution of barnacles on them under 152 

a binocular microscope. A total of 1,174 valves were collected randomly from the 153 

Jagüel and Roca formations at several localities in the Neuquén Basin (Fig. 1) from 154 

non-lithified deposits, in some of which the K-Pg boundary can be recognized (e.g., 155 

Bajada del Jagüel, Cerros Bayos and Liu Malal) (Concheyro and Villa, 1996; Casadío et 156 

al., 2005; del Río et al., 2007; 2011; Brezina et al., 2014). Also other sclerobionts (e.g., 157 

boring and encrusting organisms) associated with these oysters were observed and 158 

identified. 159 

The analysis was focused on encrusting and boring barnaclesThe frequencies of 160 

occurrences of sclerobionts (i.e. encrusting or boring barnacles) were calculated as the 161 

number of host shells encrusted or bored of the total number of shells observed for each 162 

time interval. Goodness of fit tests and exact confidence intervals for the binomial 163 

distribution were performed in order to assess the distribution of barnacles on oysters 164 

species from different time intervals. Then, the n ull hypothesis was that the distribution 165 

of barnacles on oyster valves is random at a significance level α= 0.05 (Zar, 1999). This 166 
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methodology was followed according to the analysis performed in several previous 167 

works (Mauna et al., 2005; Parras and Casadío, 2006; Romero et al., 2013; Brezina et 168 

al., 2014). 169 

Taphonomic analysis was focused on the 1,174 valves of the nine species of oysters 170 

identified.to assess the accumulation history of them . Fragmentation and abrasion were 171 

described as taphonomic attributes using semi-quantitative taphonomic grades (Flessa et 172 

al., 1993) and presented using ternary taphograms. Three taphonomic grades were used: 173 

good (grade 0 = best preservation), fair (grade 1 = intermediate) and poor (grade 2 = 174 

poorest) (Kowalewski et al., 1994, 1995). Shell preservation was characterized as good 175 

when <5% of a sample’s surface was affected by each attribute, intermediate between 5 176 

and 50%, and poor when >50% of the surface was affected. Taphonomic attribute 177 

analyses were adapted from Parsons and Brett (1991) and Kowalewski et al. (1994; 178 

1995) to have a preliminary approach of transport and hydrodynamic regimes that could 179 

affect bioclasts according to Kowalewski et al. (1995).  180 

Abbreviations. MNCN, Museo Provincial de Ciencias Naturales, General Roca, Río 181 

Negro; GHUNLPam, Cátedra de Geología Histórica de la Universidad Nacional de La 182 

Pampa, Santa Rosa, Argentina; MPEF, Museo Paleontológico Egidio Feruglio, Trelew, 183 

Argentina. 184 

[Figure 2-4] 185 

[Table 1] 186 

RESULTS  187 

Among the sclerobionts, the identified encrusters were bivalves (including oyster 188 

recruits and Spondylus sp.), polychaetes (serpulid tubeworms), and bryozoans (35 189 

species of cyclostomes and cheilostomes). Bioerosional structures produced by boring 190 

activity upon the shells were also recorded on valves as sponges (Entobia isp.), 191 
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polychaetes (Maeandropolydora isp. and Caulostrepsis isp.), bivalves 192 

(Gastrochaenolites isp.), ctenostome bryozoans (Pennatichnus isp.), phoronids (Talpina 193 

isp.), and algae and fungi. Their observed frequencies can be consulted in in 194 

Supplementary Online Information. 195 

The recognized barnacles on the oyster shells belong to Acrothoracica (i.e., boring 196 

barnacles) and Thoracica (i.e., encrusting barnacles). The encrusting barnacles were 197 

assigned to Verruca rocana Steinmann, 1921. This species has depressed and 198 

asymmetrical shells (Fig. 5.1-2) comprising four plates (carina, rostrum, fixed tergum 199 

and fixed scutum). Rostrum and carina are longitudinally ribbed, especially near the 200 

base. The diameter of shells is between 1.5 and 3 mm. 201 

Also, the presence of verrucids was inferred by the identification of traces assigned to 202 

the ichnospecies Centrichnus concentricus Bromley and Martinell, 1991. In the 203 

analyzed samples, C. concentricus is approximately circular, with a central depression 204 

which is surrounded by a flat platform whose edges mark a groove in the surface (Fig. 205 

5.1, 3). The platform margin is crenulated and corresponds to the ornament of the 206 

verrucid plates.  207 

The boring barnacles are represented by traces assigned to the ichnogenus Rogerella De 208 

Saint-Seine, 1951. Rogerella showed holes with an elliptical contour and elongated 209 

distal portion, sometimes with a slight curvature (Fig. 5.4-5), and a circular or conical 210 

proximal portion (Fig. 6.6). Length of the traces ranges from 1.2 to 2.5 mm. Erosion of 211 

the substrate can make them seem shallower than they actually are. The holes are 212 

arranged randomly and roughly equidistant, perpendicular or oblique to the substrate. 213 

The traces can be found alone or in groups (Fig. 5.4). 214 

The observed frequencies of encrusting and boring barnacles on oyster species are 215 

shown in Table 2. 216 
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[Figure 5] 217 

[Table 2] 218 

In general, late Maastrichtian shells are typically in fair-poor condition for both 219 

taphonomic attributes (Fig. 6), with T. damboreneae (Cerro Butaló) consisting of the 220 

poorest shells represented in the fragmentation taphogram. Furthermore, early Danian 221 

oysters also exhibited fair-poor preservation for both taphonomic attributes, except for a 222 

sample of G. callophyla from the Cerros Bayos locality with a high proportion of shells 223 

in poor condition as a result of abrasion. Finally, late Danian oysters vary greatly. A 224 

good-fair condition for both attributes was recorded for C. ameghinoi from Cerros 225 

Bayos, General Roca and Bajada de Jagüel, while the taphonomic condition of the other 226 

samples representing O. wikensi and P. (Ph.) sarmentoi varied greatly. 227 

[Figure 6] 228 

Barnacles through K-Pg boundary 229 

V. rocana (i.e. encrusting barnacles) and their trace C. concentricus in the studied 230 

localities showed absence of records during the late Maastrichtian, low frequency 231 

during the early Danian, and  high frequency during the late Danian (Fig. 7.1). On the 232 

other hand, the records of Rogerella (i.e. boring barnacles) showed significant 233 

differences in its frequency, reflecting an important decrease during early Danian, 234 

although, during the late Danian its abundance increased considerably (Fig. 7.1). 235 

Goodness of fit showed significant differences for both encrusting and boring barnacles 236 

on valves of different ages (i.e. late Maastrichtian, early Danian and late Danian) 237 

(p<0.0001). But the analysis with exact confidence intervals showed that the significant 238 

differences are for boring barnacles during early and late Danian (Fig. 7.2), considering 239 

that the expected frequency (EF) is lower than the observed frequency (OF) during early 240 

Danian and the OF is higher than the EF during late Danian. 241 
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Goodness of fit also showed significant differences in the distribution of both encrusting 242 

and boring barnacles on valves of different oyster species (p<0.001). The analysis with 243 

exact confidence intervals showed that there are significant differences for boring 244 

barnacles on P. (Ph.) vesicularis, T. damboreneae, O. wilckensi and P. (Ph.) sarmientoi. 245 

For encrusting barnacles, significant differences are on O. wilckensi and C. ameghinoi 246 

(Figs.7.4-6). 247 

[Figure 7] 248 

DISCUSSION 249 

Buckeridge et al. (2008) considered that it is more common to find verrucids preserved 250 

as disarticulated wall plates than articulated ones. In the analyzed samples most of 251 

encrusting barnacles are preserved articulated. However, we recognized oysters with the 252 

trace C. concentricus in which an eroded platform was seen. Darwin (1854) mentioned 253 

this trace is produced by recent specimens of Verruca stroemia (Müller, 1776) and 254 

found them to be comparable to fossil material. In addition, Santos et al. (2005) 255 

described similar traces and assigned them to Anellusichnus Santos, Mayoral, and 256 

Muñiz, 2005, although this ichnogenus is produced by balanomorphs and can have more 257 

crenulated edges in later stages. This feature was not observed in the studied specimens. 258 

The recorded trace openings have the form of a slot, and the hole is narrower towards 259 

the bottom. Recent acrothoracican barnacles which belong to Lithoglyptidae Aurivillius, 260 

1892, leave this trace. They penetrate the substrate during the larval stage (Cypris 261 

larvae), probably by chemical dissolution, and when they are adults, they use chitinous 262 

bristles present on the outer side of their mantle to enlarge the chamber (Abletz, 1993, 263 

Kolbasov and Newman, 2005). The boring protects the animal body as they lack shell 264 

plates (Abletz, 1993). According to Lambers and Boekschoten (1986), the recent 265 

species Trypetesa nasseroides Turquier, 1967, lives in gastropods shells inhabitated by 266 
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hermit crabs, and they bore by a combination of chemical and mechanical processes. 267 

These authors considered that the mode of life and the drilling processes of these 268 

organisms can be compared with fossil barnacles whose traces are assigned to 269 

Rogerella. 270 

Late Maastrichtian and early Danian oyster shells exhibited fair-poor condition for both 271 

abrasion and fragmentation, while late Danian shells exhibited mostly good-fair 272 

condition for the same attributes. These oyster species probably are showing differences 273 

in abrasion and fragmentation as a consequence of different preservational 274 

environments, such as hydrodynamic regime, bioerosion, degree of subaerial exposure, 275 

differences in the size and architecture of the shells, or some combination of these 276 

parameters (Kowalewski et al., 1995). 277 

Shells of T. damboreneae (Cerro Butaló) are included in accumulations associated with 278 

bars and tidal channels showing poor preservation, probably caused by short distances 279 

of transport and reworking. Nevertheless, fragmentation can result also from a 280 

combination of both physical and biological processes (Zuschin et al., 2003). This is 281 

coincident with the high bioerosion observed in this oyster, represented mostly by 282 

sponges, boring barnacles, and phoronids. 283 

Gryphaeostrea callophyla (Cerros Bayos) shells are included in parautochthonous 284 

accumulations associated with offshore beds and probably experienced little transport. 285 

In this case various factors including microboring activity, and dissolution could result 286 

in the loss of surface shell material (Schneider-Storz et al., 2008). Also, shells revealed 287 

low frequencies of sclerobionts, with poorly preserved bryozoans on external shell 288 

surfaces and low bioerosion represented mostly by polychaetes on internal surfaces. 289 

Additionally, in both ternary taphograms, the late Danian oysters Ostrea wilckensi and 290 

Pycnodonte (Ph.) sarmientoi presented mixed taphonomic grades following the 291 
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description of Kowalewski et al. (1995). For both oyster species, a high grade of 292 

bioerosion and encrustation could indicate that there was no rapid burial or subaerial 293 

exposure (Kowalewski et al., 1995). Moreover, O. wilckensi is preserved mostly in life 294 

position (i.e., developing clusters or nests) and has a high frequency of articulation. 295 

Sclerobionts are preferentially distributed on external shell surfaces indicating in vivo 296 

colonization. Mixed taphonomic grades also correlate well with the inferred 297 

depositional environments, where all oysters of Danian age were included in 298 

accumulations associated with bars and tidal channels characterized by a fluctuating 299 

hydrodynamic regime. 300 

In this study, a preliminary examination of the taphonomic condition of Maastrichtian 301 

and Danian oysters was performed. Considering that the increase in frequency of 302 

occurrence of boring barnacles during the late Danian would be related to taphonomic 303 

constraints more than evolutionary or paleoecology patterns, a larger sample would be 304 

necessary for more accurate interpretations of the studied environments at the three 305 

times intervals. Additionally, according to Parsons and Brett (1991), skeletal fragments 306 

should be included in futures taphonomic studies as the fragments may be more 307 

sensitive to taphonomic processes. They can provide useful and different information 308 

than whole or broken shells.  309 

Barnacles through K-Pg boundary 310 

There is a limited database about the changes over time in sclerobiotic communities, 311 

and even less in boring and encrusting barnacles. However, Brett et al. (2012) suggested 312 

that the records of Cretaceous to modern sclerobiotic communities apparently have not 313 

changed drastically in diversity and abundance since the re-emergence of encrustation 314 

in the Jurassic. These communities were dominated by the same sclerobionts as those in 315 

the Jurassic (e.g., encrusting foraminifers, serpulid worms, cheilostome bryozoans, 316 
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coralline algal encrusters, cementing bivalves as oysters, clionid borings and ctenostome 317 

etchings) (Brett et al., 2012). Barnacles are an ancient group that remains very 318 

successful today, both in number of species and abundance (Newman and Abbott, 319 

1980). However, it seems that across the K-Pg boundary, at least according to the 320 

Northern Patagonian records, some of them reflected a decrease in the frequency of 321 

occurrence in the fossil record. 322 

In this sence, and focusing on K-Pg events, The first records of Verruca are from the 323 

Santonian of Western Australia, but it reached a wide geographic distribution during the 324 

late Campanian-Maastrichtian, being recorded in Europe, Western Australia 325 

(Buckeridge, 1983; Buckeridge et al. 2008) and South America. On the other hand, the 326 

earliest verrucid barnacles recorded after the K-Pg boundary were V. punica 327 

Buckeridge, Jagt, and Speijer, 2008, from the early Danian of Tunisia, and V. rocana 328 

from the early Danian of Argentina. Is possiblr to consider that during early Danian, 329 

ecological factors could have affected populations of this specie being underrepresented 330 

and no registered in the fossil record. These factors include the availability of resources 331 

and also interactions between species (Paine 1969, 1984, 1994). Also taphonomic 332 

conditions could disfavor the preservation of encusting barnacles. Verrucid barnacles 333 

are commonly found preserved as isolated, disarticulated wall plates and rarely as 334 

complete fossils (Buckeridge and Finger, 2001). The valves of Maastrichtian oysters 335 

with poor preservation conditions tend to have not a good record of encrusting 336 

barnacles, since the complete preservation of their plates is exceptional. Anyway, as 337 

their traces are not recorded, this might suggest that either the taxon was not abundant, 338 

it was a rare specie or it was not present at these time. Additionally,as there are 339 

registered superficial traces made by algae and fungi (Supplementary Online 340 

Information) and there are not barnacles traces, then they possibly were absent. 341 
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Taphonomic feedback (i.e. biotic changes driven by live/dead interactions sensu 342 

Kidwell and Jablonsky (1983) can be considered. Some marine invertebrates do not 343 

settle or look for refuge in clumps of dead oysters, probably because pore waters 344 

underneath the oysters are anoxic (Kidwell 1986). Moreover, early colonists could 345 

inhibit later colonists by biochemical or other biotic interactions (Kidwell and 346 

Jablonsky, 1983). Barnacles respond to stimulatory and inhibitory external signals 347 

during the settling stage of their life cycle (Holmström et al., 1992). 348 

Possible negative effects on barnacles caused by the crisis during K-Pg also must be 349 

taken into account. Buckeridge et al. (2008), consideredthe genus Verruca seems to 350 

have persisted across the boundaryand have not been drastically affected , as was the 351 

case with other taxa (Macleod et al., 1997; Jablonski 1998; Håkansson and Thomsen, 352 

1999; Stilwell, 2003; Parma and Casadío, 2005). But the possibility of being new to the 353 

region after the K-Pg boundary could also explain the low frequencies during early 354 

Danian. 355 

Borings made by acrothoracican cirripeds have a high richness and extensive geologic 356 

record (Seilacher, 1969). In this work, results suggest that at the K-Pg boundary 357 

encrusting and boring barnacles varied their frequencies in view of the fact that the 358 

preliminary analysis with exact confidence intervals showed that the OF was lower than 359 

the EF during the early Danian and then, the OF was higher than the EF during late 360 

Danian (Figs. 7.2-3)..  361 

The preferential distribution of encrusting and boring barnacles on the species could be 362 

related to many biotic and abiotic factors. For example, life habits of this oysters such as 363 

clusters composed of mutually attached specimens or reclining mode of life (Stenzel 364 

1971; Machalski, 1998), morphology and textures of the valves (Romero et al., 2013 365 

and references therein) or environmental conditions that favor the settlement of 366 
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barnacles larvae on the valves (Fraschetti et al., 2003; Hadfield, 2011). Encrusting 367 

barnacles showed preferential distribution on two late Danian oysters (i.e. C. ameghinoi 368 

and O. wilckensi). Although their mode of life and morphology of shells are not the 369 

same, the facies analysis indicates the same subtidal environment. On the other hand, 370 

boring barnacles showed preferential distribution on Maastrichtian species (i.e. P. (Ph.) 371 

vesicularis and T. damboreneae) and late Danian species (i.e. O. wilckensi and P. (Ph.) 372 

sarmientoi). With exception of O. wilckensi, these species have solitary mode of life, 373 

different morphology of shells, but the facies association indicates same inner to 374 

middle-shelf or subtidal environments. However, there is no a clear pattern that explain 375 

this differential distribution. 376 

Barnacles are suspension feeders and their abundance could have been reasonably 377 

affected by the reduction of food supply. This hypothesis is supported by other studies 378 

that postulate that the collapse of primary production across the K-Pg boundary 379 

correlates with the high extinction rates in organisms dependent on primary producers 380 

(Zachos et al., 1989; Veron, 2008; Jiang et al., 2010; Van De Schootbrugge and 381 

Gollner, 2013). Conversely, Sogot et al. (2013) questioned the extent to which this kill 382 

mechanism affected suspension feeders during the K-Pg mass extinction. If the collapse 383 

of primary producers hypothesis is consider valid, the scarce record of encrusting 384 

barnacles during de late Maastrichtian and early Danian could show  that these 385 

organisms were underrepresented and that the crisis during the K-Pg interval  severely 386 

affected them. This situation seemed to have changed during the late Danian, as a 387 

significant increase of both encrusting and boring barnacles is recorded in the analyzed 388 

samples. This increase after the earliest Danian is observed in other sclerobionts 389 

associated with the same oysters (e.g., encrusting bryozoans, polychaetes and bivalves) 390 

(Brezina, 2013), and can also be correlated with an increase in the number of species of 391 
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corals, mollusks, echinoids, and crabs from low latitudes, reflecting higher seawater 392 

temperatures spreading southwards (Casadío et al., 2005; Aguirre-Urreta et al., 2008). 393 

According to Erwin (2001), evolutionary opportunities open up during mass extinction 394 

have disproportionate effects on species. He stated that mass extinctions appear to cause 395 

a collapse of ecospace, which will be rebuilt during recovery times, but responses in 396 

organisms are variable, even between species and regions. So the ecosystem dynamics 397 

during post-extinction time could be complex. Some benthic communities at other 398 

localities experienced considerable diversity reduction at the K-Pg boundary, showed a 399 

recovery of the early Danian community, but initially retarded, and diversified quickly 400 

during the late Danian (Håkansson and Thomsem, 1999). These results are coincident 401 

with bryozoan species from northern Patagonia, which are highly diverse during the late 402 

Danian (Brezina et al., 2011).  403 

CONCLUSSIONS 404 

During early Danian Verruca rocana, could have been affected by ecological and 405 

environmental factors, being underrepresented and no registered, but during the late 406 

Danian its frequency of incrustation increased significantly. 407 

Boring barnacles represented by the trace fossil Rogerella exhibited a decline in their 408 

frequencies at the K-Pg boundary, and during the late Danian, their abundance also 409 

increased considerably. 410 

 In an attempt to preliminarily know the taphonomic history of the shell accumulations, 411 

a differential preservation was observed. Late Maastrichtian and early Danian 412 

assemblages exhibited a fair-poor condition for abrasion and fragmentation, as a result 413 

of reworking and short distance transport in offshore beds. On the other hand, late 414 

Danian assemblages exhibited mostly good-fair condition or a mixture for both 415 

attributes, reflecting rapid burial or subaerial exposure, or a hydrodynamic regime 416 
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fluctuation in the depositional environment (e.g., bars and tidal channels).  Frequencies 417 

of barnacles are higher during late Danian and these results could be correlated. 418 

However it would be necessary to focus a taphonomic analysis on the barnacles for 419 

more accurate interpretations. 420 

Differences in distribution of encrusting and boring barnacles among the species of 421 

oysters also are recorded, although there is not a clear pattern that could explain this 422 

results. 423 

An ecological explanation also can be considered. As it is observed in recent 424 

communities, biotic and abiotic conditions regulate the dynamics of populations. The 425 

hypothesis considering a collapse of primary production could explain why suspension 426 

feeders were affected during the K-Pg mass extinction. In this sense, the reduction of 427 

barnacles recorded in this study could reflect the decrease of food supply in the seas. 428 

Although many factors could have been affected the boring and encrusting pattern of 429 

sclerobiotic organisms, a change in barnacle abundance through the K-Pg boundary is 430 

documented. In northern Patagonia, encrusting and boring barnacles associated with 431 

oysters presented an increase in theirfrequencies during late Danian which is coincident 432 

with the increase in abundance and diversity of other benthic communities of the 433 

southern hemisphere.  434 
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Figure captions 690 
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Figure 1. 1, map of Argentina. 2, map showing the study area. Black symbols indicate 692 

the localities where oyster were collected, and the dotted line indicate the Neuquen 693 

basin boundaries. BdJ, Bajada del Jagüel; CBu, Cerro Butaló; CBa, Cerros Bayos; 694 

CdP, Casa de Piedra; GR, General Roca; Hu, Huantraico; LM, Liu Malal; RC, 695 

Ranquil-Có. 696 

Figure 2. Late Maastrichtian oysters. Pycnodonte (Phygraea) vesicularis, Jagüel 697 

Formation, Bajada del Jagüel, Neuquén. 1-2, Left valve (MPCN-PI 803.59). 1, exterior; 698 

2, interior. 3-4, Right valve (MPCN-PI 803.34). 3, exterior; 4, interior. Turkostrea 699 

damboreneae. Roca Formation, Cerro Butaló, Mendoza. 5-6, Left valve (GHUNLPam 700 

10625). 5, exterior; 6, interior. 7-8, Right valve (GHUNLPam 15976). 7, exterior; 8, 701 

interior. Amphidonte mendozana. Roca Formation, Huantraico, Neuquén. 9-10, Left 702 

valve (MPCN-PI 808.77). 9, exterior; 10, interior. 11-12, Right valve (MPCN-PI 703 

808.80). 11, exterior; 12, interior. 704 
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Figure 3. Early Danian oysters. Gryphaeostrea callophyla. Roca Formation, General 705 

Roca, Río Negro. 1-2, Left valve (MPCN-PI 805.54). 1, exterior; 2, interior. 3-4, Right 706 

valve (MPCN-PI 805.46). 3, exterior; 4, interior. Pycnodonte (Phygraea) burckhardti. 707 

Roca Formation, General Roca, Río Negro. 5-6, Left valve (MPCN-PI 804.7). 5, 708 

exterior; 6, interior. 7-8, Right valve (MPCN-PI 804.15). 7, exterior; 8, interior. 709 

Turkostrea argentina. Roca Formation, Liu Malal, Mendoza. 9-10, Left valve 710 

(GHUNLPam 17460). 9, exterior; 10, interior. 11-12, Right valve (GHUNLPam 711 

17431). 11, exterior; 12, interior. 712 

Figure 4. Late Danian oysters. Ostrea wilckensi. Roca Formation, General Roca, Río 713 

Negro. 1-2, Left valve (MPCN-PI 802.29). 1, exterior; 2, interior. 3-4, Right valve 714 

(MPCN 802.61). 3, exterior; 4, interior. Pycnodonte (Phygraea) sarmientoi. Roca 715 

Formation, Casa de Piedra, La Pampa. 5-6, Left valve (MPCN-PI 801.72). 5, exterior; 716 

6, interior. 7-8, Right valve (MPCN-PI 801.78). 7, exterior; 8, interior. Cubitostrea 717 

ameghinoi. Roca Formation, Bajada del Jagüel, Neuquén. 9-10, Left valve (MPCN-PI 718 

806.16). 9, exterior; 10, interior. 11-12, Right vlave (MPCN-PI 806.25). 11, exterior; 719 

12, interior. 720 

Figure 5. Verruca rocana Steinmann, 1921. 1, several specimens with their traces 721 

(Centrichnus Bromley and Martinell, 1991) on shells of P. (Ph.) sarmientoi, Danian, 722 

Roca Formation, Casa de Piedra, La Pampa, MPEF-PI 6130.1. 2, detail of a specimen 723 

showing the plates and operculum, attached to C. ameghinoi, Danian, Roca Formation, 724 

General Roca, Río Negro, MPEF-PI 6130.2. T, tergum; C, Carina; Tm, tergum movile; 725 

Sm, scutum movile. 3, Centrichnus isp. on the internal surface of C. ameghinoi, 726 

Danian, Roca Formation, General Roca, Río Negro, MPEF-PI 6130.3. Rogerella De 727 

Saint-Seine, 1951. 4, an overview of borings with elliptical contour and distal portion 728 

elongated and 5, detail of one boring with its slightly curved distal end on C. ameghinoi, 729 
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Danian, Roca Formation, Cerros Bayos, La Pampa, GHUNLPam 25375. 6, drop-730 

shaped borings, with conical proximal portion on T. damboreneae, Maastrichtian, Roca 731 

Formation, Cerro Butaló, Mendoza, GHUNLPam 10492. Scale bars= 1 mm. 732 

Figure 6. Ternary taphograms for nine oyster species showing variations among them 733 

for abrasion and fragmentation. Some species are represented in more than one locality. 734 

Figure 7. 1, Frequencies of occurrence of oyster shells from different ages encrusted or 735 

bored by barnacles. 2, Differential distribution of barnacles through time. Note that 736 

there is a significant difference between expected frequency (EF) and observed 737 

frequency (OF) of barnacles during the late Danian. 3-6, Differential distribution of 738 

barnacles on oyster species. Note that significant differences between expected 739 

frequencies (EF) and observed frequencies (OF) of barnacles are indicated by (*). Error 740 

bars represent confidence intervals. 741 
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TABLE 1. Species of oysters studied and relevant information 

Species of oysters Fossil locality Unit Age Taphonomic data of oyster 

accumulations 

Facies data 

Amphidonte mendozana 
(Ihering, 1907) 

Huantraico (Neuquén) Roca Fm. late 
Maastrichtian 
 

Valves grouped in nests or in 

parautochtonous accumulations. Dense 

packing, good size-selection, convex-up 

valves, poor disarticulation and moderate 

fragmentation.  

Valves are included in mudstones. 

Facies association indicates inner to 

middle-shelf environments. 

Pycnodonte (Phygraea) 
vesicularis (Lamarck, 
1806) 

Bajada del Jagüel 
(Neuquén) 

Jagüel Fm. late 
Maastrichtian 
 

Valves grouped in parautochthonous 

accumulations or in life position. 

Dispersed packing, poor size-selection, 

convex-up valves and moderate 

disarticulation and fragmentation. 

Valves are included in mudstones. 

Facies association indicates inner to 

middle-shelf environments. 

Turkostrea damboreneae 
Griffin, Casadío and 
Parras, 2005 

Cerro Butaló (Mendoza) 
Ranquil Có (Mendoza) 

Roca Fm.  late 
Maastrichtian 
 

Valves grouped in parautochthonous 

accumulations. Dispersed packing, good 

size-selection, chaotic orientation, good 

disarticulation and por fragmentation.  

Valves are included in mudstones. 

Facies association indicates inner to 

middle-shelf environments (Jagüel 

Formation) or shallow subtidal 

environments (Roca Formation).  

Pycnodonte (Phygraea) 
burckhardti (Böhm, 1903) 

Cerros Bayos (La Pampa);  
General Roca (Río Negro) 

Roca Fm. 
Jagüel Fm. 

early Danian 
 

Valves grouped in parautochthonous 

accumulations or in life position. 

Dispersed packing, poor size-selection, 

convex-up valve, poor disarticulation and 

moderate fragmentation. 

Valves are included in mudstones. 

Facies association indicates inner to 

middle-shelf environments. 

Gryphaeostrea callophylla 
(Ihering, 1903) 

Cerros Bayos (La Pampa);  
General Roca (Río Negro) 

Roca Fm. 
Jagüel Fm. 

early Danian 
 

Valves grouped in parautochthonous 

accumulations. Dispersed packing, poor 

size-selection, convex-up valves, poor 

disarticulation and moderate 

fragmentation. 

Valves are included in mudstones. 

Facies association indicates inner to 

middle-shelf environments. 

Turkostrea argentina 
Griffin, Casadío and 

Liu Malal (Mendoza) Roca Fm. early Danian 
 

Valves grouped in parautochthonous 

accumulations. Dispersed packing, good 

Valves are included in mudstones. 

Facies association indicates shallow 

Darío
Tachado

Darío
Texto insertado
Oyster species

Darío
Tachado

Darío
Texto insertado
Oyster species

Darío
Tachado

Darío
Texto insertado
Sedimentary facies
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Parras, 2005 size-selection, chaotic orientation, good 

disarticulation and poor fragmentation. 

subtidal environments. 

Cubitostrea ameghinoi 
(Ihering, 1902) 

Cerros Bayos (La Pampa); 
General Roca (Río Negro);  
Bajada del Jagüel 
(Neuquén) 

Roca Fm. late Danian 
 

Valves grouped in parautochthonous 

accumulations. Dense packing, good size-

selection, chaotic orientation, Good 

disarticulation and moderate 

fragmentation.  

Valves included in massive 

wackstones. Facies association 

indicates shallow subtidal 

environments. 

Ostrea wilckensi Ihering 
1907 

Gral. Roca (Río Negro) Roca Fm. late Danian 
 

Valves, grouped in nests or in 

parautochtonous accumulations. Dense 

packing, poor size-selection, associated in 

nests, poor disarticulation and 

fragmentation. 

Valves included in massive 

grainstones. Facies association 

indicates shallow subtidal 

environments. 

Pycnodonte (Phygraea) 
sarmientoi Casadío, 1998 

Casa de Piedra (La Pampa) Roca Fm. late Danian  Valves grouped in parautochthonous or 

allochthonous accumulations. Dense 

packing, poor size-selection, chaotic 

orientation, good disarticulation and 

fragmentation. 

Valves included in massive 

packstones. Facies association 

indicates shallow subtidal 

environments. 
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TABLE 2. Observed frequencies of barnacles on oyster valves according to the species, biozones (Papú et al., 1999) and 
ages. 
 

Species of 
oysters 

Biozones Age Number of valves 
(n) 

Encrusting barnacles Boring barnacles 

P. (Ph.) vesicularis  CC25 late Maastrichtian 
 

89 
 

0 2 

T. damboreneae CC26 late Maastrichtian 
 

137 
 

0 29 

A. mendozana CC25-CC26 late Maastrichtian 
 

82 0 0 

G. callophylla  NP1 early Danian 
 

178 0 0 

P. (Ph.) 
burckhardti 

NP1 early Danian 
 

179 1 0 

T. argentina NP1-NP2 early Danian 
 

82 0 1 

O. wilckensi  NP1-NP4 late Danian 
 

84 45 1 

P. (Ph.) sarmientoi NP4 late Danian 
 

94 31 21 

C. ameghinoi 
 
Total  

NP4 late Danian  249 
 
1.174 

19 

96 

34 

88 
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