
1

This is an Accepted Manuscript of an article published by Elsevier in Omega 1

on June 27, 2017 2

 3

available online: https://doi.org/10.1016/j.omega.2017.05.010 4

 5

The non-permutation flow-shop scheduling problem: a 6

literature review 7

Rossit, Daniel Alejandro*1,2, Tohmé, Fernando2,3, Frutos, Mariano1,4 8

1Department of Engineering, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca (8000), Argentina. 9
2INMABB-UNS-CONICET, Av. Alem 1253, Bahía Blanca (8000), Argentina. 10

3Department of Economics, Universidad Nacional del Sur, San San Andrés 800, Bahía Blanca (8000), Argentina. 11
4IIESS UNS CONICET, San Andrés 800, Bahía Blanca (8000), Argentina. 12

*corresponding author 13

Abstract 14

The Non-Permutation Flow-Shop scheduling problem (NPFS) is a generalization of the 15

traditional Permutation Flow-Shop scheduling problem (PFS) that allows changes in the job order on 16

different machines. The flexibility that NPFS provides in models for industrial applications justifies 17

its use despite its combinatorial complexity. The literature on this problem has expanded largely in 18

the last decade, indicating that the topic is an active research area. This review is a contribution 19

towards the rationalization of the developments in the field, organizing them in terms of the objective 20

functions in the different variants of the problem. A schematic presentation of both theoretical and 21

experimental results summarizes many of the main advances in the study of NPFS. Finally, we 22

include a bibliometric analysis, showing the most promising lines of future development. 23

Keywords: Non-permutation Flow-shop; Scheduling; Flow-Shop; Review 24

Highlights 25

 An exhaustive review of the Non-Permutation Flow-Shop Scheduling problem. 26

 A comprehensive classification in terms of objective functions and the solution 27

methods employed in the literature. 28

 A compilation of problems that, modeled as PFS, do not ensure optimality. 29

 A revision of the main experimental results. 30

2

 A detailed description of future research lines and literature gaps. 31

 32

1. Introduction 33

Scheduling problems of production systems have been extensively analyzed and worked out 34

under different approaches (Błazewicz, et al (1996, [8]); Allahverdi et al (1999, [3]); Kis (2003, [37]); 35

Allahverdi et al (2008, [4]); Kis and Kovacs (2012, [39]) and Allahverdi (2015) [5]). The results in 36

this field have contributed to the improvement of manufacturing systems (Błazewicz, et al (2007, 37

[11])). 38

Flow-shop configurations are commonplace in manufacturing settings where a set of jobs N 39

= {1, 2, …, n} are processed by a set of machines M = {1, 2, …, m}. Each job goes through the 40

machines in the same technological order, i.e. it starts at machine 1, then goes to machine 2, … up to 41

machine m. The decision to make is to choose the order on which the different jobs will pass through 42

the machines. If the job sequence is the same for all the machines, the schedule is called a permutation 43

and the problem of choosing the best one is known as the Permutation Flow-Shop problem (PFS). If 44

instead the processing sequence can change from one machine to the next, the permutation condition 45

is relaxed and the problem is known as Non-Permutation Flow-Shop (NPFS). The standard 46

description of the NPFS problem considers the following specifications: 47

1. Each machine can process only one job at a time. 48

2. Each job j has a processing time pij on machine i =1, 2,…,m. 49

3. The capacity of intermediate buffers must be large enough to allow the reordering of the job 50

sequence. 51

The standard settings of NPFS and PFS are very similar, being the third item the most relevant 52

potential difference between them. In some cases, PFS problems assume also intermediate buffers 53

with unlimited capacity, being so perfectly compatible with NPFS. On the other hand, in the absence 54

of intermediate buffers, the NPFS approach is not applicable to obtain a feasible scheduling scheme 55

(the same happens with the “no-wait” flow-shop case [48]). Besides the aforementioned three main 56

specifications in the standard NPFS form, there are other requirements: all the jobs and machines 57

must be available from the beginning; preemption is not allowed; machines can be idle during the 58

planning horizon; each job can be processed by only one machine at a time; and the problem data is 59

deterministic and known in advance. This description does not encompass the entire realm of NPFS 60

3

problems, but serves as a template for them. With minor changes (such as adding or removing 61

constraints), all the different NPFS variants can be obtained. 62

In the last decade, the researchers in the scheduling community have shown a growing 63

interest in the analysis NPFS problems. Among the important issues that have since been considered, 64

one is the detection of the manufacturing conditions for which NPFS is more promising than PFS, 65

since the solutions that are obtained under the latter approach can be inferior to those of NPFS 66

problems. This approach has been extensively analyzed in the literature on flow shop systems, 67

yielding new views on the schedule of production activities. This is in particular the case of 68

environments in which the optimizing criterion is related to due-dates. Liao et al (2006, [43]) indicates 69

that solving flow shop problems minimizing total tardiness under the PFS approach leads to 70

efficiency losses of around a 10% of the objective in comparison to the solutions obtained under 71

NPFS. Moreover, Lin et al (2009, [46]) shows that in flow shop systems organized in manufacturing 72

cells with due-date related objectives the gains in efficiency obtained with NPFS schedules are, for 73

some cases, of 30%, while in average of around 10%. In the case of completion time-related objective 74

functions the gains are of 5% to 6%. Some of these results were extended by Ying et al (2010, [97]), 75

showing empirically that if set up and processing times have larger dispersion the improvements are 76

even larger. For instance, if the range of set up times increases, the average improvement of NPFS 77

schedules over PFS ones for completion time objectives, when the range of set up times increases, 78

grows from 0,5% to 1,5%, reaching in some cases up to 13%. For objective functions related to 79

delivery dates, the average improvements grow from 0.5% under PFS to 7% with NPFS, with many 80

instances above 30% reaching even 40%. 81

 This is extremely relevant since flow-shop settings are very common in actual industrial 82

plants, representing nearly a quarter of manufacturing systems, assembly lines and information 83

service facilities (Pan et al., 2011, [59]). Therefore, the possibility of improving the performance of 84

manufacturing systems by means of a better scheduling approach can have a huge impact on a number 85

of industry and organizations. 86

 87

Figure 1. Solution spaces of NPFS and PFS 88

4

The main reason for the late concern with NPFS problems is their hardness: while the PFS 89

approach searches its optimal solution among n! feasible schedules, being n the number of jobs, the 90

NPFS approach has to consider n!m possibilities. The increase of hardware computational power in 91

the last decade has nevertheless fueled the interest in finding efficient algorithms for NPFS problems. 92

In fact, more than the 65% of the papers reviewed for this paper, have been published after 2006. This 93

shows that NPFS is currently a fashionable topic in the flow-shop scheduling literature. Furthermore, 94

the results obtained indicate that this approach has large potential benefits superseding those of the 95

classic PFS one. Moreover, as shown in Figure 1, since the class of solutions of PFS is a subset of 96

those of NPFS. 97

We conceive our survey as a contribution to the systematization of the literature on NPFS 98

problem, highlighting important results and outlining future research lines. This review gathers, to 99

the best of our knowledge, all the NPFS literature, describing the NPFS problems discussed there, 100

classifying them in terms of the objective functions and commenting on the solution methods applied. 101

The organization of the paper is as follows. Section 2 presents the classification and notation used in 102

the paper. Once laid out the basis for the review, section 3 presents a description of the literature, 103

classified according to the objective functions considered there. In Section 4, we present a statistical 104

analysis of the problems and solutions methods developed in the literature, obtaining interesting 105

bibliometric data and results. Finally, section 5, presents the conclusions of this work and an outline 106

of promising future lines of research. 107

2. Non-Permutation Flow-Shop problems: classification, notation 108

and other considerations 109

To represent the different NPFS variants we have to consider some modifications of the 110

standard form presented in the previous section, namely removing or adding assumptions and 111

constraints. To denote them we adopt the classification and nomenclature proposed by Graham et al. 112

(1979, [29]) and implemented by Pinedo (2012, [62]). The resulting NPFS variants are characterized 113

as a triplet α│β│γ. The first field, α, describes the machine environment or shop configuration and 114

contains only one entry. The β field provides details of the processing characteristics and constraints 115

and may contain no entry at all, a single entry, or multiple entries. The γ field describes the objective 116

function, usually in a single entry (more than one entry indicates a multi-objective case). 117

With regard to the α field, the possible entries could be either F (for pure flow-shop settings 118

with m stages and only one machine or processor per stage), or J (for job-shop with m stages). Despite 119

this potential variety, in this paper we consider only the pure flow-shop settings. The reason of this is 120

that the other settings have been already described in the literature. For instance, the hybrid flow-shop 121

5

has been reviewed by Linn et al. (1999, [49]); Ruiz et al. (2010, [81]); Ribas et al. (2010, [74]) and 122

Li et al. (2015, [42]). Thus, for us, the only possible entry in the α field is F. 123

With respect to the β field, multiple entries are possible, enumerating the constraints and 124

assumptions considered for the specific cases. The appearance of an entry implies that the 125

corresponding condition applies. The possible entries are: 126

 rj: indicates that jobs cannot start their processing before their release date. If rj is not present 127

in the β field, jobs can start their processing at any time. In contrast to release dates, due dates 128

are not specified in this field. The objective function gives sufficient indication whether or 129

not there are due dates. 130

 Prmp: means that preemption is allowed, while its absence indicates that they are not allowed. 131

 sjk: denotes the sequence-dependent setup time of job k after finishing job j. If this setup time 132

depends on the machine, the machine subscript i is included, i.e., sijk. If no sjk appears in the 133

β field, all setup times are supposed to be sequence independent (included in the processing 134

times) or 0. 135

 prmu: indicates that the job ordering is the same order for every machine. 136

 block: implies that buffer capacities between machines are limited. Jobs must wait in the 137

previous stage until sufficient space is free. This condition is not enough to prevent NPFS 138

schedules, since the buffer capacity may be enough to reorder at least one job. This topic will 139

be thoroughly discussed in the next section. 140

 unavail: states that machines are not available at some times. 141

In the case of stochastic parametrizations, we will indicate it with the same notation but in 142

capital letters. For instance, if the release date of job j is an uncertain parameter, the entry at the β 143

field will be denoted Rj, while the regular non-stochastic entry is rj. This notation is adopted from 144

Pinedo (2012, [63]). Other possible entries for β exist, but do not apply in our study, as for instance 145

no-wait (it does not work for NPFS) and precedence (it is redundant for flow-shop settings). 146

Nevertheless, if some other entry appears in our review, its denotation will be self-explanatory. 147

Let Cij represent the completion time of the operation of job j on machine i, and Cmj the 148

completion time on the last machine (that is, when j exits the system). The flowtime of job j is denoted 149

by Fj, and indicates the time spent by the job in the system, which can be calculated as: Fj = Cmj − rj. 150

The lateness of job j is defined as Lj, and is Lj = Cmj − dj. So expressed, Lj can be negative. The 151

tardiness of job j is Tj = max{ Cmj − dj, 0} and the earliness Ej = max{ dj − Cmj , 0}. Both of them are 152

nonnegative by definition. If there exists a penalty for each tardy job, then the unit penalty is used, 153

6

Uj, which is 1 if Cmj > dj and 0 otherwise. Many objective functions associate a weight to each job, 154

wj. These weights gauge the importance of each job respect to the others, representing different costs, 155

volume, priorities or other special features consider relevant by the decision-maker. 156

To illustrate how this notation is used, let us consider the standard version of NPFS presented 157

in the introduction of the paper, which will be denotated as F││Cmax (notice that the β field is empty). 158

This means that the production setting is a flow-shop system of m machines and the optimization 159

criterion is captured by makespan. For another example, suppose that the number of machines is 160

limited to 10, the jobs have release dates, the setups are sequence dependent for each machine, and 161

the optimality criterion is maximal tardiness. This problem is represented as F│rj, sijk │Tmax. 162

2.1. How buffers influence policies 163

As already mentioned, a NPFS treatment requires the existence of intermediate buffers that 164

smooth out the production system. There exist various kinds of intermediate buffers, depending on 165

their capacity. The most common in the literature satisfies the condition of unlimited intermediate 166

storage (UIS). On the other extreme of the range of possibilities, we find the case in which no 167

intermediate buffers exist, corresponding to the no intermediate storage (NIS) condition. Between 168

them, we have the cases of finite intermediate storage (FIS). We have also the case in which products 169

must go immediately from a workstation to another, the zero wait (ZW) case. Finally, the mixed 170

intermediate storage (MIS) case obtains as a combination of two or more of the previous cases. 171

The UIS condition covers the cases in which the buffering capacity is at least n – 1, where n 172

is the number of jobs. This ensures the absence of deadlocks in the production system, since each 173

machine has a buffer that allows it to store all the intermediate products except the one that is being 174

processed. Rossi and Lanzetta (2013, [75]) reduce the storing capacity of the buffer, in this case, to n 175

– 2 since the previous machine can keep on hold the result of the last processing job without 176

interrupting the flow of the rest of jobs. However, the usual minimal bound for the capacity of UIS 177

buffers in the literature is, as said, n – 1. 178

The opposite is the case of the NIS condition. When a job finishes its process on machine i, 179

if machine i + 1 is busy processing another job, the former must stay on machine i generation a 180

deadlock in the flow of the system, since there is no buffering facility that could be used to store it. 181

This kind of production system does not lend itself to a NPFS treatment and admits only PFS 182

solutions. The FIS condition, in turn, allows for the use buffers able to store |bi| units1 after machine 183

i has finished its operation, with |bi| less than n – 1 units. This implies that if job j finishes on machine 184

1 By a slight abuse of language, we denote with |bi| the capacity of buffer bi.

7

i, and bi situated between i and i + 1, is full while machine i + 1 is processing job k, the result of job 185

j must wait until it finds a place in bi obstructing machine i. bi will be able to free space once machine 186

i + 1 finishes job k and transfers the result to i + 2 or to buffer bi+1 between i + 1 and i + 2, i = 1, 2, 187

…, m – 2. 188

The complexity of the problem with intermediate buffers with limited capacity is analyzed in 189

Papadimitriou and Kanellakis (1980, [61]), showing that even with only two machines is NP-hard. If 190

only schedules that do not generate deadlocks are considered feasible, the number of NPFS feasible 191

schedules depends on the capacity of each bi. To see this, consider on one hand the case in which 192

each bi has capacity 0, not allowing NPFS solutions, being the number of feasible schedules n! 193

(corresponding to PFS solutions), where n is the number of jobs. On the other hand, if each bi has at 194

least a capacity of n – 1, no deadlock can arise and thus each NPFS schedule is a feasible solution, 195

implying that the number of feasible solutions is n!m. In turn, if the capacity of each bi strictly larger 196

than 0 but also less than n – 1, not all NPFS schedules will be feasible since some of them will 197

generate deadlocks. Brucker et al (2003, [16]) analyzed this case, showing that the cardinality of the 198

set of feasible schedule Ω grows with the capacity of each buffer bi according to the following 199

expression: 200

Ω = 𝑛! ∏ |𝑏𝑖|! (|𝑏𝑖| + 1)𝑛−|𝑏𝑖|

𝑚−1

𝑖=1

 201

 The ZW case focuses on jobs that, after finishing on a machine i have to transfer immediately its 202

output to machine i + 1. It is immediate that this condition can be only satisfied by PFS schedules 203

and thus it does not allow NPFS feasible schedules. Finally, the MIS case mixes UIS and FIS buffers 204

with instances of NIS or ZW. Thus, NPFS feasible schedules can only exist for some parts of the 205

system where the storing policies satisfy UIS or FIS. 206

 207

3. The Literature on NPFS 208

The notation presented above will be applied to characterize 72 papers. The resulting 209

information is presented in Table 1 (at the end of Section 3.5), which indicates in its first column the 210

year of the publication, in the second the reference and in the third the characterization of the problem 211

addressed in that publication. The last column includes some comments about the publications, such 212

as the approach used and other aspects of the paper. This table follows a similar format to the one 213

presented in Ruiz and Vázquez-Rodríguez (2010, [81]). We encourage the reader to examine the 214

8

different solution methods that have been proposed for flow shop systems: in the case of exact 215

solutions see Kis and Pesch (2005, [38]), for the late work criterion Błażewicz, et al (2005, [10]) and 216

for meta-heuristics with sequence-dependent setups Ruiz, et al (2005, [80]). 217

In order to organize the review, we will divide the papers according to the type of objective 218

used in each work. Among the objectives we will consider are completion-time, cost and due-date. 219

On the other hand, we devote a particular interest to makespan (by far the most popular completion-220

time objective) as a category in itself. Finally, we have two special “portmanteau” cases, one of the 221

papers that consider multi-objective problems and the other covering those concerned with all other 222

single-objective cases. 223

3.1. Completion-time based objective 224

3.1.1. Makespan 225

Makespan is the most frequently considered objective function. In fact, around 55% of the 226

papers under review consider makespan as a single objective. Thus, we separate this objective from 227

the rest of the completion-time ones. The first work dealing with a makespan NPFS problem was 228

Janiak (1988, [36]). In that paper, the duration of each operation depends linearly on the fraction of a 229

limited resource allotted to each machine (for instance fuel), and the decision is twofold, involving 230

the choice of the job sequence and the allocation of the resource to the different machines. To solve 231

the problem, a Branch & Bound procedure is applied. Potts et al. (1991, [64]) quantified for the first 232

time the impact of enforcing permutation schedules. They found a set of instances for which the worst 233

case of PFS makespan is 1/2√𝑚 times the NPFS makespan. Tandon et al. (1991, [90]) compared 234

empirically PFS against NPFS schedules. For small instances, they adopted an enumerative procedure 235

while for bigger ones they used simulated annealing. They showed that, for wider ranges of 236

processing times and bigger instances, NPFS becomes more advantageous than PFS. Strusevich and 237

Zwaneveld (1994, [86]) addressed two-machine cases, considering separately the setup, processing 238

and removal times. In this case, PFS cannot ensure optimality, and in the worst case the makespan of 239

PFS is 3/2 of the NPFS makespan. They also analyzed the two-machine case with finite buffer 240

capacity, to show again that PFS does not ensure optimality. Both cases analyzed by Strusevich and 241

Zwaneveld are NP-hard. Deal, et al (1994, [21]) analyze problems of petrochemical plants for which 242

NPFS schedules are feasible, using FIS buffering. To solve the problem these authors use a heuristic 243

method identifying critical jobs, balancing the job load among processing stations and avoiding 244

bottlenecks. Grau et al (1996, [31]) study the scheduling of multipurpose batch plants with a finite 245

wait inter-stage policy (after finishing the processing a job in a machine, the time that the next job 246

can wait is restricted). To face this NPFS problem they implemented recursive procedures. Koulamas 247

9

(1998, [40]) presented a heuristic (HFC) capable of generating non-permutation schedules when it 248

deems appropriate. This heuristic has a similar performance as the NEH heuristic (Nawaz et al 1989, 249

[57]), with the advantage of yielding NPFS solutions while the NEH algorithm does not. Schwindt & 250

Trautmann (2000, [84]) analyze scheduling in batch production systems seen as an instance of 251

resource–constrained project scheduling by incorporating sequence–dependent facility setup times 252

and finite intermediate storage constraints. They also take into consideration possible production 253

shutdowns and time–varying work force. Jain and Meeran (2002, [35]) propose a multi-level hybrid 254

meta-heuristic enabling an efficient interaction between strategies of intensification and 255

diversification, based on scatter search and path relinking techniques. Liu and Ong (2002, [50]) 256

propose three meta-heuristics for PFS and NPFS problems based on the neighborhood structure of 257

insertions. The meta-heuristic for NPFS problems has a critical-path neighborhood structure. Méndez 258

& Cerdá (2003, [53]) formulates a mathematical model of operational strategies changing the 259

precedences in the production line, also assuming that decisions can be made on the use of 260

intermediary buffers shared by several stages of the process. Pugazhendhi et al. (2003, [65]) consider 261

the NPFS problem assuming skipping or missing operations. A heuristic procedure (called NPS) that 262

inserts a job in the sequence whenever it improves the makespan. Brucker et al. (2003, [16]) handle 263

the NPFS problem with limited buffer capacity, which can eventually lead to blockings (when the 264

buffer is complete, the job must wait occupying the machine after its processing has finished). To 265

solve the problem, they implement a Tabu Search algorithm. Aggoune (2004, [66]) addresses the 266

NPFS problem considering availability constraints due to maintenance activities. Two types of 267

maintenance activities are considered separately, one of a fixed type, and the other of a time-window 268

kind. In the fixed case, the tasks must be carried out according to a fixed timetable, while in the time-269

window case, there exists a time interval to perform the maintenance tasks. The solution is obtained 270

using a combination of a genetic algorithm and Tabu Search. Pugazhendhi et al. (2004, [66]) tackle 271

the NPFS problem with missing operations and sequence-dependent setup times. The optimizing 272

procedure consists in a new recursive formulation that gives a good permutation solution, followed 273

by the NPS heuristic ([65]) improving the solution by yielding non-permutation schedules. This 274

paper, also, deals with the objective function of minimizing the total weighted flow time. Rebaine 275

(2005, [73]) studies the worst-case performance ratio between the solutions of NPFS and PFS 276

problems with time delays. For the two-machine case, the solution of the PFS version does not ensure 277

optimality yielding a worst-case makespan ratio of 2. But if the operation times are just of one unit 278

of execution time, the makespan ratio is reduced to (2-(3/n+2)). For the m-machine case, the 279

makespan ratio is bounded by m. Haq et al. (2007, [32]) address the NPFS problem with a Scatter 280

Search algorithm. The algorithm is based on joining solutions and exploiting the adaptive memory to 281

10

avoid generating or incorporating duplicate solutions at various stages of the problem. Ying and Lin 282

(2007, [96]) present a Multi-Heuristic Desirability Ant Colony system (MHD-ACS) for NPFS 283

problems. They show the benefits of ant colony optimization for the solution of NPFS problems. Ying 284

(2008, [97]) proposed an iterated greedy heuristic for NPFS problems. This heuristic is compared to 285

other simple constructive heuristics and state-of –the-art meta-heuristics. As a conclusion, the author 286

indicates that iterated greedy methods are promising for NPFS problems. Rayward-Smith and 287

Rebaine (2008, [72]) present two heuristics for the two-machine unit execution time operations with 288

time delays. The heuristics are based on ordering jobs in terms of a non-increasing time delays order. 289

Sadjadi et al. (2008, [82]) analyze three NPFS problems, two of them with makespan as the objective 290

function and the other one with total weighted tardiness. In the makespan cases different features are 291

considered, one of them involves including time lags while another assumes sequence-dependent 292

setup times. Both of these cases consider missing operations. Mixed-Integer linear programming 293

formulations are presented for both cases. Sadjadi et al. (2008, [83]) consider two NPFS problems 294

with different objectives: one with makespan and the other with total flow time as goals. To solve 295

this problem, they implement a two-step procedure. Initially, an Ant Colony optimization algorithm 296

is used to obtain a good permutation solution. Then, this solution is improved by means of a local 297

search procedure that yields a non-permutation solution. Lin and Ying (2009, [46]) present a hybrid 298

Simulated Annealing and Tabu Search algorithm for the NPFS problem also yielding a non-299

permutation solution. Nagarajan and Sviridenko (2009, [58]) present a bound for the PFS and the 300

NPFS solutions to the general case, showing that the makespan of the PFS optimal solution can be at 301

most 2 √min {𝑚, 𝑛} times the makespan of the NPFS optimal solution. 302

 Zheng and Yamashiro (2010, [100]) propose a quantum differential evolutionary algorithm 303

(QDEA) for the NPFS problem. The algorithm is based on running differential operations and local 304

search over a so-called Q-bit representation. Färber et al. (2010, [26]) address a scheduling problem 305

in which resequencing is permitted when workstations have access to intermediate or centralized 306

resequencing buffers, although this access is restricted by the number of available buffer places and 307

the physical size of the products. To solve this problem, the authors apply a hybrid approach, based 308

on constraint logic programming (CLP). Brucker and Shakhlevich (2011, [17]) study the inverse 309

scheduling version of the flow-shop problem, i.e. one in which, firstly, a job sequence is given, and 310

then, to make it optimal, processing times are restricted as to satisfy certain boundaries. They deduce 311

necessary and sufficient conditions for both PFS and NPFS problems. Ramezanian et al. (2011, [70]) 312

study the NPFS problem with missing operations, solving it with a genetic algorithm and Tabu 313

Search. Rudek (2011, [79]) prove that in the two-machine case with learning effects, PFS does not 314

ensure optimality, and both approaches (PFS and NPFS) are NP-hard, even if the learning effect is 315

11

assumed for only one of the machines (in a form of steep learning curve). Cheng et al. (2012, [18]) 316

analyze the process of tearing-down and reconstructing buildings as a two-machine flow-shop with 317

resource-constrained problem. The authors provide MIP problem formulations and discuss their 318

complexity, developing polynomial algorithms for special cases. Rossi and Lanzetta (2013, [75]) 319

address the NPFS problem with an ACO algorithm, establishing that the minimum buffer capacity to 320

avoid blockings is (n-2). Rossi and Lanzetta (2013, [76]) deal with the same problem. A particular 321

feature of the ACO algorithm is that from the beginning it explores non-permutation solutions. In 322

[76] the authors tested the ACO algorithm on Taillard’s (1993, [89]) benchmarks, but in Rossi and 323

Lanzetta (2014, [77]) they use the benchmarks of Demirkol et al. (1998, [22]) benchmarks. For these 324

instances, their ACO algorithm outperforms other variants also used to solve NPFS problems. Shen 325

et al. (2014, [85]) tackle the NPFS batching problem with sequence-dependent family setup time. 326

These authors develop a Tabu Search algorithm, including double tabu lists and multilevel 327

diversification. The group technology assumption is relaxed, allowing the family of jobs to be split. 328

Gharbi et al. (2014, [27]) present lower and upper bounds for several single-machine adjustment 329

procedures. Moukrim et al. (2014, [56]) introduce a Branch & Bound algorithm for the problem 330

described in Rebaine (2005, [73]). They present both new bounding procedures for this B&B 331

algorithm as well as new dominance rules. Benavides et al. (2014, [13]) deal with heterogeneous 332

NPFS problems for which two simultaneous issues need to be addressed: the assignment of workers 333

to workstations and the scheduling problem itself. The motivation comes from cases in which workers 334

are disabled people, and thus, their skills are not homogeneous. To solve this optimizing problem, a 335

Scatter Search and a Path Relinking algorithm are proposed. In Nikjo and Zarook (2014, [59]) the 336

problem analyzed is a NPFS in the context of a manufacturing cell with agreeable release dates and 337

setup times dependent on the sequence of parts of related products. Genetic algorithms and Tabu 338

Search yield the solutions. Zhang et al. (2014, [99]) approach the NPFS problem with periodical 339

maintenance activities. The method used for its solution is a hybrid genetic algorithm and a heuristic 340

based on NEH theory. Rossit et al. (2016, [78]) deals with NPFS problem under lot streaming 341

considerations. Benavides and Ritt (2016, [15]) propose a constructive iterated local search heuristic 342

for the NPFS problem. The algorithm is based on the observation that permutation and non-343

permutation schedules are similar enough as to facilitate finding a non-permutation solution after 344

obtaining a good permutation one. Cui et al. (2016, [20]) deal with NPFs problems with availability 345

constraints. The availability of machines depends on two kinds of extra-production tasks, one 346

involves fixed tasks while the other refers to tasks with flexible time intervals with the continuous 347

working time assigned to machines cannot surpass a maximum allowed time. The optimization is 348

12

carried out running a hybrid incremental genetic algorithm combining local refinements and a 349

population diversity supervision scheme. 350

3.1.2. Other completion-time based objectives 351

 We will review here the literature on NPFS problems with other completion-time based 352

objectives. In particular, we will focus on the following objective functions: total completion time, 353

total weighted completion time, total flow time and total weighted flow time. 354

Rajendran and Ziegler (2001, [69]) study the NPFS problem with missing operations when 355

the objective function is the minimization of total flow time. The authors solve it using dispatching 356

rules combined with a heuristic rule. Pugazhendhi et al. (2004, [67]) deal with two NPFS problems 357

with missing operations, the first one minimizing the total flow time, and the second, minimizing the 358

total weighted flow time. They present a heuristic (NPS-set), which works by improving a 359

permutation schedule. Färber and Coves Moreno (2006, [24]) propose a genetic algorithm for NPFS 360

problems when intermediate buffers are not available for every station or machine, each of which is 361

assumed to be capacitated. Färber et al. (2007, [25]) tackle a NPFS problem in which the demand is 362

semi-dynamic and the resequencing is restricted (similarly to [24]). The objective function is total 363

weighted completion time. The authors solve the problem by applying two approaches: the first a 364

Constraint Logic Programming analysis and the second a genetic algorithm. Li et al. (2010, [41]) 365

address a two-machine robotic NPFS problem with total weighted completion as the performance 366

criterion. Robots take care of loading, unloading and translating jobs from a station to another. These 367

robots can handle only one job at a time. Optimal solutions arise from the application of a genetic 368

algorithm. Vahedi-Nouri et al. (2013, [91]) address the NPFS problem with learning effects and 369

machine availability constraints under the minimization of total flow time. The authors present a MIP 370

formulation and propose an improvement heuristic. Isenberg and Scholz-Reiter (2013, [34]) deal with 371

a batching NPFS problem, where batches are built at each stage. This results in a stage-interdependent 372

batching and scheduling problem. These authors consider three different objective functions: total 373

flow time, total completion time and makespan. Vahedi-Nouri et al. (2014, [93]) present a heuristic 374

method and a Simulated Annealing algorithm for a NPFS problem with learning effects, availability 375

constraints and release dates. The objective function optimize is total flow time. Benavides and Ritt 376

(2015, [14]) study the advantages of NPFS over PFS schedules. They use a two-phase heuristics and 377

consider the case of total completion time as objective function. In the first phase, an iterated local 378

search algorithm seeks a good permutation solution, and in the second phase, an effective insertion 379

neighborhood improves that solution by exploring close non-permutation solutions. Henneberg and 380

Neufeld (2016, [33]) study a NPFS with missing operations when the objective is total completion 381

13

time. They solve it with a modification of the NPS-set heuristic presented in [22], based on a two-382

phase version of Simulated Annealing. 383

3.2. Due-date based objectives 384

Here we will focus on papers in which the objective functions represent a due-date concept. 385

These problems are known for being computationally hard, being even “binary NP-hard” in two-386

machine cases (Błazewicz, et al 2005, [10]). Nevertheless, these problems have been extensively 387

studied in the PFS setting (Błażewicz , et al (2008, [12]); Pesch and Sterna (2009, [62])) 388

The objective functions that will be contemplated in this section are: maximum tardiness, 389

total tardiness and total weighted tardiness. 390

Swaminathan et al. (2007, [88]) study the impact of the enforcement permutation condition 391

on the general flow shop (non-permutation) problem. The goal analyzed is total weighted tardiness. 392

To obtain the solution they use three approaches: pure permutation, shift-based and pure dispatching. 393

The latter is the one able to yield non-permutation schedules. Their results show that PFS provides 394

an inefficient approach to this problem. Swaminathan et al. (2004, [87]) study the same problem in a 395

simplified version. Liao and Huang (2010, [44]) study the NPFS problem with total tardiness as a 396

goal, presenting and evaluating three different MIP formulations. Then, they present also two Tabu 397

Search algorithms. The comparison of NPFS to PFS indicates that NPFS is much more suitable for 398

these types of problems. Ziaee (2013, [101]) addresses the NPFS problem with sequence dependent 399

setup times with the minimization of total weighted tardiness as objective. This author proposes a 400

two-phase heuristic with the usual pattern. Namely, the first phase looks for a good permutation 401

solution, and second one, improves it through a non-permutation local search. Xiao et al. (2015, [94]) 402

analyze flow-shop scheduling with order acceptance under weighted tardiness. The authors present 403

two different formulations of the problem. The first is a MIP formulation, which CPLEX can solve 404

for small instances. The second one, is a NIP (non-linear integer programming) formulation that can 405

be solved, in particular its medium and large size instances, by a two-phase genetic algorithm. 406

3.3. Experimental mono-objective studies 407

In this subsection, we present a group of papers comparing the quality of the solutions of the 408

PFS and NPFS problems in experimental analyses. These papers consider different given mono-409

objective manufacturing settings, in order to assess the extra computational effort required by the 410

NPFS problems. The validity of the comparisons of these papers comes from the fact that the 411

problems are tested under the same parametrization and same instances while the solutions are 412

obtained running the same algorithms. In this way, these papers provide valuable experimental 413

14

insights to the non-permutation literature. The objectives analyzed in all the cases are the six more 414

common ones used in scheduling: three are completion-time based criteria (makespan, total 415

completion time and total weighted completion time), and the other three are due-date based criteria 416

(maximum tardiness, total tardiness and total weighted tardiness). 417

Liao et al. (2006, [43]) were the first to carry out this type of research. They tested a classic 418

flow-shop system under six objective functions. Their results indicate that, in general, NPFS 419

schedules improve very little over the PFS ones the value of completion-time based objectives. 420

However, for due-date based criteria the improvement is significant, especially for problems with 421

more than thirty jobs. They used as optimization tools a Genetic Algorithm and a Tabu Search 422

algorithm. Lin et al. (2009, [47]) presents a similar study, with the same objective functions but for a 423

flow line manufacturing cell with a sequence-dependent family of setups. Again, the conclusion for 424

completion-time based objectives is that non-permutation and permutation schedules have a similar 425

performance, being non-permutation a little better. But for due-date based objectives, non-426

permutation schedules clearly outperform permutation ones. The authors solve the problems using a 427

Genetic Algorithm, Simulated Annealing and Tabu Search. The Simulated Annealing procedure 428

outperforms the other two meta-heuristics. Ying et al. (2010) [98] revisit [47], testing different setup 429

ranges, concluding that, for larger setup ranges NPFS overtakes PFS for most of the cases yielding 430

larger improvements. They find that NPFS performs better, in general, under the six objective 431

functions, but for due-date based ones, its performance is much better than that of PFS. In this case, 432

all the solutions are found running a Simulated Annealing algorithm. 433

3.4. Multi-objective versions 434

A promising area of study for non-permutation scheduling involves the optimization of 435

several objectives, mainly because the non-permutation case allows for a dearth of new solutions that 436

do not arise in the permutation setting. The papers that analyze multiple-objective instances of the 437

NPFS problems will be reviewed next. 438

Mehravaran and Logendran (2012, [51]) were the first to study multi-objective problems 439

under non-permutation schemes. They consider a flow-shop setting with sequence-dependent setup 440

times assuming machine availability constraints, job releasing and missing operations. They use a bi-441

objective function. The goal is the minimization of the normalized sum of weighted completion time 442

and weighted tardiness. The authors present a MIP formulation and a Tabu Search algorithm. 443

Mehravaran and Logendran (2013, [52]) address the NPFS problem considering dual resources: 444

machines and labor. The goal is the minimization of the total weighted completion time and the total 445

weighted tardiness. As in [51] they use a weighted sum combining the two objectives. The 446

15

specification of the problem includes different skill levels, sequence-dependent setups, machine 447

availability constraints and job release dates. A two-layered procedure yields the solution. The outer 448

layer solves the traditional flow-shop problem (considering only job sequencing), and the inner layer, 449

finds an assignation of jobs to labor in agreement to the machine schedule. Three different search 450

algorithms are developed. These authors, the first ones to investigate flow-shop scheduling with two 451

resources problem, emphasize on the superiority of non-permutation schedules over permutation 452

ones. Rahmani et al. (2014, [68]) study a stochastic NPFS problem. Processing times and release date 453

are stochastic parameters that have a normal distribution. Three different objectives are minimized: 454

makespan, total flow time and tardiness. To deal with uncertainty they apply both a chance 455

constrained programming and a fuzzy goal programming approach. They also adapt a genetic 456

algorithm to handle large-size problem. Amirian and Sahraeian (2015, [6]) analyze a NPFS problem 457

minimizing simultaneously the makespan, the sum of flow time and maximum tardiness. The setting 458

includes release dates, past sequence-dependent set-up times, learning effects and machine 459

availability constraints. The authors use, as solution methods, Augmented ε-constraint and a heuristic 460

based on it. 461

3.5. Economic objective functions 462

In this section, we review works that evaluate objective functions from an economic point of 463

view, trying either to minimize operation costs or to maximize profits. In particular, we review papers 464

that study NPFS problems in which the cost is the objective function. In these five contributions, the 465

specification of which cost has to be minimized varies. 466

Grau et al. (1995, [30]) study a NPFS problem seeking to minimize the product changeover 467

cost of the production plan. This cost is incurred each time the production is set to produce a different 468

product. The authors develop a Branch and Bound procedure to solve the problem. Doganis et al 469

(2005, [23]) analyzes flow shop lubricant production processes. A MILP model is used to generate 470

schedules that are potentially NPFS, but not allowing Schedule changes at all stages since between 471

some of them buffering is of NIS type. The objective is the maximization of the income accrued by 472

the firm. Liberopoulos et al (2010, [45]) study problems of production plants of PET resins with 473

intermediate storage facilities specific to each product. The objective is the minimization of costs of 474

set up of intermediate buffers, in order to adapt products to alternative buffers, a costly activity, 475

without hampering the operational capacity of the system. Mohammadi et al. (2010, [55]) address 476

both the lot sizing and the scheduling problem in a NPFS system. They develop a MIP formulation 477

for the problem and present five MIP-based heuristics to minimize setup, storage and production 478

costs. Some of these heuristics are only capable of solving the PFS version of the problem. Vahedi-479

16

Nouri et al. (2013, [92]) analyze a NPFS problem with learning effects and flexible maintenance 480

activities. The objective is the minimization of the sum of tardiness and maintenance costs. The 481

authors develop a hybrid of a Firefly algorithm and Simulated Annealing to solve a MIP formulation 482

of the problem. Ramezanian and Saidi-Mehrabad (2013, [71]) investigate the lot sizing and 483

scheduling flow-shop problem, considering sequence-dependent setups, capacity constraints, 484

uncertain processing times and uncertain multiproduct and multi-period demand. A MIP model joint 485

with a big bucket time approach represents the problem. Two MIP-based heuristics with a rolling 486

horizon framework are applied. The authors also develop a hybrid meta-heuristic based on a 487

combination of Simulated Annealing, a Firefly algorithm and an ad-hoc heuristic for scheduling. 488

Babaei et al. (2014, [7]) also analyze the lot sizing and scheduling problem under slightly different 489

constraints, namely sequence-dependent setups, setup carryover and backlogging. They propose a 490

MIP formulation solved by the application of a genetic algorithm. 491

Table 1. 492
Summary of the reviewed literature 493
References: for the β field: rc: resource constrained, skip: skipping operations, avail: machine availability 494
conditions, fmls: family group products, learn: learning effect, hr: heterogeneous resources, rp: relocation, dr: 495
dual resources. A β entry in capital letters means a stochastic parameter. In the Comments column, B&B: 496
Branch and Bound, SA: Simulated Annealing, MPF: Mathematical Programming Formulation, SS: Scatter 497
Search, PR: Path Relinking, TS: Tabu Search, OM: Other Metaheuristics, GA: Genetic Algorithm, ACO: Ant 498
Colony Optimization, IG: Iterated Greedy, CLP: Constraint Logic Programming, CCP: Chance Constrained 499
Programming, FGP: Fuzzy Goal Programming. 500

Reference Problem Comments

Janiak (1988) [36] F│rc│ Cmax B&B procedure

Potts, et al. (1991) [64] F││Cmax
bound between NPFS Cmax and PFS Cmax

for special instances

Tandon, et al. (1991) [90] F││ Cmax
Enumerative for small instances and SA

big instances

Strusevich, et al (1994) [86]

F2│ sijk, removal times│ Cmax
PFS is not optimal and the problem is NP-

hard

F2│block│ Cmax
PFS is not optimal and the problem is NP-

hard

Deal et al 1994 [21] F│bi│Cmax heuristic for balancing resources usage

Grau, et al. (1995) [30] F│batch│Costs B&B procedure

Grau, et al. (1996) [31] F│batch, finite wait│ Cmax tailored recursive procedure

Koulamas (1998) [40] F││ Cmax HFC heuristic

Schwindt et al (2000) [84] F│time lags│Cmax MPF

Rajendran, et al (2001) [69] F│skip│𝛴 𝐶𝑗 dispatching rules & heuristic

Jain, et al (2002) [35] F││ Cmax
Meta-heuristic, based on SS and PR, and

TS

Liu, et al (2002) [50] F││Cmax OM

17

Pugazhendhi, et al. (2003) [65] F│skip│Cmax heuristic

Brucker, et al. (2003) [16] F│block│ Cmax TS

Méndez et al (2003) [53] F│bi│Cmax MPF

Aggoune (2004) [1] F│avail│ Cmax GA and TS

Pugazhendhi, et al. (2004) [66] F│skip│γ
𝛾 ∈ {Σ 𝑤𝑗𝐹𝑗 , Σ 𝐹𝑗}

Heuristic: NPS set

Pugazhendhi, et al. (2004) [67] F│skip, sijk │γ
𝛾 ∈ {Σ 𝑤𝑗𝐹𝑗 , 𝐶𝑚𝑎𝑥}

Tailored heuristic and NPS-set

Swaminathan, et al. (2004) [87] F│stochastic│Costs GA and ATC heuristic

Doganis et al (2005) [23] F│bi│Revenue MPF

Rebaine (2005) [76] F│time delays│ Cmax NP-hard, for 2 machines PFS not optimal

Liao, et al. (2006) [43] F││ γ

𝛾 ∈ {𝐶𝑚𝑎𝑥 , 𝛴 𝐶𝑗 , Σ 𝑤𝑗𝐶𝑗 ,

𝑇𝑚𝑎𝑥 , Σ 𝑇𝑗 , Σ 𝑤𝑗𝑇𝑗}

TS and GA, compares all the six objective

functions

Färber, et al (2006) [24] F│block│𝛴𝑤𝑗𝐶𝑗 GA

Haq, et al. (2007) [32] F││ Cmax SS

Ying, et al (2007) [96] F││ Cmax ACO

Färber, et al. (2007) [25] F│block│𝛴𝑤𝑗𝐶𝑗 GA and CLP

Swaminathan, et al. (2007) [88] F││Σ 𝑤𝑗𝑇𝑗 ATC heuristics and GA

Ying (2008) [97] F││ Cmax IG

Rayward-Smith, et al (2008) [72] F2│pij=p, time delays│ Cmax heuristic - (uet: unit execution time)

Sadjadi, et al. (2008) [82]

F││Σ 𝑤𝑗𝑇𝑗

MPF F│time lags│ Cmax

F│ sijk │ Cmax

Sadjadi (2008) [83] F││ γ
𝛾 ∈ {Σ 𝐹𝑗 , 𝐶𝑚𝑎𝑥}

ACO and local search

Lin, et al. (2009) [47] F│fmls, sijk │ γ

𝛾 ∈ {𝐶𝑚𝑎𝑥 , 𝛴 𝐶𝑗 , Σ 𝑤𝑗𝐶𝑗 ,

𝑇𝑚𝑎𝑥 , Σ 𝑇𝑗 , Σ 𝑤𝑗𝑇𝑗}

SA, TS and GA

Lin, et al (2009) [46] F││ Cmax SA and TS

Nagarajan, et al (2009) [58] F││Cmax
Comparison of PFS and NPFS makespan

for the general case

Ying, et al. (2010) [98] F│fmls, setup │ γ

𝛾 ∈ {𝐶𝑚𝑎𝑥 , 𝛴 𝐶𝑗 , Σ 𝑤𝑗𝐶𝑗 ,

𝑇𝑚𝑎𝑥 , Σ 𝑇𝑗 , Σ 𝑤𝑗𝑇𝑗}

SA, setup depends on the family sequence

Liao, et al. (2010) [44] F││Σ 𝑇𝑗 TS

Li, et al. (2010) [41] F2│block│𝛴𝑤𝑗𝐶𝑗 GA

18

Liberopoulos et al (2010) [45] F│bi│Costs MPF

Mohammadi, et al. (2010) [55] F│ sijk │Costs MPF based heuristic

Zheng, et al (2010) [100] F││ Cmax
Quantum Differential Evolutionary

Algorithm (QDEA)

Farber, et al. (2010) [26] F││ Cmax hybrid CLP and GA

Brucker, et al (2011) [17] inverse scheduling - Cmax sufficient conditions for optimal sequence

Ramezanian, et al. (2011) [70] F│skip│ Cmax GA and TS

Rudek (2011) [79] F2│learn│ Cmax NEH-based heuristic

Mehravaran, et al (2012) [51] F││𝛴𝑤𝑗𝐶𝑗 & Σ 𝑤𝑗𝑇𝑗 TS with progressive perturbation

Cheng, et al. (2012) [18] F2│rp │ Cmax complexity analysis, is NP-hard

Vahedi-Nouri, et al. (2013) [91] F│learn, avail│Σ 𝐹𝑗 heuristic: VFR

Vahedi-Nouri, et al. (2013) [92] F│learn, avail│Costs hybrid firefly-SA

Ziaee (2013) [101] F│ sijk │ Σ 𝑤𝑗𝑇𝑗 local search heuristic

Isenberg, et al (2013) [34] F│batch, fmls, rj│γ
𝛾 ∈ {Σ 𝐹𝑗, 𝛴 𝐶𝑗, 𝐶𝑚𝑎𝑥}

MPF

Mehravaran, et al (2013) [52]
F│skip, dr, sijk, avail,

rj│𝛴𝑤𝑗𝐶𝑗 & Σ 𝑤𝑗𝑇𝑗
OM

Rossi, et al (2013) [41] F││ Cmax ACO

Rossi, et al (2013) [40] F│bi= n-2│ Cmax ACO

Ramezanian, et al (2013) [71] F│ sijk, Pij│ Costs
MPF-Heuristics and OM, uncertain

demands

Shen, et al. (2014) [85] F│batch, setup │ Cmax TS

Gharbi, et al. (2014) [27] Fm││Cmax bounding procedures

Moukrim, et al. (2014) [56] F2│uet, time delays│ Cmax B&B

Rossi, et al (2014) [77] F││Cmax ACO

Benavides, et al. (2014) [13] F│hr│Cmax Heuristic: SS and PR

Nikjo, et al (2014) [59] Fm│ sijk, rj│Cmax GA and TS

Vahedi-Nouri, et al. (2014) [93] F│learn, avail, rj│Σ 𝐹𝑗 Heuristic and SA

Babaei, et al. (2014) [7] F│backlog│Costs GA

Zhang, et al. (2014) [99] F│setup, avail│ Cmax ACO

Rahmani et al. (2014) [68] F│Rj, Pij│ Cmax & Σ 𝐹𝑗 & Σ 𝑇𝑗 CCP and FGP

Xiao, et al. (2015) [94]
F│OA = order

acceptance│Σ 𝑤𝑗𝑇𝑗
TS-GA

Amirian, et al (2015) [6]
F│ learn, sijk │ Cmax & Σ 𝐹𝑗 &

Tmax
Augmented ε-constraint, heuristic

19

Benavides, et al (2015) [14] F││𝛴 𝐶𝑗 IG

Benavides, et al (2016) [15] F││ Cmax OM

Cui, et al. (2016) [20] F│avail│Cmax OM

Henneberg, et al (2016) [33] F│skip│Σ 𝐹𝑗 SA

Rossit, et al. (2016) [78] F│lot-streaming│ Cmax MPF

 501

4. A quantitative analysis of the literature 502

This review has analyzed 72 papers, representing, as far as we know, the whole NPFS 503

literature (not including Hybrid Flow-Shop variants). Our analysis follows closely other reviews, as 504

for instance Yenisey and Yagmahan (2014, [95]) on multi-objective flow-shop formulations and Ruiz 505

and Vásquez-Rodríguez (2010, [81]) on hybrid flow-shop problems. 506

A remarkable aspect of this scheduling literature is that more than the 65% of the papers have 507

been published after 2007. This is can be seen in Figure 2, in which for clarity papers are grouped in 508

terms of their publication in five-year periods. Given the clear trend to an increasing number of 509

publications, while still low compared to those devoted to other well-developed scheduling issues, 510

we can infer that NPFS is a promising area for further developments. 511

 512

Figure 2. Number of papers published in five-year periods. 513

Figure 3 shows the different NPFS problems that have been analyzed in the literature, 514

indicating the proportion of papers devoted to each kind of objective function. As was already 515

mentioned, completion-time based are by far the most frequent objectives functions: 73% of the 516

papers focus on them. A special case of completion-time objective is makespan, covered by 56% of 517

the papers. Other kinds of completion-time objectives are analyzed in 17% of the publications. This 518

is not surprising, giving the primacy of makespan over other objective functions in the literature on 519

7

3

13

21

28

0

5

10

15

20

25

30

up to 1996 1997-2001 2002-2006 2007-2011 2012-2016

20

scheduling, as indicated in [81]. The other types of objectives functions are considered in the 520

remaining 27% of the literature. From them, due-date based objectives functions represents only the 521

8% of the publications, indicating that these important objective functions are under-represented, 522

requiring further and deeper attention. This has been emphasized in particular in [43], [47] and [98]. 523

 524

Figure 3. Distribution of objective functions considered in the literature. 525

The distribution of the different optimization techniques applied in the literature is presented 526

in Figure 4. This shows that in general, exact approaches (mathematical programming and Branch 527

and Bound) are not frequently applied, representing only 22% of the literature. In contrast, heuristics 528

are used in 28% of the publications. Particular cases of meta-heuristic, Simulated Annealing, Tabu 529

Search, Genetic Algorithms and Ant Colony Optimization algorithms are the most frequently applied 530

methods of solution. 531

 532

Figure 4. Distribution of optimization tools used. ACO: Ant Colony Optimization, GA: Genetic Algorithm, 533

TS: Tabu Search, SA: Simulated Annealing, MP: Mathematical Programming, B&B: Branch and Bound. 534

To conclude, we can point out that there does not exist yet a consensus on the state-of-the art 535

optimization methods for NPFS methods. We can state that exact methods seem not to be (currently) 536

the most adequate for the solution of problems of intermediate and large size, while heuristic and 537

meta-heuristic methods have shown to be able to yield solutions for them of good and very good 538

Due-date
8%

Completion-
time
73%

Costs
10%

Multi-Obj
5%

Mono-Obj Studies
4%

SA
8% TS

12%

GA
16%

ACO
8%heuristic

28%

B&B
4%

MP
18%

others
6%

21

quality. The downside of this is that heuristic methods are not yet able to handle general cases. On 539

the other hand, among meta-heuristic methods, those based on Tabu Search yield better results than 540

others to which they have been compared. Those comparisons, it must be noted, are not exhaustive 541

and thus Tabu Search cannot be deemed yet as the best possible approach to solving NPFS problems. 542

The natural similarities between NPFS and PFS problems have led some authors ([16]) to develop 543

sequential improvement procedures that start by solving, in a standard way, the PFS problem. The 544

result of such procedures is, at the very least, a very good PFS solution but sometimes yielding a 545

NPFS one. On the other hand, Rossi and Lanzetta (2014, [77]) applied meta-heuristics (ACO) to 546

NPFS problems just from the start, instead of finding a previous PFS solution. This allows to search 547

directly the space of NPFS solutions. The proviso is that this approach is more adequate in the cases 548

in which the optimal NPFS and PFS solutions differ markedly. When those solutions are rather 549

similar, starting from PFS solutions seems a better approach to reach the optimal NPFS ones. Both 550

approaches profit form the flow shop structure, in which the sequence is the same for all jobs. 551

4.1. Bibliometric analysis 552

Also is of interest to provide some bibliometric information about the literature on NPFS. We 553

follow the approach of other reviews, such as Aguezzoul (2014, [2]), Merigó et al (2016, [54]) and 554

Gorman (2016 [28]), who showed that bibliometric information can be very useful for the evaluation 555

of the research on a new topic. The relevant information includes the list of journals were papers on 556

the topic have been published, the frequency of publication and their impact. On the latter, [28] 557

centers its attention in the number of citations reported by Google Scholar at the time the article was 558

retrieved. This means, in our case, August 2016. 559

Table 2. 560

List of journals that have published two or more articles on NPFS. Note: the percentage is over the total of 561

papers reviewed. 562

Publication name No. of Papers Percentage

International Journal of Production Research 8 11%

Inter. Jour. of Advanced Manufacturing Technology 7 10%

Computers & Operations Research 6 8%

Proceedings 6 8%

Computers & Chemical Engineering 5 7%

European Journal of Operational Research 4 5%

Computers & Industrial Engineering 3 4%

Journal of Scheduling 3 4%

22

OR-Spectrum 2 3%

Applied Mathematics and Computation 2 3%

Expert Systems with Applications 2 3%

Journal of Applied Sciences 2 3%

 563

Table 2 is the list of all the journals that have published two or more papers reviewed in this 564

work. We can see that the International Journal of Production Research has been the outlet for 11% 565

of all the papers in the field. It is closely followed by the International Journal of Advanced 566

Manufacturing Technology and Computers & Operations Research, that have published 7 and 6 of 567

the papers, respectively. With respect to conference proceedings, we only consider those indexed in 568

Scopus and Google Scholar and are written, at least its abstract, in English. The journals listed in 569

Table 2 have published 68% of the papers on NPFS reviewed here. 570

Journals other than those listed in Table 2 that have published at least one article on NPFS, 571

are Information Sciences, Journal of Manufacturing Systems, International Journal of Production 572

Economics and Applied Mathematical Modelling. 573

The impact of the work on NPFS is assessed in terms of the number of citations reported by 574

Google Scholar. Table 3 presents this information. We can see there the high impact of these articles, 575

totaling more than 1,400 citations. That means, in average, 20 citations per NPFS article while the 576

most cited one is Koulamas (1998 [40]) with 138 cites. On the other hand, we have to note that more 577

than half of the papers, 37 of them, have 10 or more cites. 578

Table 3. 579
Citations of NPFS papers drawn from Google Scholar, August 2016. 580

Bibliometric analysis

Numbers of total cites of NPFS papers 1452

Average number of cites per paper 20

Most cited paper (Koulamas 1998 [40]) 138

Papers with ≥10 cites 37 (50%)

 581

4.2. Special cases 582

Since NPFS is far from being an extensively researched topic, we collect some important 583

results that may serve as guidelines for beginners or as a state-of-the-art reference for advanced 584

researchers or practitioners in the field. The first point to make is that NPFS schemes must yield the 585

23

same or better results than PFS ones for the same problem instance since the former includes all the 586

solutions of the latter and more. On the other hand, a highly relevant topic is the extra computational 587

effort required to solve NPFS problems in comparison to PFS problems. The oldest result in this 588

respect was presented by Conway et al. (1967, [19]) showing that, for the general flow-shop setting 589

(non-permutation for us) and makespan as objective function, the schedule on the first and the second 590

machine can be the same without hampering the optimal solution. The same is true for the last and 591

the second to last machines. Thus, for the case of F3││Cmax, PFS is optimal. This result is clearly 592

proven in [27]. In consequence, the NPFS approach becomes beneficial for systems with more than 593

three machines. Newer results allow refining this analysis. In table 4, we highlight some of these 594

results. The first row presents the bound on the worst case if the problem is solved by a PFS scheme. 595

The next rows indicate special cases for which PFS cannot ensure optimality, even in the two-machine 596

case, because some of the conditions of [19] do not apply. 597

Table 4. 598

Special Non-permutation results, considering makespan as objective. 599

Problem Comments Source

F││Cmax vs

F│prmu│Cmax

PFS makespan worst case is: 2 √min {𝑚, 𝑛} times NPFS

makespan.
[58]

F2│removal times│Cmax
PFS approach does not ensure optimality.

PFS makespan worst case is: 3/2 times NPFS makespan.
[86]

F2│block│Cmax PFS approach does not ensure optimality. [86]

F2│time delays│Cmax
PFS does not ensure optimality.

PFS makespan worst case is: 2 times NPFS makespan.
[73]

F2│learning effect│Cmax PFS does not ensure optimality. [79]

 600

Other relevant experimental results described recently are: 601

 For a wider range of processing times, the chances that NPFS schemes outperform 602

PFS schedules increase [90]. 603

 In general, environments in which the objective functions are due-date based will 604

benefit more of the NPFS approach than environments in which they are based on 605

completion-time [43], [98] and [94]. 606

 For a wider range of setup times it is more likely that the NPFS approach outperforms 607

the PFS approach [98] and [85] 608

 For simple flow-shop, the makespan is 2-3% better in the NPFS case [43] and [16]. 609

24

5. Conclusions and directions for future research 610

In this paper, we have reviewed 72 articles on NPFS. We have classified these papers 611

according to the variants of the problem considered in them, including the assumptions, constraints, 612

objective functions and solution methods applied by the authors. We think this work may be helpful 613

to other researchers in the field as well as a starting point for new research efforts. 614

The papers have been analyzed based on the type of objective function considered. 615

Completion-time based criteria are the most frequent among the NPFS problems. Within this group, 616

makespan is the most intensively studied (more than half of the papers have makespan as objective 617

function). The other optimization criteria (due-date based and costs) and multi-objective approaches 618

are covered in a quarter of all the publications. It is clear that these approaches are underrepresented 619

in the literature. A conclusion from this review is that NPFS papers have, in average, 19 citations 620

with more than half of them having been cited over 10 times. 621

Besides these conclusions, we present also a compendium of some theoretical and 622

experimental results. On the theoretical aspect, we mentioned the problems for which the PFS 623

approach does not ensure optimality, even in two-machine cases. That is, problems for which the 624

NPFS approach becomes necessary to obtain high quality solutions. We also present a concise list of 625

experimental results on the comparison of NPFS against PFS. 626

 The NPFS problem is a recent and under-developed research topic (compared to traditional 627

scheduling problems), and thus a promising area for further developments. The review allows us to 628

suggest that the following are relevant inquiry issues. (1) NPFS problems with due-date based 629

objective functions. (2) NPFS problems with three or more objectives. (3) real world case studies, 630

comparing the costs of using NPFS and PFS approaches. (4) Scheduling under uncertainty is an 631

interesting problem for which rescheduling could help to improve solutions. (5) The implementation 632

of new meta-heuristics to address complex NPFS systems. 633

 634

Acknowledgment 635

Thanks are due to the anonymous referees for their comments and criticisms that helped us to improve 636

this paper. 637

 638

25

 639

References 640

[1] Aggoune, R. (2004). Minimizing the makespan for the flow shop scheduling problem with availability 641

constraints. European Journal of Operational Research, 153(3), 534-543. 642

[2] Aguezzoul, A. (2014). Third-party logistics selection problem: A literature review on criteria and 643

methods. Omega, 49, 69-78. 644

[3] Allahverdi, A., Gupta, J. N., & Aldowaisan, T. (1999). A review of scheduling research involving 645

setup considerations. Omega, 27(2), 219-239. 646

[4] Allahverdi, A., Ng, C. T., Cheng, T. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems 647

with setup times or costs. European Journal of Operational Research, 187(3), 985-1032. 648

[5] Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup 649

times/costs. European Journal of Operational Research, 246(2), 345-378. 650

[6] Amirian, H., & Sahraeian, R. (2015). Augmented ε-constraint method in multi-objective flowshop 651

problem with past sequence set-up times and a modified learning effect. International Journal of 652

Production Research, 53(19), 5962-5976. 653

[7] Babaei, M., Mohammadi, M., & Ghomi, S. F. (2014). A genetic algorithm for the simultaneous lot 654

sizing and scheduling problem in capacitated flow shop with complex setups and backlogging. The 655

International Journal of Advanced Manufacturing Technology, 70(1-4), 125-134. 656

[8] Błażewicz, J., Domschke, W., & Pesch, E. (1996). The job shop scheduling problem: Conventional 657

and new solution techniques. European Journal of Operational Research, 93(1), 1-33. 658

[9] Błażewicz, J., Pesch, E., Sterna, M., & Werner, F. (2005). A comparison of solution procedures for 659

two-machine flow shop scheduling with late work criterion. Computers & Industrial 660

Engineering, 49(4), 611-624. 661

[10] Błażewicz, J., Pesch, E., Sterna, M., & Werner, F. (2005). The two-machine flow-shop problem with 662

weighted late work criterion and common due date. European Journal of Operational 663

Research, 165(2), 408-415. 664

[11] Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007). Handbook on scheduling: 665

from theory to applications. Springer Science & Business Media. 666

[12] Błażewicz, J., Pesch, E., Sterna, M., & Werner, F. (2008). Metaheuristic approaches for the two-667

machine flow-shop problem with weighted late work criterion and common due date. Computers & 668

Operations Research, 35(2), 574-599. 669

[13] Benavides, A. J., Ritt, M., & Miralles, C. (2014). Flow shop scheduling with heterogeneous 670

workers. European Journal of Operational Research, 237(2), 713-720. 671

[14] Benavides, A. J., & Ritt, M. (2015). Iterated Local Search Heuristics for Minimizing Total Completion 672

Time in Permutation and Non-permutation Flow Shops. In: ICAPS (pp. 34-41). 673

26

[15] Benavides, A. J., & Ritt, M. (2016). Two simple and effective heuristics for minimizing the makespan 674

in non-permutation flow shops. Computers & Operations Research, 66, 160-169. 675

[16] Brucker, P., Heitmann, S., & Hurink, J. (2003). Flow-shop problems with intermediate buffers. OR 676

Spectrum, 25(4), 549-574. 677

[17] Brucker, P., & Shakhlevich, N. V. (2011). Inverse scheduling: two-machine flow-shop 678

problem. Journal of Scheduling, 14(3), 239-256. 679

[18] Cheng, T. E., Lin, B. M., & Huang, H. L. (2012). Resource-constrained flowshop scheduling with 680

separate resource recycling operations. Computers & Operations Research, 39(6), 1206-1212. 681

[19] Conway, R. W., Maxwell, W. L., & Miller, L. W. (1967). Theory of scheduling. Courier Corporation 682

[20] Cui, W. W., Lu, Z., Zhou, B., Li, C., & Han, X. (2016). A hybrid genetic algorithm for non-permutation 683

flow shop scheduling problems with unavailability constraints. International Journal of Computer 684

Integrated Manufacturing, 1-18. 685

[21] Deal, D. E., Yang, T., & Hallquist, S. (1994). Job scheduling in petrochemical production: two-stage 686

processing with finite intermediate storage. Computers & Chemical Engineering, 18(4), 333-344. 687

[22] Demirkol, E., Mehta, S., & Uzsoy, R. (1998). Benchmarks for shop scheduling problems. European 688

Journal of Operational Research, 109(1), 137-141. 689

[23] Doganis, P., Sarimveis, H., Bafas, G., & Koufos, D. (2005). An MILP model for optimal scheduling 690

of the lubricant production plant. Chemical Engineering Communications, 192(8), 1067-1084. 691

[24] Färber, G., & Moreno, A. M. C. (2006). Performance study of a genetic algorithm for sequencing in 692

mixed model non-permutation flowshops using constrained buffers. In: International Conference on 693

Computational Science and Its Applications (pp. 638-648). Springer Berlin Heidelberg. 694

[25] Färber, G., Salhi, S., & Moreno, A. M. C. (2007). Semi-dynamic Demand in a Non-permutation 695

Flowshop with Constrained Resequencing Buffers. In: International Conference on Large-Scale 696

Scientific Computing (pp. 536-544). Springer Berlin Heidelberg. 697

[26] Farber, G., Coves Moreno, A. M., & Salhi, S. (2010). Performance evaluation of hybrid-CLP vs. GA: 698

non-permutation flowshop with constrained resequencing buffers. International Journal of 699

Manufacturing Technology and Management,20(1-4), 242-258. 700

[27] Gharbi, A., Labidi, M., & Louly, M. A. (2014). The Nonpermutation Flowshop Scheduling Problem: 701

Adjustment and Bounding Procedures. Journal of Applied Mathematics, vol. 2014, Article ID 273567, 702

14 pages, 2014. doi:10.1155/2014/273567 703

[28] Gorman, M. F. (2016). A “Metasurvey” analysis in Operations Research and Management Science: A 704

survey of literature reviews. Surveys in Operations Research and Management Science, 21(1), 18-28. 705

[29] Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in 706

deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5, 287-326. 707

[30] Grau, R., Espuña, A., & Puigjaner, L. (1995). Environmental considerations in batch production 708

scheduling. Computers & Chemical Engineering, 19, 651-656. 709

27

[31] Grau, R., Espuña, A., & Puigjaner, L. (1996). Completion times in multipurpose batch plants with set-710

up, transfer and clean-up times. Computers & Chemical Engineering, 20, S1143-S1148. 711

[32] Haq, A. N., Saravanan, M., Vivekraj, A. R., & Prasad, T. (2007). A scatter search approach for general 712

flowshop scheduling problem. The International Journal of Advanced Manufacturing 713

Technology, 31(7-8), 731-736. 714

[33] Henneberg, M., & Neufeld, J. S. (2016). A constructive algorithm and a simulated annealing approach 715

for solving flowshop problems with missing operations. International Journal of Production 716

Research, 54(12), 3534-3550. 717

[34] Isenberg, M. A., & Scholz-Reiter, B. (2013). The Multiple Batch Processing Machine Problem with 718

Stage Specific Incompatible Job Families. In: Dynamics in Logistics (pp. 113-124). Springer Berlin 719

Heidelberg. 720

[35] Jain, A. S., & Meeran, S. (2002). A multi-level hybrid framework applied to the general flow-shop 721

scheduling problem. Computers & Operations Research, 29(13), 1873-1901. 722

[36] Janiak, A. (1988). General flow-shop scheduling with resource constraints. The International Journal 723

of Production Research, 26(6), 1089-1103. 724

[37] Kis, T. (2003). Job-shop scheduling with processing alternatives. European Journal of Operational 725

Research, 151(2), 307-332. 726

[38] Kis, T., & Pesch, E. (2005). A review of exact solution methods for the non-preemptive multiprocessor 727

flowshop problem. European Journal of Operational Research, 164(3), 592-608. 728

[39] Kis, T., & Kovács, A. (2012). On bilevel machine scheduling problems. OR Spectrum, 34(1), 43-68. 729

[40] Koulamas, C. (1998). A new constructive heuristic for the flowshop scheduling problem. European 730

Journal of Operational Research, 105(1), 66-71. 731

[41] Li, J., Zhang, L., ShangGuan, C., & Kise, H. (2010). A GA-based heuristic algorithm for non-732

permutation two-machine robotic flow-shop scheduling problem of minimizing total weighted 733

completion time. In: Industrial Engineering and Engineering Management (IEEM), 2010 IEEE 734

International Conference on (pp. 1281-1285). IEEE. 735

[42] Li, J. Q., & Pan, Q. K. (2015). Solving the large-scale hybrid flow shop scheduling problem with 736

limited buffers by a hybrid artificial bee colony algorithm. Information Sciences, 316, 487-502. 737

[43] Liao, C. J., Liao, L. M., & Tseng, C. T. (2006). A performance evaluation of permutation vs. non-738

permutation schedules in a flowshop. International Journal of Production Research, 44(20), 4297-739

4309. 740

[44] Liao, L. M., & Huang, C. J. (2010). Tabu search for non-permutation flowshop scheduling problem 741

with minimizing total tardiness. Applied Mathematics and Computation, 217(2), 557-567. 742

[45] Liberopoulos, G., Kozanidis, G., & Hatzikonstantinou, O. (2010). Production scheduling of a multi-743

grade PET resin plant. Computers & Chemical Engineering, 34(3), 387-400. 744

28

[46] Lin, S. W., & Ying, K. C. (2009). Applying a hybrid simulated annealing and tabu search approach to 745

non-permutation flowshop scheduling problems. International Journal of Production Research, 47(5), 746

1411-1424. 747

[47] Lin, S. W., Ying, K. C., & Lee, Z. J. (2009). Metaheuristics for scheduling a non-permutation flowline 748

manufacturing cell with sequence dependent family setup times. Computers & Operations 749

Research, 36(4), 1110-1121. 750

[48] Lin, Shih-Wei, and Kuo-Ching Ying. "Optimization of makespan for no-wait flowshop scheduling 751

problems using efficient matheuristics." Omega 64 (2016): 115-125. 752

[49] Linn, R., & Zhang, W. (1999). Hybrid flow shop scheduling: a survey. Computers & Industrial 753

Engineering, 37(1), 57-61. 754

[50] Liu, S., & Ong, H. L. (2002). A comparative study of algorithms for the flowshop scheduling 755

problem. Asia-Pacific Journal of Operational Research, 19(2), 205. 756

[51] Mehravaran, Y., & Logendran, R. (2012). Non-permutation flowshop scheduling in a supply chain 757

with sequence-dependent setup times. International Journal of Production Economics, 135(2), 953-758

963. 759

[52] Mehravaran, Y., & Logendran, R. (2013). Non-permutation flowshop scheduling with dual 760

resources. Expert Systems with Applications, 40(13), 5061-5076. 761

[53] Méndez, C. A., & Cerdá, J. (2003). An MILP continuous-time framework for short-term scheduling 762

of multipurpose batch processes under different operation strategies. Optimization and 763

Engineering, 4(1), 7-22. 764

[54] Merigó, José M., and Jian-Bo Yang. "A Bibliometric Analysis of Operations Research and 765

Management Science." Omega (2016). 766

[55] Mohammadi, M., Fatemi Ghomi, S. M. T., Karimi, B., & Torabi, S. A. (2010). MIP-based heuristics 767

for lotsizing in capacitated pure flow shop with sequence-dependent setups. International Journal of 768

Production Research, 48(10), 2957-2973. 769

[56] Moukrim, A., Rebaine, D., & Serairi, M. (2014). A branch and bound algorithm for the two-machine 770

flowshop problem with unit-time operations and time delays. RAIRO-Operations Research, 48(2), 771

235-254. 772

[57] Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-773

shop sequencing problem. Omega, 11(1), 91-95. 774

[58] Nagarajan, V., & Sviridenko, M. (2009). Tight bounds for permutation flow shop 775

scheduling. Mathematics of Operations Research, 34(2), 417-427. 776

[59] Nikjo, B., & Zarook, Y. (2014). A Non-Permutation Flow Shop Manufacturing Cell Scheduling 777

Problem with Part's Sequence Dependent Family Setup Times. International Journal of Applied 778

Metaheuristic Computing (IJAMC), 5(4), 70-86. 779

29

[60] Pan, Q. K., Tasgetiren, M. F., Suganthan, P. N., & Chua, T. J. (2011). A discrete artificial bee colony 780

algorithm for the lot-streaming flow shop scheduling problem. Information Sciences, 181(12), 2455-781

2468. 782

[61] Papadimitriou, C. H., & Kanellakis, P. C. (1980). Flowshop scheduling with limited temporary 783

storage. Journal of the ACM (JACM), 27(3), 533-549 784

[62] Pesch, E., & Sterna, M. (2009). Late work minimization in flow shops by a genetic 785

algorithm. Computers & Industrial Engineering, 57(4), 1202-1209. 786

[63] Pinedo, M. (2012). Scheduling. Springer. 787

[64] Potts, C. N., Shmoys, D. B., & Williamson, D. P. (1991). Permutation vs. non-permutation flow shop 788

schedules. Operations Research Letters, 10(5), 281-284. 789

[65] Pugazhendhi, S., Thiagarajan, S., Rajendran, C., & Anantharaman, N. (2003). Performance 790

enhancement by using non-permutation schedules in flowline-based manufacturing 791

systems. Computers & Industrial Engineering, 44(1), 133-157. 792

[66] Pugazhendhi, S., Thiagarajan, S., Rajendran, C., & Anantharaman, N. (2004). Generating non-793

permutation schedules in flowline-based manufacturing sytems with sequence-dependent setup times 794

of jobs: a heuristic approach. The International Journal of Advanced Manufacturing 795

Technology, 23(1-2), 64-78. 796

[67] Pugazhendhi, S., Thiagarajan, S., Rajendran, C., & Anantharaman, N. (2004) b. Relative performance 797

evaluation of permutation and non-permutation schedules in flowline-based manufacturing systems 798

with flowtime objective. The International Journal of Advanced Manufacturing Technology, 23(11-799

12), 820-830. 800

[68] Rahmani, D., Ramezanian, R., & Saidi-Mehrabad, M. (2014). Multi-objective flow shop scheduling 801

problem with stochastic parameters: fuzzy goal programming approach. International Journal of 802

Operational Research, 21(3), 322-340. 803

[69] Rajendran, C., & Ziegler, H. (2001). A performance analysis of dispatching rules and a heuristic in 804

static flowshops with missing operations of jobs. European Journal of Operational Research, 131(3), 805

622-634. 806

[70] Ramezanian, R., Saidi-Mehrabad, M., & Rahmani, D. (2011). Flow Shop Scheduling Problem with 807

Missing Operations: Genetic Algorithm and Tabu Search. International Journal of Applied 808

Operational Research, 1(2), 21-30. 809

[71] Ramezanian, R., & Saidi-Mehrabad, M. (2013). Hybrid simulated annealing and MIP-based heuristics 810

for stochastic lot-sizing and scheduling problem in capacitated multi-stage production system. Applied 811

Mathematical Modelling, 37(7), 5134-5147. 812

[72] Rayward-Smith, V. J., & Rebaine, D. (2008). Analysis of heuristics for the UET two-machine flow 813

shop problem with time delays. Computers & Operations Research, 35(10), 3298-3310. 814

[73] Rebaine, D. (2005). Flow shop vs. permutation shop with time delays. Computers & Industrial 815

Engineering, 48(2), 357-362. 816

30

[74] Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review: Review and classification of hybrid flow 817

shop scheduling problems from a production system and a solutions procedure perspective. Computers 818

& Operations Research, 37(8), 1439-1454. 819

[75] Rossi, A., & Lanzetta, M. (2013). Nonpermutation flow line scheduling by ant colony 820

optimization. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 27(04), 821

349-357. 822

[76] Rossi, A., & Lanzetta, M. (2013). Scheduling flow lines with buffers by ant colony digraph. Expert 823

Systems with Applications, 40(9), 3328-3340. 824

[77] Rossi, A., & Lanzetta, M. (2014). Native metaheuristics for non-permutation flowshop 825

scheduling. Journal of Intelligent Manufacturing, 25(6), 1221-1233. 826

[78] Rossit, D., Tohmé, F., Frutos, M., Bard, J., & Broz, D. (2016). A non-permutation flowshop scheduling 827

problem with lot streaming: A Mathematical model. International Journal of Industrial Engineering 828

Computations, 7(3), 507-516. 829

[79] Rudek, R. (2011). Computational complexity and solution algorithms for flowshop scheduling 830

problems with the learning effect. Computers & Industrial Engineering, 61(1), 20-31. 831

[80] Ruiz, R., Maroto, C., & Alcaraz, J. (2005). Solving the flowshop scheduling problem with sequence 832

dependent setup times using advanced metaheuristics. European Journal of Operational 833

Research, 165(1), 34-54. 834

[81] Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European 835

Journal of Operational Research, 205(1), 1-18. 836

[82] Sadjadi, S. J., Aryanezhad, M. B., & Ziaee, M. (2008). The general flowshop scheduling problem: 837

mathematical models. Journal of Applied Sciences, 8(17), 3032-3037. 838

[83] Sadjadi, S. J., Bouquard, J. L., & Ziaee, M. (2008). An ant colony algorithm for the flowshop 839

scheduling problem. Journal of Applied Sciences, 8(21), 3938-3944. 840

[84] Schwindt, C., & Trautmann, N. (2000). Batch scheduling in process industries: an application of 841

resource–constrained project scheduling. OR Spectrum, 22(4), 501-524. 842

[85] Shen, L., Gupta, J. N., & Buscher, U. (2014). Flow shop batching and scheduling with sequence-843

dependent setup times. Journal of Scheduling, 17(4), 353-370. 844

[86] Strusevich, V. A., & Zwaneveld, C. M. (1994). On non-permutation solutions to some two machine 845

flow shop scheduling problems. Zeitschrift für Operations Research, 39(3), 305-319. 846

[87] Swaminathan, R., Fowler, J. W., Pfund, M. E., & Mason, S. J. (2004) Minimizing total weighted 847

tardiness in a dynamic flowshop with variable processing times. In: IIE Annual Conference. 848

Proceedings (p. 1). Institute of Industrial Engineers-Publisher. 849

[88] Swaminathan, R., Pfund, M. E., Fowler, J. W., Mason, S. J., & Keha, A. (2007). Impact of permutation 850

enforcement when minimizing total weighted tardiness in dynamic flowshops with uncertain 851

processing times. Computers & Operations Research, 34(10), 3055-3068. 852

31

[89] Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational 853

Research, 64(2), 278-285. 854

[90] Tandon, M., Cummings, P. T., & LeVan, M. D. (1991). Flowshop sequencing with non-permutation 855

schedules. Computers & Chemical Engineering, 15(8), 601-607. 856

[91] Vahedi-Nouri, B., Fattahi, P., & Ramezanian, R. (2013). Minimizing total flow time for the non-857

permutation flow shop scheduling problem with learning effects and availability constraints. Journal 858

of Manufacturing Systems, 32(1), 167-173. 859

[92] Vahedi Nouri, B., Fattahi, P., & Ramezanian, R. (2013). Hybrid firefly-simulated annealing algorithm 860

for the flow shop problem with learning effects and flexible maintenance activities. International 861

Journal of Production Research, 51(12), 3501-3515. 862

[93] Vahedi-Nouri, B., Fattahi, P., Tavakkoli-Moghaddam, R., & Ramezanian, R. (2014). A general flow 863

shop scheduling problem with consideration of position-based learning effect and multiple availability 864

constraints. The International Journal of Advanced Manufacturing Technology, 73(5-8), 601-611. 865

[94] Xiao, Y., Yuan, Y., Zhang, R. Q., & Konak, A. (2015). Non-permutation flow shop scheduling with 866

order acceptance and weighted tardiness. Applied Mathematics and Computation, 270, 312-333. 867

[95] Yenisey, M. M., & Yagmahan, B. (2014). Multi-objective permutation flow shop scheduling problem: 868

Literature review, classification and current trends. Omega,45, 119-135. 869

[96] Ying, K. C., & Lin, S. W. (2007). Multi-heuristic desirability ant colony system heuristic for non-870

permutation flowshop scheduling problems. The International Journal of Advanced Manufacturing 871

Technology, 33(7-8), 793-802. 872

[97] Ying, K. C. (2008). Solving non-permutation flowshop scheduling problems by an effective iterated 873

greedy heuristic. The International Journal of Advanced Manufacturing Technology, 38(3-4), 348-874

354. 875

[98] Ying, K. C., Gupta, J. N., Lin, S. W., & Lee, Z. J. (2010). Permutation and non-permutation schedules 876

for the flowline manufacturing cell with sequence dependent family setups. International Journal of 877

Production Research, 48(8), 2169-2184. 878

[99] Zhang, S.-Y., Lu, Z.-Q., Cui,W.-W (2014). Flow shop scheduling optimization algorithm with 879

periodical maintenance. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, 880

CIMS. 20(6), 1379-1387. 881

[100] Zheng, T., & Yamashiro, M. (2010, September). A novel quantum differential evolutionary 882

algorithm for non-permutation flow shop scheduling problems. In: Electrical Engineering Computing 883

Science and Automatic Control (CCE), 2010 7th International Conference on (pp. 357-362). IEEE. 884

[101] Ziaee, M. (2013). General flowshop scheduling problem with the sequence dependent setup 885

times: A heuristic approach. Information Sciences, 251, 126-135. 886

