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Abstract 14 

The Non-Permutation Flow-Shop scheduling problem (NPFS) is a generalization of the 15 

traditional Permutation Flow-Shop scheduling problem (PFS) that allows changes in the job order on 16 

different machines. The flexibility that NPFS provides in models for industrial applications justifies 17 

its use despite its combinatorial complexity. The literature on this problem has expanded largely in 18 

the last decade, indicating that the topic is an active research area. This review is a contribution 19 

towards the rationalization of the developments in the field, organizing them in terms of the objective 20 

functions in the different variants of the problem. A schematic presentation of both theoretical and 21 

experimental results summarizes many of the main advances in the study of NPFS. Finally, we 22 

include a bibliometric analysis, showing the most promising lines of future development. 23 
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1. Introduction 33 

Scheduling problems of production systems have been extensively analyzed and worked out 34 

under different approaches (Błazewicz, et al (1996, [8]); Allahverdi et al (1999, [3]); Kis (2003, [37]); 35 

Allahverdi et al (2008, [4]); Kis and Kovacs (2012, [39]) and Allahverdi (2015) [5]). The results in 36 

this field have contributed to the improvement of manufacturing systems (Błazewicz, et al (2007, 37 

[11])).  38 

Flow-shop configurations are commonplace in manufacturing settings where a set of jobs N 39 

= {1, 2, …, n} are processed by a set of machines M = {1, 2, …, m}. Each job goes through the 40 

machines in the same technological order, i.e. it starts at machine 1, then goes to machine 2, … up to 41 

machine m. The decision to make is to choose the order on which the different jobs will pass through 42 

the machines. If the job sequence is the same for all the machines, the schedule is called a permutation 43 

and the problem of choosing the best one is known as the Permutation Flow-Shop problem (PFS). If 44 

instead the processing sequence can change from one machine to the next, the permutation condition 45 

is relaxed and the problem is known as Non-Permutation Flow-Shop (NPFS). The standard 46 

description of the NPFS problem considers the following specifications: 47 

1. Each machine can process only one job at a time. 48 

2. Each job j has a processing time pij on machine i =1, 2,…,m.  49 

3. The capacity of intermediate buffers must be large enough to allow the reordering of the job 50 

sequence. 51 

The standard settings of NPFS and PFS are very similar, being the third item the most relevant 52 

potential difference between them. In some cases, PFS problems assume also intermediate buffers 53 

with unlimited capacity, being so perfectly compatible with NPFS. On the other hand, in the absence 54 

of intermediate buffers, the NPFS approach is not applicable to obtain a feasible scheduling scheme 55 

(the same happens with the “no-wait” flow-shop case [48]). Besides the aforementioned three main 56 

specifications in the standard NPFS form, there are other requirements: all the jobs and machines 57 

must be available from the beginning; preemption is not allowed; machines can be idle during the 58 

planning horizon; each job can be processed by only one machine at a time; and the problem data is 59 

deterministic and known in advance. This description does not encompass the entire realm of NPFS 60 
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problems, but serves as a template for them. With minor changes (such as adding or removing 61 

constraints), all the different NPFS variants can be obtained. 62 

In the last decade, the researchers in the scheduling community have shown a growing 63 

interest in the analysis NPFS problems. Among the important issues that have since been considered, 64 

one is the detection of the manufacturing conditions for which NPFS is more promising than PFS, 65 

since the solutions that are obtained under the latter approach can be inferior to those of NPFS 66 

problems. This approach has been extensively analyzed in the literature on flow shop systems, 67 

yielding new views on the schedule of production activities. This is in particular the case of 68 

environments in which the optimizing criterion is related to due-dates. Liao et al (2006, [43]) indicates 69 

that solving flow shop problems  minimizing total tardiness under the PFS approach leads to 70 

efficiency losses of around a 10% of the objective in comparison to the solutions obtained under 71 

NPFS. Moreover, Lin et al (2009, [46]) shows that in flow shop systems organized in manufacturing 72 

cells with due-date related objectives  the gains in efficiency obtained with NPFS schedules are, for 73 

some cases, of 30%, while in average of around 10%.  In the case of completion time-related objective 74 

functions the gains are of 5% to 6%. Some of these results were extended by Ying et al (2010, [97]), 75 

showing empirically that if set up and processing times have larger dispersion the improvements are 76 

even larger.  For instance, if  the range of set up times increases, the average improvement of NPFS 77 

schedules over PFS ones for completion time objectives, when the range of set up times increases, 78 

grows from 0,5% to 1,5%, reaching  in some cases up to 13%. For objective functions related to 79 

delivery dates, the average improvements grow from 0.5% under PFS to 7% with NPFS, with many 80 

instances above 30% reaching even 40%.  81 

 This is extremely relevant since flow-shop settings are very common in actual industrial 82 

plants, representing nearly a quarter of manufacturing systems, assembly lines and information 83 

service facilities (Pan et al., 2011, [59]). Therefore, the possibility of improving the performance of 84 

manufacturing systems by means of a better scheduling approach can have a huge impact on a number 85 

of industry and organizations.  86 

 87 

Figure 1. Solution spaces of NPFS and PFS 88 
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The main reason for the late concern with NPFS problems is their hardness: while the PFS 89 

approach searches its optimal solution among n! feasible schedules, being n the number of jobs, the 90 

NPFS approach has to consider n!m possibilities. The increase of hardware computational power in 91 

the last decade has nevertheless fueled the interest in finding efficient algorithms for NPFS problems. 92 

In fact, more than the 65% of the papers reviewed for this paper, have been published after 2006. This 93 

shows that NPFS is currently a fashionable topic in the flow-shop scheduling literature. Furthermore, 94 

the results obtained indicate that this approach has large potential benefits superseding those of the 95 

classic PFS one. Moreover, as shown in Figure 1, since the class of solutions of PFS is a subset of 96 

those of NPFS.  97 

We conceive our survey as a contribution to the systematization of the literature on NPFS 98 

problem, highlighting important results and outlining future research lines. This review gathers, to 99 

the best of our knowledge, all the NPFS literature, describing the NPFS problems discussed there, 100 

classifying them in terms of the objective functions and commenting on the solution methods applied. 101 

The organization of the paper is as follows. Section 2 presents the classification and notation used in 102 

the paper. Once laid out the basis for the review, section 3 presents a description of the literature, 103 

classified according to the objective functions considered there. In Section 4, we present a statistical 104 

analysis of the problems and solutions methods developed in the literature, obtaining interesting 105 

bibliometric data and results. Finally, section 5, presents the conclusions of this work and an outline 106 

of promising future lines of research. 107 

2. Non-Permutation Flow-Shop problems: classification, notation 108 

and other considerations 109 

To represent the different NPFS variants we have to consider some modifications of the 110 

standard form presented in the previous section, namely removing or adding assumptions and 111 

constraints. To denote them we adopt the classification and nomenclature proposed by Graham et al. 112 

(1979, [29]) and implemented by Pinedo (2012, [62]). The resulting NPFS variants are characterized 113 

as a triplet α│β│γ. The first field, α, describes the machine environment or shop configuration and 114 

contains only one entry. The β field provides details of the processing characteristics and constraints 115 

and may contain no entry at all, a single entry, or multiple entries. The γ field describes the objective 116 

function, usually in a single entry (more than one entry indicates a multi-objective case). 117 

With regard to the α field, the possible entries could be either F (for pure flow-shop settings 118 

with m stages and only one machine or processor per stage), or J (for job-shop with m stages). Despite 119 

this potential variety, in this paper we consider only the pure flow-shop settings. The reason of this is 120 

that the other settings have been already described in the literature. For instance, the hybrid flow-shop 121 
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has been reviewed by Linn et al. (1999, [49]); Ruiz et al. (2010, [81]); Ribas et al. (2010, [74]) and 122 

Li et al. (2015, [42]). Thus, for us, the only possible entry in the α field is F. 123 

With respect to the β field, multiple entries are possible, enumerating the constraints and 124 

assumptions considered for the specific cases. The appearance of an entry implies that the 125 

corresponding condition applies. The possible entries are: 126 

 rj: indicates that jobs cannot start their processing before their release date. If rj is not present 127 

in the β field, jobs can start their processing at any time. In contrast to release dates, due dates 128 

are not specified in this field. The objective function gives sufficient indication whether or 129 

not there are due dates. 130 

 Prmp: means that preemption is allowed, while its absence indicates that they are not allowed. 131 

 sjk: denotes the sequence-dependent setup time of job k after finishing job j. If this setup time 132 

depends on the machine, the machine subscript i is included, i.e., sijk. If no sjk appears in the 133 

β field, all setup times are supposed to be sequence independent (included in the processing 134 

times) or 0. 135 

 prmu: indicates that the job ordering is the same order for every machine. 136 

 block: implies that buffer capacities between machines are limited. Jobs must wait in the 137 

previous stage until sufficient space is free. This condition is not enough to prevent NPFS 138 

schedules, since the buffer capacity may be enough to reorder at least one job. This topic will 139 

be thoroughly discussed in the next section.  140 

 unavail: states that machines are not available at some times. 141 

In the case of stochastic parametrizations, we will indicate it with the same notation but in 142 

capital letters. For instance, if the release date of job j is an uncertain parameter, the entry at the β 143 

field will be denoted Rj, while the regular non-stochastic entry is rj. This notation is adopted from 144 

Pinedo (2012, [63]). Other possible entries for β exist, but do not apply in our study, as for instance 145 

no-wait (it does not work for NPFS) and precedence (it is redundant for flow-shop settings). 146 

Nevertheless, if some other entry appears in our review, its denotation will be self-explanatory.  147 

Let Cij represent the completion time of the operation of job j on machine i, and Cmj the 148 

completion time on the last machine (that is, when j exits the system). The flowtime of job j is denoted 149 

by Fj, and indicates the time spent by the job in the system, which can be calculated as: Fj = Cmj − rj. 150 

The lateness of job j is defined as Lj, and is Lj = Cmj − dj. So expressed, Lj can be negative. The 151 

tardiness of job j is Tj = max{ Cmj − dj, 0} and the earliness Ej = max{ dj − Cmj , 0}. Both of them are 152 

nonnegative by definition. If there exists a penalty for each tardy job, then the unit penalty is used, 153 
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Uj, which is 1 if Cmj > dj and 0 otherwise. Many objective functions associate a weight to each job, 154 

wj. These weights gauge the importance of each job respect to the others, representing different costs, 155 

volume, priorities or other special features consider relevant by the decision-maker. 156 

To illustrate how this notation is used, let us consider the standard version of NPFS presented 157 

in the introduction of the paper, which will be denotated as F││Cmax (notice that the β field is empty). 158 

This means that the production setting is a flow-shop system of m machines and the optimization 159 

criterion is captured by makespan. For another example, suppose that the number of machines is 160 

limited to 10, the jobs have release dates, the setups are sequence dependent for each machine, and 161 

the optimality criterion is maximal tardiness. This problem is represented as F│rj, sijk │Tmax.  162 

2.1. How buffers influence policies 163 

As already mentioned, a NPFS treatment requires the existence of intermediate buffers that 164 

smooth out the production system. There exist various kinds of intermediate buffers, depending on 165 

their capacity. The most common in the literature satisfies the condition of unlimited intermediate 166 

storage (UIS). On the other extreme of the range of possibilities, we find the case in which no 167 

intermediate buffers exist, corresponding to the no intermediate storage (NIS) condition. Between 168 

them, we have the cases of finite intermediate storage (FIS). We have also the case in which products 169 

must go immediately from a workstation to another, the zero wait (ZW) case. Finally, the mixed 170 

intermediate storage (MIS) case obtains as a combination of two or more of the previous cases. 171 

The UIS condition covers the cases in which the buffering capacity is at least n – 1, where n 172 

is the number of jobs. This ensures the absence of deadlocks in the production system, since each 173 

machine has a buffer that allows it to store all the intermediate products except the one that is being 174 

processed. Rossi and Lanzetta (2013, [75]) reduce the storing capacity of the buffer, in this case, to n 175 

– 2 since the previous machine can keep on hold the result of the last processing job without 176 

interrupting the flow of the rest of jobs. However, the usual minimal bound for the capacity of UIS 177 

buffers in the literature is, as said, n – 1. 178 

The opposite is the case of the NIS condition. When a job finishes its process on machine i, 179 

if machine i + 1 is busy processing another job, the former must stay on machine i generation a 180 

deadlock in the flow of the system, since there is no buffering facility that could be used to store it. 181 

This kind of production system does not lend itself to a NPFS treatment and admits only PFS 182 

solutions. The FIS condition, in turn, allows for the use buffers able to store |bi| units1 after machine 183 

i has finished its operation, with |bi| less than n – 1 units. This implies that if job j finishes on machine 184 

                                                      
1 By a slight abuse of language, we denote with |bi| the capacity of buffer bi. 
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i, and bi situated between i and i + 1, is full while machine i + 1 is processing job k, the result of job 185 

j must wait until it finds a place in bi obstructing machine i.  bi will be able to free space once machine 186 

i + 1 finishes job k and transfers the result to i + 2 or to buffer bi+1 between i + 1 and i + 2, i = 1, 2, 187 

…, m – 2.  188 

The complexity of the problem with intermediate buffers with limited capacity is analyzed in 189 

Papadimitriou and Kanellakis (1980, [61]), showing that even with only two machines is NP-hard. If 190 

only schedules that do not generate deadlocks are considered feasible, the number of NPFS feasible 191 

schedules depends on the capacity of each bi. To see this, consider on one hand the case in which 192 

each bi has capacity 0, not allowing NPFS solutions, being the number of feasible schedules n! 193 

(corresponding to PFS solutions), where n is the number of jobs. On the other hand, if each bi has at 194 

least a capacity of n – 1, no deadlock can arise and thus each NPFS schedule is a feasible solution,  195 

implying that the number of feasible solutions is n!m. In turn, if the capacity of each bi strictly larger 196 

than 0 but also less than n – 1, not all NPFS schedules will be feasible since some of them will 197 

generate deadlocks.  Brucker et al (2003, [16]) analyzed this case, showing that the cardinality of the 198 

set of feasible schedule Ω grows with the capacity of each buffer bi according to the following 199 

expression: 200 

Ω = 𝑛! ∏ |𝑏𝑖|! (|𝑏𝑖| + 1)𝑛−|𝑏𝑖|

𝑚−1

𝑖=1

 201 

 The ZW case focuses on jobs that, after finishing on a machine i have to transfer immediately its 202 

output to machine i + 1. It is immediate that this condition can be only satisfied by PFS schedules 203 

and thus it does not allow NPFS feasible schedules. Finally, the MIS case mixes UIS and FIS buffers 204 

with instances of NIS or ZW. Thus, NPFS feasible schedules can only exist for some parts of the 205 

system where the storing policies satisfy UIS or FIS.  206 

 207 

3. The Literature on NPFS 208 

The notation presented above will be applied to characterize 72 papers. The resulting 209 

information is presented in Table 1 (at the end of Section 3.5), which indicates in its first column the 210 

year of the publication, in the second the reference and in the third the characterization of the problem 211 

addressed in that publication. The last column includes some comments about the publications, such 212 

as the approach used and other aspects of the paper. This table follows a similar format to the one 213 

presented in Ruiz and Vázquez-Rodríguez (2010, [81]). We encourage the reader to examine the 214 
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different solution methods that have been proposed for flow shop systems: in the case of exact 215 

solutions see Kis and Pesch (2005, [38]), for the late work criterion Błażewicz, et al (2005, [10]) and 216 

for meta-heuristics with sequence-dependent setups Ruiz, et al (2005, [80]). 217 

In order to organize the review, we will divide the papers according to the type of objective 218 

used in each work. Among the objectives we will consider are completion-time, cost and due-date. 219 

On the other hand, we devote a particular interest to makespan (by far the most popular completion-220 

time objective) as a category in itself. Finally, we have two special “portmanteau” cases, one of the 221 

papers that consider multi-objective problems and the other covering those concerned with all other 222 

single-objective cases.   223 

3.1. Completion-time based objective 224 

3.1.1. Makespan 225 

Makespan is the most frequently considered objective function. In fact, around 55% of the 226 

papers under review consider makespan as a single objective. Thus, we separate this objective from 227 

the rest of the completion-time ones. The first work dealing with a makespan NPFS problem was 228 

Janiak (1988, [36]). In that paper, the duration of each operation depends linearly on the fraction of a 229 

limited resource allotted to each machine (for instance fuel), and the decision is twofold, involving 230 

the choice of the job sequence and the allocation of the resource to the different machines. To solve 231 

the problem, a Branch & Bound procedure is applied. Potts et al. (1991, [64]) quantified for the first 232 

time the impact of enforcing permutation schedules. They found a set of instances for which the worst 233 

case of PFS makespan is 1/2√𝑚 times the NPFS makespan. Tandon et al. (1991, [90]) compared 234 

empirically PFS against NPFS schedules. For small instances, they adopted an enumerative procedure 235 

while for bigger ones they used simulated annealing. They showed that, for wider ranges of 236 

processing times and bigger instances, NPFS becomes more advantageous than PFS. Strusevich and 237 

Zwaneveld (1994, [86]) addressed two-machine cases, considering separately the setup, processing 238 

and removal times. In this case, PFS cannot ensure optimality, and in the worst case the makespan of 239 

PFS is 3/2 of the NPFS makespan. They also analyzed the two-machine case with finite buffer 240 

capacity, to show again that PFS does not ensure optimality. Both cases analyzed by Strusevich and 241 

Zwaneveld are NP-hard. Deal, et al (1994, [21]) analyze problems of petrochemical plants for which 242 

NPFS schedules are feasible, using FIS buffering. To solve the problem these authors use a heuristic 243 

method identifying critical jobs, balancing the job load among processing stations and avoiding 244 

bottlenecks. Grau et al (1996, [31]) study the scheduling of multipurpose batch plants with a finite 245 

wait inter-stage policy (after finishing the processing a job in a machine, the time that the next job 246 

can wait is restricted). To face this NPFS problem they implemented recursive procedures. Koulamas 247 
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(1998, [40]) presented a heuristic (HFC) capable of generating non-permutation schedules when it 248 

deems appropriate. This heuristic has a similar performance as the NEH heuristic (Nawaz et al 1989, 249 

[57]), with the advantage of yielding NPFS solutions while the NEH algorithm does not. Schwindt & 250 

Trautmann (2000, [84]) analyze scheduling in batch production systems seen as an instance of 251 

resource–constrained project scheduling by incorporating sequence–dependent facility setup times 252 

and finite intermediate storage constraints.  They also take into consideration possible production 253 

shutdowns and time–varying work force. Jain and Meeran (2002, [35]) propose a multi-level hybrid 254 

meta-heuristic enabling an efficient interaction between strategies of intensification and 255 

diversification, based on scatter search and path relinking techniques. Liu and Ong (2002, [50]) 256 

propose three meta-heuristics for PFS and NPFS problems based on the neighborhood structure of 257 

insertions. The meta-heuristic for NPFS problems has a critical-path neighborhood structure. Méndez 258 

& Cerdá (2003, [53]) formulates a mathematical model of operational strategies changing the 259 

precedences in the production line, also assuming that decisions can be made on the use of 260 

intermediary buffers shared by several stages of the process. Pugazhendhi et al. (2003, [65]) consider 261 

the NPFS problem assuming skipping or missing operations. A heuristic procedure (called NPS) that 262 

inserts a job in the sequence whenever it improves the makespan. Brucker et al. (2003, [16]) handle 263 

the NPFS problem with limited buffer capacity, which can eventually lead to blockings (when the 264 

buffer is complete, the job must wait occupying the machine after its processing has finished). To 265 

solve the problem, they implement a Tabu Search algorithm. Aggoune (2004, [66]) addresses the 266 

NPFS problem considering availability constraints due to maintenance activities. Two types of 267 

maintenance activities are considered separately, one of a fixed type, and the other of a time-window 268 

kind. In the fixed case, the tasks must be carried out according to a fixed timetable, while in the time-269 

window case, there exists a time interval to perform the maintenance tasks. The solution is obtained 270 

using a combination of a genetic algorithm and Tabu Search. Pugazhendhi et al. (2004, [66]) tackle 271 

the NPFS problem with missing operations and sequence-dependent setup times. The optimizing 272 

procedure consists in a new recursive formulation that gives a good permutation solution, followed 273 

by the NPS heuristic ([65]) improving the solution by yielding non-permutation schedules. This 274 

paper, also, deals with the objective function of minimizing the total weighted flow time. Rebaine 275 

(2005, [73]) studies the worst-case performance ratio between the solutions of NPFS and PFS 276 

problems with time delays. For the two-machine case, the solution of the PFS version does not ensure 277 

optimality yielding a worst-case makespan ratio of 2. But if the operation times are just of one unit 278 

of execution time, the makespan ratio is reduced to (2-(3/n+2)). For the m-machine case, the 279 

makespan ratio is bounded by m. Haq et al. (2007, [32]) address the NPFS problem with a Scatter 280 

Search algorithm. The algorithm is based on joining solutions and exploiting the adaptive memory to 281 
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avoid generating or incorporating duplicate solutions at various stages of the problem. Ying and Lin 282 

(2007, [96]) present a Multi-Heuristic Desirability Ant Colony system (MHD-ACS) for NPFS 283 

problems. They show the benefits of ant colony optimization for the solution of NPFS problems. Ying 284 

(2008, [97]) proposed an iterated greedy heuristic for NPFS problems. This heuristic is compared to 285 

other simple constructive heuristics and state-of –the-art meta-heuristics. As a conclusion, the author 286 

indicates that iterated greedy methods are promising for NPFS problems. Rayward-Smith and 287 

Rebaine (2008, [72]) present two heuristics for the two-machine unit execution time operations with 288 

time delays. The heuristics are based on ordering jobs in terms of a non-increasing time delays order. 289 

Sadjadi et al. (2008, [82]) analyze three NPFS problems, two of them with makespan as the objective 290 

function and the other one with total weighted tardiness. In the makespan cases different features are 291 

considered, one of them involves including time lags while another assumes sequence-dependent 292 

setup times. Both of these cases consider missing operations. Mixed-Integer linear programming 293 

formulations are presented for both cases. Sadjadi et al. (2008, [83]) consider two NPFS problems 294 

with different objectives: one with makespan and the other with total flow time as goals. To solve 295 

this problem, they implement a two-step procedure. Initially, an Ant Colony optimization algorithm 296 

is used to obtain a good permutation solution. Then, this solution is improved by means of a local 297 

search procedure that yields a non-permutation solution. Lin and Ying (2009, [46]) present a hybrid 298 

Simulated Annealing and Tabu Search algorithm for the NPFS problem also yielding a non-299 

permutation solution. Nagarajan and Sviridenko (2009, [58]) present a bound for the PFS and the 300 

NPFS solutions to the general case, showing that the makespan of the PFS optimal solution can be at 301 

most 2 √min {𝑚, 𝑛} times the makespan of the NPFS optimal solution.  302 

 Zheng and Yamashiro (2010, [100]) propose a quantum differential evolutionary algorithm 303 

(QDEA) for the NPFS problem. The algorithm is based on running differential operations and local 304 

search over a so-called Q-bit representation. Färber et al. (2010, [26]) address a scheduling problem 305 

in which resequencing is permitted when workstations have access to intermediate or centralized 306 

resequencing buffers, although this access is restricted by the number of available buffer places and 307 

the physical size of the products. To solve this problem, the authors apply a hybrid approach, based 308 

on constraint logic programming (CLP). Brucker and Shakhlevich (2011, [17]) study the inverse 309 

scheduling version of the flow-shop problem, i.e. one in which, firstly, a job sequence is given, and 310 

then, to make it optimal, processing times are restricted as to satisfy certain boundaries. They deduce 311 

necessary and sufficient conditions for both PFS and NPFS problems. Ramezanian et al. (2011, [70]) 312 

study the NPFS problem with missing operations, solving it with a genetic algorithm and Tabu 313 

Search. Rudek (2011, [79]) prove that in the two-machine case with learning effects, PFS does not 314 

ensure optimality, and both approaches (PFS and NPFS) are NP-hard, even if the learning effect is 315 
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assumed for only one of the machines (in a form of steep learning curve). Cheng et al. (2012, [18]) 316 

analyze the process of tearing-down and reconstructing buildings as a two-machine flow-shop with 317 

resource-constrained problem. The authors provide MIP problem formulations and discuss their 318 

complexity, developing polynomial algorithms for special cases. Rossi and Lanzetta (2013, [75]) 319 

address the NPFS problem with an ACO algorithm, establishing that the minimum buffer capacity to 320 

avoid blockings is (n-2). Rossi and Lanzetta (2013, [76]) deal with the same problem. A particular 321 

feature of the ACO algorithm is that from the beginning it explores non-permutation solutions. In 322 

[76] the authors tested the ACO algorithm on Taillard’s (1993, [89]) benchmarks, but in Rossi and 323 

Lanzetta (2014, [77]) they use the benchmarks of Demirkol et al. (1998, [22]) benchmarks. For these 324 

instances, their ACO algorithm outperforms other variants also used to solve NPFS problems. Shen 325 

et al. (2014, [85]) tackle the NPFS batching problem with sequence-dependent family setup time. 326 

These authors develop a Tabu Search algorithm, including double tabu lists and multilevel 327 

diversification. The group technology assumption is relaxed, allowing the family of jobs to be split. 328 

Gharbi et al. (2014, [27]) present lower and upper bounds for several single-machine adjustment 329 

procedures. Moukrim et al. (2014, [56]) introduce a Branch & Bound algorithm for the problem 330 

described in Rebaine (2005, [73]). They present both new bounding procedures for this B&B 331 

algorithm as well as new dominance rules. Benavides et al. (2014, [13]) deal with heterogeneous 332 

NPFS problems for which two simultaneous issues need to be addressed: the assignment of workers 333 

to workstations and the scheduling problem itself. The motivation comes from cases in which workers 334 

are disabled people, and thus, their skills are not homogeneous. To solve this optimizing problem, a 335 

Scatter Search and a Path Relinking algorithm are proposed. In Nikjo and Zarook (2014, [59]) the 336 

problem analyzed is a NPFS in the context of a manufacturing cell with agreeable release dates and 337 

setup times dependent on the sequence of parts of related products. Genetic algorithms and Tabu 338 

Search yield the solutions.  Zhang et al. (2014, [99]) approach the NPFS problem with periodical 339 

maintenance activities. The method used for its solution is a hybrid genetic algorithm and a heuristic 340 

based on NEH theory. Rossit et al. (2016, [78]) deals with NPFS problem under lot streaming 341 

considerations. Benavides and Ritt (2016, [15]) propose a constructive iterated local search heuristic 342 

for the NPFS problem. The algorithm is based on the observation that permutation and non-343 

permutation schedules are similar enough as to facilitate finding a non-permutation solution after 344 

obtaining a good permutation one. Cui et al. (2016, [20]) deal with NPFs problems with availability 345 

constraints. The availability of machines depends on two kinds of extra-production tasks, one 346 

involves fixed tasks while the other refers to tasks with flexible time intervals with the continuous 347 

working time assigned to machines cannot surpass a maximum allowed time. The optimization is 348 
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carried out running a hybrid incremental genetic algorithm combining local refinements and a 349 

population diversity supervision scheme. 350 

3.1.2. Other completion-time based objectives 351 

 We will review here the literature on NPFS problems with other completion-time based 352 

objectives. In particular, we will focus on the following objective functions: total completion time, 353 

total weighted completion time, total flow time and total weighted flow time. 354 

Rajendran and Ziegler (2001, [69]) study the NPFS problem with missing operations when 355 

the objective function is the minimization of total flow time.  The authors solve it using dispatching 356 

rules combined with a heuristic rule. Pugazhendhi et al. (2004, [67]) deal with two NPFS problems 357 

with missing operations, the first one minimizing the total flow time, and the second, minimizing the 358 

total weighted flow time. They present a heuristic (NPS-set), which works by improving a 359 

permutation schedule. Färber and Coves Moreno (2006, [24]) propose a genetic algorithm for NPFS 360 

problems when intermediate buffers are not available for every station or machine, each of which is 361 

assumed to be capacitated. Färber et al. (2007, [25]) tackle a NPFS problem in which the demand is 362 

semi-dynamic and the resequencing is restricted (similarly to [24]). The objective function is total 363 

weighted completion time. The authors solve the problem by applying two approaches: the first a 364 

Constraint Logic Programming analysis and the second a genetic algorithm. Li et al. (2010, [41]) 365 

address a two-machine robotic NPFS problem with total weighted completion as the performance 366 

criterion. Robots take care of loading, unloading and translating jobs from a station to another. These 367 

robots can handle only one job at a time. Optimal solutions arise from the application of a genetic 368 

algorithm. Vahedi-Nouri et al. (2013, [91]) address the NPFS problem with learning effects and 369 

machine availability constraints under the minimization of total flow time. The authors present a MIP 370 

formulation and propose an improvement heuristic. Isenberg and Scholz-Reiter (2013, [34]) deal with 371 

a batching NPFS problem, where batches are built at each stage. This results in a stage-interdependent 372 

batching and scheduling problem. These authors consider three different objective functions: total 373 

flow time, total completion time and makespan. Vahedi-Nouri et al. (2014, [93]) present a heuristic 374 

method and a Simulated Annealing algorithm for a NPFS problem with learning effects, availability 375 

constraints and release dates. The objective function optimize is total flow time. Benavides and Ritt 376 

(2015, [14]) study the advantages of NPFS over PFS schedules. They use a two-phase heuristics and 377 

consider the case of total completion time as objective function. In the first phase, an iterated local 378 

search algorithm seeks a good permutation solution, and in the second phase, an effective insertion 379 

neighborhood improves that solution by exploring close non-permutation solutions. Henneberg and 380 

Neufeld (2016, [33]) study a NPFS with missing operations when the objective is total completion 381 
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time. They solve it with a modification of the NPS-set heuristic presented in [22], based on a two-382 

phase version of Simulated Annealing.  383 

3.2. Due-date based objectives 384 

Here we will focus on papers in which the objective functions represent a due-date concept. 385 

These problems are known for being computationally hard, being even “binary NP-hard” in two-386 

machine cases (Błazewicz, et al 2005, [10]). Nevertheless, these problems have been extensively 387 

studied in the PFS setting (Błażewicz , et al (2008, [12]); Pesch and Sterna (2009, [62])) 388 

The objective functions that will be contemplated in this section are: maximum tardiness, 389 

total tardiness and total weighted tardiness. 390 

Swaminathan et al. (2007, [88]) study the impact of the enforcement permutation condition 391 

on the general flow shop (non-permutation) problem. The goal analyzed is total weighted tardiness. 392 

To obtain the solution they use three approaches: pure permutation, shift-based and pure dispatching.  393 

The latter is the one able to yield non-permutation schedules. Their results show that PFS provides 394 

an inefficient approach to this problem. Swaminathan et al. (2004, [87]) study the same problem in a 395 

simplified version. Liao and Huang (2010, [44]) study the NPFS problem with total tardiness as a 396 

goal, presenting and evaluating three different MIP formulations. Then, they present also two Tabu 397 

Search algorithms. The comparison of NPFS to PFS indicates that NPFS is much more suitable for 398 

these types of problems. Ziaee (2013, [101]) addresses the NPFS problem with sequence dependent 399 

setup times with the minimization of total weighted tardiness as objective. This author proposes a 400 

two-phase heuristic with the usual pattern. Namely, the first phase looks for a good permutation 401 

solution, and second one, improves it through a non-permutation local search. Xiao et al. (2015, [94]) 402 

analyze flow-shop scheduling with order acceptance under weighted tardiness.  The authors present 403 

two different formulations of the problem. The first is a MIP formulation, which CPLEX can solve 404 

for small instances. The second one, is a NIP (non-linear integer programming) formulation that can 405 

be solved, in particular its medium and large size instances, by a two-phase genetic algorithm. 406 

3.3. Experimental mono-objective studies 407 

In this subsection, we present a group of papers comparing the quality of the solutions of the 408 

PFS and NPFS problems in experimental analyses. These papers consider different given mono-409 

objective manufacturing settings, in order to assess the extra computational effort required by the 410 

NPFS problems. The validity of the comparisons of these papers comes from the fact that the 411 

problems are tested under the same parametrization and same instances while the solutions are 412 

obtained running the same algorithms. In this way, these papers provide valuable experimental 413 
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insights to the non-permutation literature. The objectives analyzed in all the cases are the six more 414 

common ones used in scheduling: three are completion-time based criteria (makespan, total 415 

completion time and total weighted completion time), and the other three are due-date based criteria 416 

(maximum tardiness, total tardiness and total weighted tardiness). 417 

Liao et al. (2006, [43]) were the first to carry out this type of research. They tested a classic 418 

flow-shop system under six objective functions. Their results indicate that, in general, NPFS 419 

schedules improve very little over the PFS ones the value of completion-time based objectives. 420 

However, for due-date based criteria the improvement is significant, especially for problems with 421 

more than thirty jobs. They used as optimization tools a Genetic Algorithm and a Tabu Search 422 

algorithm. Lin et al. (2009, [47]) presents a similar study, with the same objective functions but for a 423 

flow line manufacturing cell with a sequence-dependent family of setups. Again, the conclusion for 424 

completion-time based objectives is that non-permutation and permutation schedules have a similar 425 

performance, being non-permutation a little better. But for due-date based objectives, non-426 

permutation schedules clearly outperform permutation ones. The authors solve the problems using a 427 

Genetic Algorithm, Simulated Annealing and Tabu Search. The Simulated Annealing procedure 428 

outperforms the other two meta-heuristics. Ying et al. (2010) [98] revisit [47], testing different setup 429 

ranges, concluding that, for larger setup ranges NPFS overtakes PFS for most of the cases yielding 430 

larger improvements. They find that NPFS performs better, in general, under the six objective 431 

functions, but for due-date based ones, its performance is much better than that of PFS. In this case, 432 

all the solutions are found running a Simulated Annealing algorithm. 433 

3.4. Multi-objective versions 434 

A promising area of study for non-permutation scheduling involves the optimization of 435 

several objectives, mainly because the non-permutation case allows for a dearth of new solutions that 436 

do not arise in the permutation setting. The papers that analyze multiple-objective instances of the 437 

NPFS problems will be reviewed next. 438 

Mehravaran and Logendran (2012, [51]) were the first to study multi-objective problems 439 

under non-permutation schemes. They consider a flow-shop setting with sequence-dependent setup 440 

times assuming machine availability constraints, job releasing and missing operations. They use a bi-441 

objective function. The goal is the minimization of the normalized sum of weighted completion time 442 

and weighted tardiness. The authors present a MIP formulation and a Tabu Search algorithm. 443 

Mehravaran and Logendran (2013, [52]) address the NPFS problem considering dual resources: 444 

machines and labor. The goal is the minimization of the total weighted completion time and the total 445 

weighted tardiness. As in [51] they use a weighted sum combining the two objectives. The 446 
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specification of the problem includes different skill levels, sequence-dependent setups, machine 447 

availability constraints and job release dates. A two-layered procedure yields the solution. The outer 448 

layer solves the traditional flow-shop problem (considering only job sequencing), and the inner layer, 449 

finds an assignation of jobs to labor in agreement to the machine schedule. Three different search 450 

algorithms are developed. These authors, the first ones to investigate flow-shop scheduling with two 451 

resources problem, emphasize on the superiority of non-permutation schedules over permutation 452 

ones. Rahmani et al. (2014, [68]) study a stochastic NPFS problem. Processing times and release date 453 

are stochastic parameters that have a normal distribution. Three different objectives are minimized: 454 

makespan, total flow time and tardiness. To deal with uncertainty they apply both a chance 455 

constrained programming and a fuzzy goal programming approach. They also adapt a genetic 456 

algorithm to handle large-size problem. Amirian and Sahraeian (2015, [6]) analyze a NPFS problem 457 

minimizing simultaneously the makespan, the sum of flow time and maximum tardiness. The setting 458 

includes release dates, past sequence-dependent set-up times, learning effects and machine 459 

availability constraints. The authors use, as solution methods, Augmented ε-constraint and a heuristic 460 

based on it. 461 

3.5. Economic objective functions 462 

In this section, we review works that evaluate objective functions from an economic point of 463 

view, trying either to minimize operation costs or to maximize profits. In particular, we review papers 464 

that study NPFS problems in which the cost is the objective function. In these five contributions, the 465 

specification of which cost has to be minimized varies. 466 

Grau et al. (1995, [30]) study a NPFS problem seeking to minimize the product changeover 467 

cost of the production plan. This cost is incurred each time the production is set to produce a different 468 

product. The authors develop a Branch and Bound procedure to solve the problem. Doganis et al 469 

(2005, [23]) analyzes flow shop lubricant production processes. A MILP model is used to generate 470 

schedules that are potentially NPFS, but not allowing Schedule changes at all stages since between 471 

some of them buffering is of NIS type. The objective is the maximization of the income accrued by 472 

the firm. Liberopoulos et al (2010, [45]) study problems of production plants of PET resins with 473 

intermediate storage facilities specific to each product. The objective is the minimization of costs of 474 

set up of intermediate buffers, in order to adapt products to alternative buffers, a costly activity, 475 

without hampering the operational capacity of the system. Mohammadi et al. (2010, [55]) address 476 

both the lot sizing and the scheduling problem in a NPFS system. They develop a MIP formulation 477 

for the problem and present five MIP-based heuristics to minimize setup, storage and production 478 

costs. Some of these heuristics are only capable of solving the PFS version of the problem. Vahedi-479 
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Nouri et al. (2013, [92]) analyze a NPFS problem with learning effects and flexible maintenance 480 

activities. The objective is the minimization of the sum of tardiness and maintenance costs. The 481 

authors develop a hybrid of a Firefly algorithm and Simulated Annealing to solve a MIP formulation 482 

of the problem. Ramezanian and Saidi-Mehrabad (2013, [71]) investigate the lot sizing and 483 

scheduling flow-shop problem, considering sequence-dependent setups, capacity constraints, 484 

uncertain processing times and uncertain multiproduct and multi-period demand. A MIP model joint 485 

with a big bucket time approach represents the problem. Two MIP-based heuristics with a rolling 486 

horizon framework are applied. The authors also develop a hybrid meta-heuristic based on a 487 

combination of Simulated Annealing, a Firefly algorithm and an ad-hoc heuristic for scheduling. 488 

Babaei et al. (2014, [7]) also analyze the lot sizing and scheduling problem under slightly different 489 

constraints, namely sequence-dependent setups, setup carryover and backlogging. They propose a 490 

MIP formulation solved by the application of a genetic algorithm. 491 

Table 1. 492 
Summary of the reviewed literature 493 
References: for the β field: rc: resource constrained, skip: skipping operations, avail: machine availability 494 
conditions, fmls: family group products, learn: learning effect, hr: heterogeneous resources, rp: relocation, dr: 495 
dual resources. A β entry in capital letters means a stochastic parameter. In the Comments column, B&B: 496 
Branch and Bound, SA: Simulated Annealing, MPF: Mathematical Programming Formulation, SS: Scatter 497 
Search, PR: Path Relinking, TS: Tabu Search, OM: Other Metaheuristics, GA: Genetic Algorithm, ACO: Ant 498 
Colony Optimization, IG: Iterated Greedy, CLP: Constraint Logic Programming, CCP: Chance Constrained 499 
Programming, FGP: Fuzzy Goal Programming. 500 

Reference Problem Comments 

Janiak (1988) [36] F│rc│ Cmax B&B procedure 

Potts, et al. (1991) [64] F││Cmax 
bound between NPFS Cmax and PFS Cmax 

for special instances 

Tandon, et al. (1991) [90] F││ Cmax 
Enumerative for small instances and SA 

big instances 

Strusevich, et al (1994) [86] 

F2│ sijk, removal times│ Cmax 
PFS is not optimal and the problem is NP-

hard 

F2│block│ Cmax 
PFS is not optimal and the problem is NP-

hard 

Deal et al 1994 [21] F│bi│Cmax heuristic for balancing resources usage 

Grau, et al. (1995) [30] F│batch│Costs B&B procedure 

Grau, et al. (1996) [31] F│batch, finite wait│ Cmax tailored recursive procedure 

Koulamas (1998) [40] F││ Cmax HFC heuristic 

Schwindt et al (2000) [84] F│time lags│Cmax MPF 

Rajendran, et al (2001) [69] F│skip│𝛴 𝐶𝑗 dispatching rules & heuristic 

Jain, et al (2002) [35] F││ Cmax 
Meta-heuristic, based on SS and PR, and 

TS 

Liu, et al (2002) [50] F││Cmax OM 
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Pugazhendhi, et al. (2003) [65] F│skip│Cmax heuristic 

Brucker, et al. (2003) [16] F│block│ Cmax TS 

Méndez et al (2003) [53] F│bi│Cmax MPF 

Aggoune (2004) [1] F│avail│ Cmax GA and TS 

Pugazhendhi, et al. (2004) [66] F│skip│γ  
𝛾 ∈ {Σ 𝑤𝑗𝐹𝑗 , Σ 𝐹𝑗}  

Heuristic: NPS set 

Pugazhendhi, et al. (2004) [67] F│skip, sijk │γ 
𝛾 ∈ {Σ 𝑤𝑗𝐹𝑗 , 𝐶𝑚𝑎𝑥} 

Tailored heuristic and NPS-set 

Swaminathan, et al. (2004) [87] F│stochastic│Costs GA and ATC heuristic 

Doganis et al (2005) [23] F│bi│Revenue MPF 

Rebaine (2005) [76] F│time delays│ Cmax NP-hard, for 2 machines PFS not optimal 

Liao, et al. (2006) [43] F││ γ 

𝛾 ∈ {𝐶𝑚𝑎𝑥 , 𝛴 𝐶𝑗 , Σ 𝑤𝑗𝐶𝑗 , 

𝑇𝑚𝑎𝑥 , Σ 𝑇𝑗 , Σ 𝑤𝑗𝑇𝑗}  

TS and GA, compares all the six objective 

functions 

Färber, et al (2006) [24] F│block│𝛴𝑤𝑗𝐶𝑗 GA 

Haq, et al. (2007) [32] F││ Cmax SS 

Ying, et al (2007) [96] F││ Cmax ACO 

Färber, et al. (2007) [25] F│block│𝛴𝑤𝑗𝐶𝑗 GA and CLP 

Swaminathan, et al. (2007) [88] F││Σ 𝑤𝑗𝑇𝑗  ATC heuristics and GA 

Ying (2008) [97] F││ Cmax IG 

Rayward-Smith, et al (2008) [72] F2│pij=p, time delays│ Cmax heuristic - (uet: unit execution time) 

Sadjadi, et al. (2008) [82] 

F││Σ 𝑤𝑗𝑇𝑗  

MPF F│time lags│ Cmax 

F│ sijk │ Cmax 

Sadjadi (2008) [83] F││ γ  
𝛾 ∈ {Σ 𝐹𝑗 , 𝐶𝑚𝑎𝑥} 

ACO and local search 

Lin, et al. (2009) [47] F│fmls, sijk │ γ  

𝛾 ∈ {𝐶𝑚𝑎𝑥 , 𝛴 𝐶𝑗 , Σ 𝑤𝑗𝐶𝑗 , 

𝑇𝑚𝑎𝑥 , Σ 𝑇𝑗 , Σ 𝑤𝑗𝑇𝑗}  

SA, TS and GA 

Lin, et al (2009) [46] F││ Cmax SA and TS 

Nagarajan, et al (2009) [58] F││Cmax 
Comparison of PFS and NPFS makespan 

for the general case 

Ying, et al. (2010) [98] F│fmls, setup │ γ 

𝛾 ∈ {𝐶𝑚𝑎𝑥 , 𝛴 𝐶𝑗 , Σ 𝑤𝑗𝐶𝑗 , 

𝑇𝑚𝑎𝑥 , Σ 𝑇𝑗 , Σ 𝑤𝑗𝑇𝑗}  

SA, setup depends on the family sequence 

Liao, et al. (2010) [44] F││Σ 𝑇𝑗 TS 

Li, et al. (2010) [41] F2│block│𝛴𝑤𝑗𝐶𝑗 GA 
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Liberopoulos et al (2010) [45] F│bi│Costs MPF 

Mohammadi, et al. (2010) [55] F│ sijk │Costs MPF based heuristic 

Zheng, et al (2010) [100] F││ Cmax 
Quantum Differential Evolutionary 

Algorithm (QDEA) 

Farber, et al. (2010) [26] F││ Cmax hybrid CLP and GA 

Brucker, et al (2011) [17] inverse scheduling - Cmax sufficient conditions for optimal sequence 

Ramezanian, et al. (2011) [70] F│skip│ Cmax GA and TS 

Rudek (2011) [79] F2│learn│ Cmax NEH-based heuristic 

Mehravaran, et al (2012) [51] F││𝛴𝑤𝑗𝐶𝑗 & Σ 𝑤𝑗𝑇𝑗 TS with progressive perturbation 

Cheng, et al. (2012) [18] F2│rp │ Cmax    complexity analysis, is NP-hard 

Vahedi-Nouri, et al. (2013) [91] F│learn, avail│Σ 𝐹𝑗 heuristic: VFR 

Vahedi-Nouri, et al. (2013) [92] F│learn, avail│Costs hybrid firefly-SA 

Ziaee (2013) [101] F│ sijk │ Σ 𝑤𝑗𝑇𝑗 local search heuristic 

Isenberg, et al (2013) [34] F│batch, fmls, rj│γ 
𝛾 ∈ {Σ 𝐹𝑗, 𝛴 𝐶𝑗, 𝐶𝑚𝑎𝑥} 

MPF 

Mehravaran, et al (2013) [52] 
F│skip, dr, sijk, avail, 

rj│𝛴𝑤𝑗𝐶𝑗 & Σ 𝑤𝑗𝑇𝑗 
OM 

Rossi, et al (2013) [41] F││ Cmax ACO 

Rossi, et al (2013) [40] F│bi= n-2│ Cmax ACO 

Ramezanian, et al (2013) [71] F│ sijk, Pij│ Costs 
MPF-Heuristics and OM, uncertain 

demands 

Shen, et al. (2014) [85] F│batch, setup │ Cmax TS 

Gharbi, et al. (2014) [27] Fm││Cmax bounding procedures 

Moukrim, et al. (2014) [56] F2│uet, time delays│ Cmax B&B 

Rossi, et al (2014) [77] F││Cmax ACO 

Benavides, et al. (2014) [13] F│hr│Cmax Heuristic: SS and PR 

Nikjo, et al (2014) [59] Fm│ sijk, rj│Cmax GA and TS 

Vahedi-Nouri, et al. (2014) [93] F│learn, avail, rj│Σ 𝐹𝑗 Heuristic and SA 

Babaei, et al. (2014) [7] F│backlog│Costs GA 

Zhang, et al. (2014) [99] F│setup, avail│ Cmax ACO 

Rahmani et al. (2014) [68] F│Rj, Pij│ Cmax & Σ 𝐹𝑗 & Σ 𝑇𝑗 CCP and FGP 

Xiao, et al. (2015) [94] 
F│OA = order 

acceptance│Σ 𝑤𝑗𝑇𝑗 
TS-GA 

Amirian, et al (2015) [6] 
F│ learn, sijk │ Cmax & Σ 𝐹𝑗 & 

Tmax 
Augmented ε-constraint, heuristic 
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Benavides, et al (2015) [14] F││𝛴 𝐶𝑗 IG 

Benavides, et al (2016) [15] F││ Cmax OM 

Cui, et al. (2016) [20] F│avail│Cmax OM 

Henneberg, et al (2016) [33] F│skip│Σ 𝐹𝑗 SA 

Rossit, et al. (2016) [78] F│lot-streaming│ Cmax MPF 

 501 

4. A quantitative analysis of the literature 502 

This review has analyzed 72 papers, representing, as far as we know, the whole NPFS 503 

literature (not including Hybrid Flow-Shop variants). Our analysis follows closely other reviews, as 504 

for instance Yenisey and Yagmahan (2014, [95]) on multi-objective flow-shop formulations and Ruiz 505 

and Vásquez-Rodríguez (2010, [81]) on hybrid flow-shop problems. 506 

A remarkable aspect of this scheduling literature is that more than the 65% of the papers have 507 

been published after 2007. This is can be seen in Figure 2, in which for clarity papers are grouped in 508 

terms of their publication in five-year periods. Given the clear trend to an increasing number of 509 

publications, while still low compared to those devoted to other well-developed scheduling issues, 510 

we can infer that NPFS is a promising area for further developments. 511 

 512 

Figure 2. Number of papers published in five-year periods. 513 

Figure 3 shows the different NPFS problems that have been analyzed in the literature, 514 

indicating the proportion of papers devoted to each kind of objective function. As was already 515 

mentioned, completion-time based are by far the most frequent objectives functions: 73% of the 516 

papers focus on them. A special case of completion-time objective is makespan, covered by 56% of 517 

the papers. Other kinds of completion-time objectives are analyzed in 17% of the publications. This 518 

is not surprising, giving the primacy of makespan over other objective functions in the literature on 519 
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scheduling, as indicated in [81]. The other types of objectives functions are considered in the 520 

remaining 27% of the literature. From them, due-date based objectives functions represents only the 521 

8% of the publications, indicating that these important objective functions are under-represented, 522 

requiring further and deeper attention. This has been emphasized in particular in [43], [47] and [98]. 523 

 524 

Figure 3. Distribution of objective functions considered in the literature. 525 

The distribution of the different optimization techniques applied in the literature is presented 526 

in Figure 4. This shows that in general, exact approaches (mathematical programming and Branch 527 

and Bound) are not frequently applied, representing only 22% of the literature. In contrast, heuristics 528 

are used in 28% of the publications. Particular cases of meta-heuristic, Simulated Annealing, Tabu 529 

Search, Genetic Algorithms and Ant Colony Optimization algorithms are the most frequently applied 530 

methods of solution.  531 

 532 

Figure 4. Distribution of optimization tools used. ACO: Ant Colony Optimization, GA: Genetic Algorithm, 533 

TS: Tabu Search, SA:  Simulated Annealing, MP: Mathematical Programming, B&B: Branch and Bound. 534 

To conclude, we can point out that there does not exist yet a consensus on the state-of-the art 535 

optimization methods for NPFS methods. We can state that exact methods seem not to be (currently) 536 

the most adequate for the solution of problems of intermediate and large size, while heuristic and 537 

meta-heuristic methods have shown to be able to yield solutions for them of good and very good 538 
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quality. The downside of this is that heuristic methods are not yet able to handle general cases.  On 539 

the other hand, among meta-heuristic methods, those based on Tabu Search yield better results than 540 

others to which they have been compared. Those comparisons, it must be noted, are not exhaustive 541 

and thus Tabu Search cannot be deemed yet as the best possible approach to solving NPFS problems. 542 

The natural similarities between NPFS and PFS problems have led some authors ([16]) to develop 543 

sequential improvement procedures that start by solving, in a standard way, the PFS problem.  The 544 

result of such procedures is, at the very least, a very good PFS solution but sometimes yielding a 545 

NPFS one. On the other hand, Rossi and Lanzetta (2014, [77]) applied meta-heuristics (ACO) to 546 

NPFS problems just from the start, instead of finding a previous PFS solution. This allows to search 547 

directly the space of NPFS solutions. The proviso is that this approach is more adequate in the cases 548 

in which the optimal NPFS and PFS solutions differ markedly.  When those solutions are rather 549 

similar, starting from PFS solutions seems a better approach to reach the optimal NPFS ones.  Both 550 

approaches profit form the flow shop structure, in which the sequence is the same for all jobs.  551 

4.1. Bibliometric analysis  552 

Also is of interest to provide some bibliometric information about the literature on NPFS. We 553 

follow the approach of other reviews, such as Aguezzoul (2014, [2]), Merigó et al (2016, [54]) and 554 

Gorman (2016 [28]), who showed that bibliometric information can be very useful for the evaluation 555 

of the research on a new topic. The relevant information includes the list of journals were papers on 556 

the topic have been published, the frequency of publication and their impact. On the latter, [28] 557 

centers its attention in the number of citations reported by Google Scholar at the time the article was 558 

retrieved. This means, in our case, August 2016. 559 

Table 2.  560 

List of journals that have published two or more articles on NPFS. Note: the percentage is over the total of 561 

papers reviewed. 562 

Publication name No. of Papers Percentage 

International Journal of Production Research 8 11% 

Inter. Jour. of Advanced Manufacturing Technology 7 10% 

Computers & Operations Research 6 8% 

Proceedings 6 8% 

Computers & Chemical Engineering 5 7% 

European Journal of Operational Research 4 5% 

Computers & Industrial Engineering 3 4% 

Journal of Scheduling 3 4% 
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OR-Spectrum 2 3% 

Applied Mathematics and Computation 2 3% 

Expert Systems with Applications 2 3% 

Journal of Applied Sciences 2 3% 

 563 

Table 2 is the list of all the journals that have published two or more papers reviewed in this 564 

work. We can see that the International Journal of Production Research has been the outlet for 11% 565 

of all the papers in the field. It is closely followed by the International Journal of Advanced 566 

Manufacturing Technology and Computers & Operations Research, that have published 7 and 6 of 567 

the papers, respectively. With respect to conference proceedings, we only consider those indexed in 568 

Scopus and Google Scholar and are written, at least its abstract, in English. The journals listed in 569 

Table 2 have published 68% of the papers on NPFS reviewed here. 570 

Journals other than those listed in Table 2 that have published at least one article on NPFS, 571 

are Information Sciences, Journal of Manufacturing Systems, International Journal of Production 572 

Economics and Applied Mathematical Modelling. 573 

The impact of the work on NPFS is assessed in terms of the number of citations reported by 574 

Google Scholar. Table 3 presents this information. We can see there the high impact of these articles, 575 

totaling more than 1,400 citations. That means, in average, 20 citations per NPFS article while the 576 

most cited one is Koulamas (1998 [40]) with 138 cites. On the other hand, we have to note that more 577 

than half of the papers, 37 of them, have 10 or more cites.  578 

Table 3.  579 
Citations of NPFS papers drawn from Google Scholar, August 2016. 580 

Bibliometric analysis 

Numbers of total cites of NPFS papers 1452 

Average number of cites per paper 20 

Most cited paper (Koulamas 1998 [40]) 138 

Papers with ≥10 cites 37 (50%) 

 581 

4.2. Special cases 582 

Since NPFS is far from being an extensively researched topic, we collect some important 583 

results that may serve as guidelines for beginners or as a state-of-the-art reference for advanced 584 

researchers or practitioners in the field. The first point to make is that NPFS schemes must yield the 585 
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same or better results than PFS ones for the same problem instance since the former includes all the 586 

solutions of the latter and more. On the other hand, a highly relevant topic is the extra computational 587 

effort required to solve NPFS problems in comparison to PFS problems. The oldest result in this 588 

respect was presented by Conway et al. (1967, [19]) showing that, for the general flow-shop setting 589 

(non-permutation for us) and makespan as objective function, the schedule on the first and the second 590 

machine can be the same without hampering the optimal solution. The same is true for the last and 591 

the second to last machines. Thus, for the case of F3││Cmax, PFS is optimal. This result is clearly 592 

proven in [27]. In consequence, the NPFS approach becomes beneficial for systems with more than 593 

three machines. Newer results allow refining this analysis. In table 4, we highlight some of these 594 

results. The first row presents the bound on the worst case if the problem is solved by a PFS scheme. 595 

The next rows indicate special cases for which PFS cannot ensure optimality, even in the two-machine 596 

case, because some of the conditions of [19] do not apply.  597 

Table 4.  598 

Special Non-permutation results, considering makespan as objective.  599 

Problem Comments Source 

F││Cmax vs 

F│prmu│Cmax 

PFS makespan worst case is: 2 √min {𝑚, 𝑛} times NPFS 

makespan. 
[58] 

F2│removal times│Cmax 
PFS approach does not ensure optimality. 

PFS makespan worst case is: 3/2 times NPFS makespan. 
[86] 

F2│block│Cmax PFS approach does not ensure optimality. [86] 

F2│time delays│Cmax 
PFS does not ensure optimality. 

PFS makespan worst case is: 2 times NPFS makespan. 
[73] 

F2│learning effect│Cmax PFS does not ensure optimality. [79] 

 600 

Other relevant experimental results described recently are: 601 

 For a wider range of processing times, the chances that NPFS schemes outperform 602 

PFS schedules increase [90]. 603 

 In general, environments in which the objective functions are due-date based will 604 

benefit more of the NPFS approach than environments in which they are based on 605 

completion-time [43], [98] and [94]. 606 

 For a wider range of setup times it is more likely that the NPFS approach outperforms 607 

the PFS approach [98] and [85] 608 

 For simple flow-shop, the makespan is 2-3% better in the NPFS case [43] and [16]. 609 
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5. Conclusions and directions for future research 610 

In this paper, we have reviewed 72 articles on NPFS. We have classified these papers 611 

according to the variants of the problem considered in them, including the assumptions, constraints, 612 

objective functions and solution methods applied by the authors. We think this work may be helpful 613 

to other researchers in the field as well as a starting point for new research efforts. 614 

The papers have been analyzed based on the type of objective function considered. 615 

Completion-time based criteria are the most frequent among the NPFS problems. Within this group, 616 

makespan is the most intensively studied (more than half of the papers have makespan as objective 617 

function).  The other optimization criteria (due-date based and costs) and multi-objective approaches 618 

are covered in a quarter of all the publications. It is clear that these approaches are underrepresented 619 

in the literature. A conclusion from this review is that NPFS papers have, in average, 19 citations 620 

with more than half of them having been cited over 10 times. 621 

Besides these conclusions, we present also a compendium of some theoretical and 622 

experimental results. On the theoretical aspect, we mentioned the problems for which the PFS 623 

approach does not ensure optimality, even in two-machine cases. That is, problems for which the 624 

NPFS approach becomes necessary to obtain high quality solutions. We also present a concise list of 625 

experimental results on the comparison of NPFS against PFS.   626 

            The NPFS problem is a recent and under-developed research topic (compared to traditional 627 

scheduling problems), and thus a promising area for further developments. The review allows us to 628 

suggest that the following are relevant inquiry issues. (1) NPFS problems with due-date based 629 

objective functions. (2) NPFS problems with three or more objectives. (3) real world case studies, 630 

comparing the costs of using NPFS and PFS approaches. (4) Scheduling under uncertainty is an 631 

interesting problem for which rescheduling could help to improve solutions. (5) The implementation 632 

of new meta-heuristics to address complex NPFS systems. 633 
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