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The epidermis of the aerial part of land plants is pierced by pores through which plants perform
gas exchange with environment. The guard cells (GCs), the specialized cells that surround the
pore, have the capacity to sense diverse environmental and endogenous stimuli and integrate them
into a single output which is the regulation of the stomatal pore width. The stomatal pore size is
modulated by changes of the guard cell volume, driven by variations in the osmotic potential of the
GCs.

The stress hormone abscisic acid (ABA), the master regulator of stomatal movement, induces
stomatal closure by the inhibition of H+-ATPases and activation of rapid and slow anion channels,
producing the depolarization of the plasma membrane (PM) in GCs, and by an increase in the
cytosolic Ca2+ concentratrion [Ca2+]cyt. While the rise of the [Ca2+]cyt blocks the influx of
K+ by the inactivation of the inward rectifying K+ channels (K+

in), the depolarization of the
PM, in turn promotes K+ efflux driven by outward rectifying K+ channels (K+

out; Blatt, 2000).
This process is closely regulated by a complex signaling network that involves the participation
of numerous ubiquitous signaling components like ROS, protein kinases, phospholipases, and
protein phosphatases (Kim et al., 2010; Song et al., 2014); and by other signaling components
that are emerging as active players in this signaling network, such is the case of gasotransmitters
(García-Mata and Lamattina, 2013).

A gasotransmitter is a small gas molecule that: (i) can freely permeates biological membranes;
(ii) it is endogenously generated by specific enzymes; (iii) it has specific functions at physiologically
relevant concentrations; (iv) it functions can be mimicked by exogenous application of a donor;
and (v) it has specific cellular and molecular targets (Wang, 2002). The group of gasotransmitters
is, so far, composed by Nitric Oxide (NO), Carbon Monoxide (CO), and Hydrogen Sulfide (H2S)
and the three of them have been reported to participate in the promotion of stomatal closure
(García-Mata and Lamattina, 2013), however, the biology of CO in this physiological process is
less known than that of NO and H2S. Therefore, this opinion will be focused mainly on the action
and interaction of NO and H2S. The two of them are accepted as active players in the regulation of
stomatal movement, however there are still obscure points and some of them will be discussed in
this opinion article: (i) their specificmolecular targets; (ii) themolecularmechanisms underpinning
their action; (iii) the interplay between them during the stomatal closure induction; and (iv) the
crossed-regulation of their metabolism.

All the three gasotransmitters are synthesized during the promotion of stomatal closure. CO
is synthesized via the activity of heme oxygenase (Shekhawat and Verma, 2010). In Vicia faba
CO induces stomatal closure in a dose-dependent manner and acts upstream of the production
of NO during ABA-dependent stomatal closure (Cao et al., 2007; She and Song, 2008). It has
been reported that the hormones ABA and ethylene (Eth) require the production of NO for
the regulation of stomatal movement (García-Mata and Lamattina, 2002; Neill et al., 2002; He
et al., 2011; Song et al., 2011). NO can be synthesized either from NO2 by two genes, NIA1
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and NIA2, that code for a nitrate reductase (NR), or from L-
arginine in a reaction catalyzed by an enzyme with nitric oxide
synthase (NOS)-like activity, even though the involved enzyme
named AtNOA1 possesses GTPase activity (Moreau et al., 2008).
However, it was reported that the Arabidopsis triple mutant
nia1/nia2/atnoa1, which produces very low levels of NO, is
hypersensitive to ABA (Lozano-Juste and León, 2010), suggesting
that NO could have a dual role in ABA-dependent responses.
Moreover, it has been found that increased levels of NO are
dependent on the NADPHox-dependent production of H2O2

(Bright et al., 2006). NO levels can also be modified by an
Alternative Oxidase (AOX). Tobacco plants lacking AOX show
high NO levels that impacts in stomatal function (Cvetkovska
et al., 2014). Recently García et al. (2010) have shown that
Arabidopsis mutant plants in β-Cyanoalanine synthase (Cys-C1),
a mitochondrial enzymatic source of H2S, show higher AOX1a
transcript levels than wild type, however exogenous application
of H2S to rice cell culture induced AOX expression (Xiao et al.,
2010). Further physiological studies are needed to clarify this
interaction.

H2S is produced during the passage of L-cysteine to pyruvate
and ammonia in a reaction catalyzed by L-cysteine desulfhydrase
(DES1; Alvarez et al., 2010). In Arabidopsis there are three
different genes involved in this reaction: the DES1 gene (Alvarez
et al., 2010; Scuffi et al., 2014), the At-LCDES gene (Jin et al.,
2011), and L-CDes gene (Hou et al., 2013). Recently, it has
been shown that the expression of these genes is upregulated in
response to ABA, Eth, JA, and SA, all hormones that modulate
stomatal movement (Hou et al., 2013). Even if sequence analysis
has shown that the promoter region of the DES1 gene contains
ABA-responsive elements (Scuffi et al., 2014), further work
is needed in order to have a better understanding about the
mechanism by which these hormones induce the expression of
those genes. Although, DES1 was reported to mediate ABA-
dependent stomatal closure (Scuffi et al., 2014), it was recently
reported that H2S regulates the activity of K+

in channel mostly
in an ABA- and Ca2+-independent manner, suggesting the
existence of ABA-regulated signaling pathways that can be,
alternatively, activated in response to other stimuli (Papanatsiou
et al., 2015).

NO PHYSIOLOGY IN GUARD CELLS

More than a decade of work on the participation of NO on
the regulation of stomatal movement resulted in a more or less
bounded idea of its mechanism of action, in particular in those
events triggered by ABA. As stated above, ABA-dependent ROS
production induces NO synthesis via NR/NOS-like activities.
NO regulates the activity of K+

in either via the Ca2+ release
from intracellular Ca2+ stores, or through the production of
phospholipase D (PLD)-dependent inositol phosphates. Another
molecular target of NO is the soluble guanylate ciclase (sGC)
that generates cyclic guanosine monophosphate (cGMP) which
is converted to 8-nitroguanosine 3′,5′-cyclic monosphosphate
(8nitro-cGMP) by NO, modulating the [Ca2+]cyt (Joudoi et al.,
2013). Recently, it has been proposed that NO may break the

ABA signaling in guard cells. On the one hand NO mediates
ABA-dependent stomatal closure via the regulation of K+ and
Cl− channels (Garcia-Mata et al., 2003; Sokolovski et al., 2005),
on the other hand it was suggested that NO can act as a
negative regulator of ABA pathway via S-nitrosylation of the
SnrK2,6/OST1 (Wang et al., 2015) and through the nitration
of a Tyr residue of the PYR/PYL/RCAR ABA receptor complex
(Castillo et al., 2015).

H2S PHYSIOLOGY IN GUARD CELLS

This first report of the participation of H2S in guard cell signaling
appeared in 2010, and since then several works have shown
that this gasotransmitter induces stomatal closure in different
plant species (García-Mata and Lamattina, 2010; Hu et al., 2014;
Papanatsiou et al., 2015). In Arabidopsis, DES1 produces H2S
in response to ABA. H2S, in turn, increases endogenous NO
production (Scuffi et al., 2014). H2S-dependent stomatal closure
is impaired in the nia1/nia2 double mutant. Moreover, the
expression of both genes was reported to be upregulated by H2S
donors, suggesting that NR is involved in H2S-dependent NO
production (Scuffi et al., 2014). However, Lisjak et al. (2010,
2011) showed that exogenous addition of H2S decreased ABA-
dependent NO production and thus induced stomatal opening.
Interestingly, it was reported that H2S also modulates Eth-
dependent stomatal closure, but in this particular case, NO was
reported to act upstream of H2S (Liu et al., 2011; Hou et al.,
2013).There are other components, beside NR, that were pointed
as targets of H2S during stomatal closure induction, among
them: (i) the member of the multidrug resistance protein family
AtMRP5, which was proposed as a modulator of Ca2+ and anion
channels (Suh et al., 2007; García-Mata and Lamattina, 2010); (ii)
8-nitro cGMP, which reacts with H2S to form 8-mercapto cGMP
tomodulate [Ca2+]cyt (Honda et al., 2015); and (iii) K+

in channels,
which are inactivated by H2S in an ABA-independent manner
(Papanatsiou et al., 2015).

THE INTERPLAY BETWEEN NO AND H2S

The gasotransmitters NO and H2S not only share
physicochemical similarities but they can also interact with
each other in different biological systems and physiological
conditions. Even though, there is still much to learn about:
(i) the chemical nature of these interactions, (ii) the different
products that can be potentially formed in vivo from the
interaction, and (iii) the different biological outcomes. The study
of the interaction between different gasotransmitters has kept
the attention of researchers from different fields. As a result,
different kinds of interactions have been described. There are
interactions in which different gasotransmitters can act on the
same molecular targets but having either the same or sometimes
opposite outcomes (Mustafa et al., 2009b). An example of this
in plants is the case of ABA-dependent induction of stomatal
closure, where it has been reported that, on the one hand, ABA
induces H2S production which in turn increases endogenous NO
levels triggering stomatal closure (García-Mata and Lamattina,
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2010; Scuffi et al., 2014), while on the other hand, it is reported
that exogenous addition of H2S decreases ABA-dependent NO
production, thereby producing the opening of the stomatal pore
(Lisjak et al., 2010, 2011). There are other crosstalks in which
different gasotransmitters produce the same outcome but acting
on different molecular targets (Coletta et al., 2012). Such is the
case of the regulation of guard cell K+ channels, where both NO
andH2S selectively inactivate K

+

in, however NO does this through
a response that involves the release of Ca2+ from intracellular
stores (Garcia-Mata et al., 2003), while H2S inactivates K+

in,
mostly in an ABA and Ca2+ independent manner (Papanatsiou
et al., 2015).

H2S and NO can also regulate each other source, by
modulating the enzymatic production of the other. In animal
systems H2S is able to down regulate NO production by
inhibiting both constitutive and inducible NOS isoforms (Kubo
et al., 2007) or to upregulate endothelial NOS (eNOS) dependent
NO production (Predmore et al., 2011). In plants, it has been
suggested that H2S induces NR-dependent NO production via
the regulation of both NIA1 and NIA2 genes (data accessible
at NCBI GEO database, accession GSE32566). The cross
regulation of gasotransmitter sources has been also shown in the
opposite sense. Zhao et al. (2001) have shown that NO donors
upregulate the expression of the animal enzymatic H2S source,
cystathionine-γ-lyase (CSE) and its consequent H2S production.
In plants NO also upregulates H2S production during Eth-
induced stomatal closure by increasing the expression of AtL-
CDes/AtD-CDes genes (Liu et al., 2011, 2012).

The gasotransmitters can directly modify their specific targets
by posttranslational modification (PTM) of the target protein.
Nitric oxide can react with the thiol group of a cysteine residue to
form S-nitrosocysteines residues (R-SNO) in a process known as
S-nitrosylation, while H2S forms a persulfide group (R-SSH) in a
process known as S-sulfhydration. There are proteins that can be
modified by both gasotransmitters at the same cysteine residue.
Interestingly, sulfhydration and nitrosylation can influence
the protein function in different manners, S-nitrosylation
modifications usually results in the inactivation of the protein
while S-sulfhydration of the protein in many cases results in
activating the biological function of the protein (Mustafa et al.,
2009a; Jiang et al., 2010). Two examples of the different effects
of the PTM in plants are the enzymes ascorbate peroxidase
(APX) and glyceraldehydes-3P-dehydrogenase (GAPDH) whose
activities are affected in different senses when they are S-
nitrosylated or S-sulfhydrated, enabling enzymes play additional
functions due to PTMs processes (Aroca et al., 2015).

The study of the interaction between H2S and NO is one of
the current challenges for understanding the biology of these two
gasotransmitters. The current knowledge shows that these two
gases can interact at different stages of the signaling process, at
different levels of their biosynthetic pathways and depending of
the metabolic and redox status of the target cells (Cortese-Krott
et al., 2014, 2015a; Lo Faro et al., 2014).

The existence of a direct chemical reaction between NO
and H2S has gained strength in recent years. It is speculated
that this interaction may result in the formation of some novel
forms of nitrosothiols not yet fully characterized. In a recent

paper, Cortese-Krott et al. (2015b) proposed that the interaction
of NO and H2S would result in the formation of bioactive
products at physiological pHs, emphasizing the formation of
nitrosopersulfide (NO−), polysulfides (HSn), and N-nitroso-
hydroxylamine-N-sulfonate (SULFI/NO). These compounds
could regulate the bioavailability of NO and H2S by either the
releasing or scavenging of each of them, which is depending
on the relative concentrations of each one and the redox
status of the cell (Cortese-Krott et al., 2015a) In a simplified
schematic representation, Figure 1, we summarize the interplay
and the close association existing between NO and H2S, and the
formation of potential intermediates that could be involved in
the regulation of guard cell physiology. These new discovered
molecular forms might potentially explain the conflicting results
concerning the roles of NO and H2S of influencing stomatal
movement.

CONCLUSIONS

The details of the biochemical interaction between NO and
H2S are scarcely known in guard cells and in plant systems in
general, in comparison to some physiological processes in animal
systems (Kolluru et al., 2013; Lo Faro et al., 2014; Cortese-Krott
et al., 2015a). However, the evidences presented in this study
indicate that both gases can modulate stomatal movement acting
independently, or in concerted action, in and ABA-triggered

FIGURE 1 | Schematic model showing the action of NO and H2S and

the interplay between them in guard cell signaling in response to

different stimuli. Both NO and H2S are produced enzymatically by nitrate

reductase (NR) and L-cysteine desulfhydrase (DES), respectively, in response

to abscisic acid (ABA), ethylene (Eth), and other stimuli. Some of the known

targets of NO and H2S are inward rectifying K+ channels (K+in ), and the

enzymes ascorbate peroxidase (APX) and glyceraldehyde-3-phosphate

dehydrogenase (GAPDH). The gray box shows the chemical reactions

between NO and H2S, and the formation of potential intermediates that could

be involved in the regulation of guard cell physiology. HSNO, thionitrous acid;

SSNO−, nitrosopersulfide; RSNO, nitrosothiols; Hs−n , polysulfide; S•
−, radical

anion; SO2−
3 , sulfite, and SULFI/NO, N-nitrosohydroxylamine-N-sulfonate.

Blue arrows, ABA triggered events, green arrows Eth triggered events; red

arrows participation of other stimuli. Arrow end, activation; blunt end,

inactivation.
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signaling cascade, or in ABA-independent manner. They can
modulate the activity of the same molecular target by PTM of
cysteine residues, and can even regulate the production and/or
bioavailability of each other. In conclusion, it arises the point
of the need to be cautious when drawing conclusions about the
effects of either NO or H2S, unless the effect of both are studied
together at the same biological conditions.
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