2 Effect of Waxes Addition on the Crystallization Behavior of Anhydrous Milk Fat 3 4 Silvana Martini¹*, Amalia A. Carelli², and Jiwon Lee¹ 5 ¹ Department of Nutrition and Food Sciences, Utah State University, 8700 Old Main Hill, 6 7 750 North 1200 East, 84322-8700, Logan, UT ² Planta Piloto de Ingeniería Química, Universidad Nacional del Sur, Consejo Nacional de 8 9 Investigaciones Científicas y Técnicas, 8000 Bahía Blanca, Argentina 10 11 *Silvana Martini, Department of Nutrition and Food Sciences, Utah State University, 8700 Old 12 Main Hill Logan, UT, Telephone: 435-797-8136, Fax: 435-797-2379, e-mail: Silvana.martini@usu.edu, webpage: http://cc.usu.edu/~smartini 13 14 Amalia A. Carelli, Planta Piloto de Ingeniería Química, Universidad Nacional del Sur, Consejo 15 16 Nacional de Investigaciones Científicas y Técnicas, Camino Carridanga km. 7, 8000 Bahía 17 Blanca, Argentina, e-mail: acarelli@plapiqui.edu.ar 18 19 Jiwon Lee, Department of Nutrition and Food Sciences, Utah State University, 8700 Old Main 20 Hill Logan, UT, e-mail: jiwonlee@cc.usu.edu 21 22 Running title: Crystallization of AMF-wax blends

Este paper fue pubicado en: J Am Oil Chem Soc (2008) 85:1097-1104. DOI 10.1007/s11746-008-1310-2

Abstract

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Physicochemical characteristics of lipid-based foods depend, among other factors, on the microstructure and the characteristics of the lipid network formed during crystallization. The objective of this study was to evaluate the effect of sunflower-oil waxes' addition on the crystallization and melting behavior of anhydrous milk fat (AMF), a lipid with low content of palmitic and trans-fatty acids. The crystallization and melting behavior of AMF alone and with the addition of 0.25 and 0.5% of waxes was studied using a differential scanning calorimeter. The morphology of the crystallized samples was evaluated with a polarized light microscope. The addition of waxes induced and promoted the crystallization of AMF at high temperatures (> 25 °C) as evidenced by lower induction times of crystallization and higher crystallization and melting enthalpies. In addition, smaller crystals and different morphologies were obtained when AMF was crystallized with the addition of waxes. These results suggest that waxes could be used as an additive to modify lipid networks and their physicochemical characteristics, such as texture, smoothness and mouthfeel. **Key words:** sunflower-oil waxes, crystallization, induction times, differential scanning

calorimetry, polarized light microscopy, microstructure.

Introduction

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

42

Consumers' demand for *trans*-fat free products has increased over the years. Since January 2006, the United States requires *trans*-fat information to be included in nutrition labels. This requirement was a consequence of the association between trans-fatty acids, coronary heart disease (CHD), and the increase of undesirable LDL values in blood [1-3]. Due to the harmful effects of trans-fatty acids, healthy lipid alternatives are being sought. From the functionality perspective, trans-fats are ideal lipids to be used in foods since they impart good physicochemical characteristics such as texture and hardness. Some highly saturated fats, such as palm oil (with more than 40% of palmitic fatty acids), meet similar physicochemical specifications as trans-fats. Although less severe, fats with high percentage of palmitic fatty acids have similar effect over CHD as trans-fats [4]. When using healthier fat alternatives, that is, lipids low in palmitic and *trans*-fatty acids, the desired physicochemical characteristics are hard to achieve. Some of the physicochemical characteristics expected in a lipid-based food product are texture, mouthfeel and hardness. These attributes depend, among other factors, on the microstructure and crystallization behavior of the lipid network. For example, small crystals are expected in margarine and butter to achieve a smooth texture. The desired functionality in a healthy lipid can be attained by using different processing conditions and/or additives that can modify the crystallization behavior of the lipid. The addition of lipophilic molecules to vegetable oils has gained popularity due to their ability to form gels when incorporated in an oil at low concentrations. Dr. Toro-Vazquez' group was able to induce the gelation of safflower oil by adding Candelilla waxes in concentrations above 1% [5]. These results were in the same line

64 as the ones obtained by Dr. Marangoni's group who studied the formation of organogels with 65 ricinelaidic acid [6] and 12-hydroxysteric acids in vegetable oils [7, 8]. 66 Anhydrous milk fat (AMF) has the potential to be used as trans-fatty acids replacement due to its 67 low content in palmitic and trans-fatty acids. AMF is known to be high in stearic acid, which has been shown to have a neutral effect on CHD [2, 3]. Besides fat composition, AMF has good 68 69 sensory attributes such as flavor and mouthfeel [9]. To explore the different functional properties 70 of AMF and its possible use in different food products such as spreads, dressings and 71 shortenings, several authors studied the effect of processing conditions and emulsifiers' addition 72 on the crystallization behavior of AMF and AMF fractions [10-18]. 73 Waxes are lipids consisting of esters of long chain fatty acids and long chain alcohols. Waxes 74 can be found in nature in fruits and seeds. They are also a significant by-product during the 75 refining process of several vegetable oils such as sunflower and rice oil [19-21]. In sunflower oil 76 refining, waxes have low commercial value and are used for animal feeding. Finding new 77 applications for waxes obtained from sunflower oil refining might increase their market value. 78 Due to their lipophilic characteristics, waxes have the potential to alter the crystallization 79 behavior of lipids, in this case, AMF. 80 The objective of this work is to evaluate the effect of sunflower waxes on the crystallization 81 behavior of AMF. The effect of sunflower wax addition on the induction time of crystallization, 82 the crystallization and melting profile, and the microstructure of AMF was investigated. 83 Changes in the crystallization behavior of AMF due to the addition of waxes is the first step that 84 needs to be investigated to evaluate the possibility of modifying the functional characteristics of 85 AMF with the ultimate goal of using it as a shortening or in foods such as spreads and dressings.

Experimental Procedures

Starting Materials

AMF was a donation from KRAFT. Sunflower oil waxes (SFOw) were isolated and purified from tank settlings donated by ADM. For the isolation, approximately 60 g of the tank settlings were mixed with hexane. The mixture was heated to approximately 50 °C for 30 min. After this time, the solution was filtered while maintaining the system hot to eliminate insoluble particles. The hexane in the filtered solution was then evaporated using a Rotavapor system (Büchi 001). Waxes and oil were obtained after this process. This solution was kept at 4 °C for at least 48 h to allow waxes' precipitation and then centrifuged at 3,000g for 1 h at 4 °C. Waxes were obtained in the pellet. Waxes were purified by several washes with cold hexane. Purified waxes were mixed with AMF to obtain a final concentration of 0.25 and 0.5% (w/w) of waxes in AMF.

Chromatographic Standards

The following wax standards of almost 99% purity (Sigma Chemical Co., St. Louis, MO) were used for wax chromatographic analysis: C32 = lauric acid arachidyl ester ($C_{32}H_{64}O_2$), C36 = stearic acid stearyl ester ($C_{36}H_{72}O_2$), C38 = arachidic acid oleoyl ester ($C_{38}H_{74}O_2$), C40 = arachidic acid arachidyl ester ($C_{40}H_{80}O_2$), C42 = arachidic acid behenyl ester ($C_{42}H_{84}O_2$) and C44 = behenic acid behenyl ester ($C_{44}H_{88}O_2$). Standards of fatty-acid methyl esters and fatty alcohols with a purity of almost 99% over a wide range of carbon atom number (C14-C30), were acquired from Sigma (Sigma Chemical Co., St. Louis, MO).

111

Wax Chemical Characterization

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

The chemical composition of the waxes and of their constituents (fatty acids and alcohols) was determined using GC [22, 23]. Briefly, the experimental procedures were:. GC of waxes: 2 mg of the material was directly dissolved in chromatographic grade n-heptane (3 mL), filtered through an organic-solvent 0.5-µm filter and analyzed by capillary GLC [23]. A gas chromatograph Varian 3700 equipped with a FID and a temperature programmable on-column injector (Varian Associates Inc., Palo Alto, CA) was used for the final analysis. The capillary column was a HP5 (5% diphenyl and 95% dimethyl-polysiloxane), fused silica 11 m length x 0.32 mm i.d., 0.52 µm film thickness (Hewllet-Packard, Palo Alto, CA). The operating conditions were: hydrogen at 3 mL/min and a pressure 8 psig as carrier gas; oven temperature programming: 80 °C-30 °C/mi n-200 °C (1 min) -3 °C/min-340 °C (20 min); on-column injector programmed from 80 °C to 320 °C at 40 °C/min and injection volume of 2 µL; FID at 350 °C and attenuation 2x10⁻¹². A recorder-integrator Empower Pro (Waters, Milford, MA) was used for quantification. The analysis was performed by triplicate. Fatty acids and fatty alcohols separation: The determination of the constituents of sunflower oil waxes required their saponification, extraction of both saponifiable and unsaponifiable matter, and separation of alcohols in the unsaponifiable matter by TLC, followed by the analysis of the fatty acids and separated alcohols by GC [22]. The separation technique was based in IOOC analytical method [24] with some modifications to secure a complete saponification and a good recovery of the analytes. Briefly, waxes were saponified with 4 mL of 2 N-KOH for 6 hs, followed by three washings with 4 mL of ethyl ether, and a subsequent washing of these joint

fractions with three-5mL portions of ethyl alcohol (50%). The hydro-alcoholic fraction contains the fatty acids while the ethyl fraction contains the fatty alcohols. Fatty acids were converted to methyl esters by acid-catalyzed esterification according to IUPAC standard method 2.301 [25]. Fatty alcohols were separated from other unsaponifiable matter by TLC as described in IOOC method [24]. GC of fatty acids: Fatty-acid composition was determined by gas chromatographic analysis according to IUPAC standard method 2.302 [25]. The fatty-acid methyl esters were separated on a SP-2380 (stabilized poly [90% biscyanopropyl / 10% cyanopropylphenylsiloxane]) fused silica capillary column, 30 m length x 0.25 mm i.d., 0.25 µm film thickness (Supelco, Inc., Bellefonte, PA) maintained at a temperature of 170 °C for 15 min and then increased at 4 °C/min to 240 °C (held for 10 min), using hydrogen as the carrier gas. GC of fatty alcohols: Standard solutions of alcohols and alcohol samples were turned into trimethylsilyl ethers and analyzed according to IOOC method [24]. Fatty-alcohols analysis was carried out on a SE-54 fused-silica capillary column (30 m x 0.25mm i.d.) of film thickness 0.25 μm (Supelco, Inc., Bellefonte, PA), increasing the temperature at 7 °C/min from 170 °C to 300 °C (held for 15 min), using hydrogen as gas carrier. Crystallization Assays

151152

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

AMF, AMF with the addition of 0.25% (AMF + SFOw0.25) and 0.5% (AMF + SFOw0.5) of sunflower oil waxes were crystallized in a DSC pan and in a microscope slide.

154

Differential Scanning Calorimetry (DSC): Five to fifteen milligrams of sample was placed in an aluminum DSC pan and hermetically sealed. Samples were placed in the DSC chamber and heated to 80 °C and kept at this temperature for 30 min to allow the complete melting of AMF and waxes. After this step, samples were cooled at 3 °C/min to crystallization temperature (T_c = 23, 24, 25, 26, 27, 28 °C), kept at T_c for 90 min to allow isothermal crystallization of the lipid system and heated at 5 °C/min to 80 °C to evaluate the melting behavior. The cooling rate of 3 °C/min was chosen to mimic the maximum cooling rate achievable on the microscope stage (see below for details). Crystallization temperatures were chosen to include a broad range of temperatures at which AMF and AMF with SFOw will crystallize isothermally. That is, at temperatures below 23 °C, the samples crystallized before reaching crystallization temperature (non-isothermal crystallization). At temperatures above 28 °C, AMF samples did not crystallize over the 90 min that they were held at T_c due to the low supercooling. The onset of crystallization was calculated as the time elapsed between the moment the sample reached T_c and the moment when crystallization occurred. This onset was expressed in minutes and was referred as induction times of crystallization. The melting behavior of the samples was evaluated by the onset temperature (T_{on}) , peak temperature (T_{p}) and enthalpy (ΔH) . Isolated and purified sunflower waxes were placed in a DSC pan as described for the AMF samples and heated from room temperature to 100 °C to evaluate their melting profile. Onset and peak temperatures, and the change in enthalpy associated with the melting of the waxes were recorded. Polarized light microscopy (PLM): In addition to the DSC crystallization experiments, samples were crystallized in a slide to evaluate the crystals' morphology. Samples were heated to 80 °C to allow complete melting of the lipids. A drop of the melted sample was placed in a

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

thermostatized slide and cover slide and placed in the temperature-controlled stage adapted to the PLM. Once the sample was placed in the cooling stage (set at 60 °C), it was cooled to T_c (24, 26 and 28 °C) and the crystallization of the sample was followed using the PLM. The cooling rate achieved under these conditions was 3 °C/min. PLM images were taken at different times. The average crystal size and area fraction covered by the crystals were determined using Image J software (1.38x, NIH, USA http://rsb.info.nih.gov/ij/Java 1.5.0_07).

Statistical analysis: Values reported for the DSC and PLM measurements are mean values and standard deviations of duplicate experiments. Significant differences were analyzed using a two-way ANOVA and a Bonferroni post-test (α = 0.05). Statistical analysis was performed using Graph Pad software (GraphPad Prism version 4.00 for Windows, GraphPad Software, San Diego, CA, USA, www.graphpad.com).

Results and Discussion

Table 1 shows the chemical composition of the sunflower oil waxes in terms of their carbon number, fatty acid and alcohol content. The wax material consisted of C40-C56 waxes with higher percentages of C46, C48, C44 followed by C50 and C52. Baümler et al. [23] found a similar wax profile analyzing the waxes present in the hull of sunflower seed that were obtained by sunflower-seed hexane washing. This is in accordance with the fact that the hull contribution to the wax content in sunflower oil reaches around 80% when only the crystallized fraction is considered [22]. Fatty acids were in the range of 14-30 carbon atoms with C18:1 (34.6%), C20:0 (11.64%) and C16:0 (9.39%) being most prevalent. Fatty alcohol distribution was in the range of 18-34 carbon atoms. The main alcohols found in the waxes were C24 (27.6%), C26 (26.9%) and

201 C28 (14.4%). Small quantities of odd-carbon compounds can explain the presence of odd-carbon

waxes. These findings are in accordance to previous results from other authors [26-28].

In addition, the purified waxes were characterized by DSC giving the following melting profile:

204 T_{on} : 73.4 \pm 2.3 °C, T_{p} : 76.6 \pm 1.0 °C and Δ H: 160.1 \pm 21.5 J/g.

205

211

212

213

214

215

216

217

219

220

221

222

223

224

203

Figure 1 shows the mean values and standard deviation for the induction times of crystallization for AMF, AMF + SFOw0.25 and AMF + SFOw0.5 when crystallized in the DSC pan at T_c = 23, 24, 25, 26, 26.5, 27, 27.5, and 28 °C. As expected, an exponential relationship between the induction time of crystallization and the crystallization temperature (T_c) was observed for all samples. This means that as the T_c increased the induction time of crystallization increased, and

samples. This means that as the T_c increased the induction time of crystallization increased, and

more time was needed for the sample to crystallize due to the lower supercooling. For a constant

T_c, the induction time of crystallization decreased as the amount of added wax increased. That is,

the addition of waxes induced the crystallization of AMF. This difference was more evident at

higher T_c ($T_c \ge 27$ °C) than at lower T_c ($T_c \le 27$ °C). For example, at 27.5 and 28.0 °C neither

AMF nor AMF + SFOw0.25 crystallized during the 90 min at T_{c.} However, AMF + SFOw0.5

did crystallize at 27.5 and 28 °C with induction times of approximately 53 and 66 min,

respectively. This indicates that the addition of 0.5% of SFOw induced the crystallization of

AMF by at least 40 min.

Figure 2 shows the crystallization and melting enthalpies together with the melting onset (T_{on})

and melting peak temperature (Tp) for all the samples crystallized at different Tc. The

crystallization enthalpy decreases as a function of T_c (Figure 2a). The higher the T_c (lower

supercooling), the lower the crystallization enthalpy; indicating that fewer lipids are being

crystallized. For T_c below 27 °C no significant differences (p < 0.05) were found between the

crystallization enthalpies of the different samples. For $T_c = 27$ °C a significant difference (p <

0.05) was observed between crystallization enthalpies with a marked increase in the enthalpy value in samples with higher wax concentration. No crystallization was observed for AMF and AMF + SFOw0.25% at 27.5 and 28 °C. The lack of differences at low temperatures might be due to the high supercooling experienced by the sample. Such high supercoolings result in a fast crystallization of AMF even if no waxes are added. At high temperatures, that is lower supercooling, the crystallization of AMF is delayed but the presence of high melting point molecules in the waxes (Table 1) induces the crystallization in AMF + SFOw0.25% and AMF + SFOw0.5% samples. After 90 min at T_c, melting enthalpies were significantly different between samples (Figure 2b). Two different behaviors were observed. When samples were crystallized at temperatures below 25 °C, the melting enthalpy of AMF + SFOw0.25 was significantly lower that the one observed for AMF and AMF + SFOw0.5 (p < 0.05) suggesting that when 0.25% of waxes were added to AMF, even though the crystallization was induced (Figure 1), a delay in the crystal growth was observed. This delay was probably due to the co-crystallization or adsorption of wax crystals on the surface of AMF. This crystallization mechanism was described by Garti [29] to explain the effect of emulsifiers on the crystallization behavior of fats. No significant differences were found at T_c between 25 and 26.5 °C among the melting enthalpies of the samples, while at temperatures above 26.5 °C enthalpies values of AMF + SFOw (0.25 and 0.5%) were significantly different from the ones obtained for AMF alone. The more waxes added to AMF, the higher the melting enthalpy. This suggests that for higher crystallization temperatures (lower supercoolings) the addition of sunflower waxes to AMF not only induced the crystallization (Figure 1) but also promoted the crystal growth (higher enthalpy values).

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

The melting T_{on} increased as a function of T_c (Figure 2c): the higher the T_c, the higher the T_{on}. In general, no significant differences were found between the samples' T_{on} at a constant T_c, with the exception of samples crystallized at $T_c \ge 27.5$ °C where a significant increase in the T_{on} value was observed for AMF crystallized without the addition of waxes. For samples crystallized with the addition of waxes, the same crystallization behavior observed at lower temperatures is extended to temperatures above 27.5 °C. These results suggest that while only high melting point triacylglycerides crystallize at high temperatures in AMF samples, the addition of waxes induces the crystallization of lower melting point triacylglycerides resulting in lower T_{on} values. Figure 2d shows a continuous increase in the melting T_p as a function of T_c for AMF crystallized without the addition of waxes. T_p values for AMF crystallized with the addition of waxes resulted in significantly lower values in samples crystallized at T_c above 23 °C (p< 0.05). At this temperature, the lowest T_p was observed for AMF + SFOw0.25. At $T_c = 25$ °C the addition of 0.25 and 0.5% of waxes to AMF resulted in significantly lower T_p when compared to AMF alone (p < 0.001). The lowest melting T_p was observed for AMF + SFOw0.25, while AMF +SFOw0.5 resulted in an intermediate melting T_p value. At $T_c > 25$ °C the addition of waxes resulted in significantly lower T_p values (p < 0.001) but these values were not significantly different between them. This behavior will be explained with Figure 3 description. It is interesting to note here that even though no crystallization was detected by the DSC at 27.5 and 28 °C for AMF and AMF + SFOw0.25% during 90 min at T_c (Figure 2a), some crystals were detected during melting for AMF crystallized at 27.5 °C but not at 28 °C; while for AMF + SFOw0.25% crystals were detected during melting when crystallized at both 27.5 °C and 28 °C (Figures 2 b-d). As an example of the melting behavior of the samples used in this study, Figure 3 shows the DSC melting profiles of samples crystallized at 23, 25 and 27 °C. This Figure explains the results

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

discussed in Figure 2d. It can be seen that for $T_c = 23$ °C the melting profiles of the three samples (AMF without and with the addition of sunflower oil waxes) are not significantly different (p < 0.05) (Figure 3a). A pronounced peak is observed at around 33 °C with a small shoulder (see arrow in Figure 3) at lower temperatures (~27 °C). When samples were crystallized at 25 °C (Figure 3b) this shoulder moves to higher temperatures and becomes more important especially in AMF samples crystallized with the addition of waxes. In addition, the use of 0.25% of waxes seems to have a greater effect on the development of this shoulder at 25 °C. This behavior results in the significant decrease in the T_p described in Figure 2d since in these samples, the shoulder becomes the predominant peak. When samples were crystallized at $T_c > 25$ °C (Figure 3c) the low temperature shoulder becomes even more important with no significant differences between the amounts of waxes added. This singular melting behavior as a function of T_c might be due to different polymorphic forms or molecular re-organizations that could be originated in AMF as a consequence of wax addition. Figure 4 shows the morphology of crystals when AMF was crystallized at 26 °C without and with the addition of sunflower waxes. An increase in the number and size of AMF crystals as a function of time can be observed. The area fraction covered by the crystals increased from 0.6 to 12.6% for AMF crystallized at 26 °C for 35 and 55 min, respectively. AMF crystallized forming spherulites with needle-like crystals organized radially outwards from the center. When AMF was crystallized with the addition of 0.25% of waxes, the crystals obtained were smaller; however the morphology was still the same. In addition, as discussed previously (Figure 1) an induction of crystallization was observed. The size and shape of the crystals did not change as a function of crystallization time, however a slight increase in the crystals' size can be observed when comparing the micrographs at 35 and 55 min showing an area fraction of 13.2 and 15.3%,

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

respectively. When AMF was crystallized with the addition of 0.5% of waxes, the crystals were smaller than the ones observed for AMF + SFOw0.25 (10.5 vs. 18.2 µm, respectively) due to the presence of more nucleation sites as a consequence of waxes' addition. Figure 5 shows the morphology of crystals obtained when AMF was crystallized for 60 min without and with the addition of waxes at different crystallization temperatures ($T_c = 24, 26$ and 28 °C). As described before, when AMF was crystallized without the addition of waxes, needlelike crystals were obtained which were arranged in a spherulites-like manner. For lower T_c (24 °C) both small and large spherulites were observed. For AMF crystallized with the addition of 0.25% of waxes, significantly smaller crystals are obtained. In addition, when this sample was crystallized at 24 °C two evident crystal populations were observed representing different spherulites sizes. At intermediate (26 °C) and high temperatures (28 °C) the crystal distribution was more uniform and crystals were smaller. When AMF was crystallized with the addition of 0.5% of waxes, the crystals formed were even smaller, especially at higher temperatures (26 and 28 °C). In addition, at 28 °C two different crystal populations were again observed with prevalence of smaller crystals. The presence of two different populations of crystals might be due to the differences in chemical composition between the SFOw and the AMF. The small crystals might be formed predominantly by wax molecules (high molecular weight molecules with high melting points), while the big spherulites could be constituted by triacylglycerols present in the AMF which at high temperatures crystallize very slowly forming big agglomerates. In summary, sunflower oil waxes can be used to modify the crystallization behavior of AMF. This research showed that the addition of sunflower oil waxes can decrease the induction time of crystallization, promoting crystallization, especially at high crystallization temperatures.

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

Moreover, waxes' addition significantly affected the microstructure of the AMF. The higher the amount of waxes added, the smaller the crystals formed. Due to the effect of waxes on AMF crystallization behavior and microstructure, these findings show that the addition of waxes to AMF might have significant implications on the texture, polymorphism and mouthfeel of the lipid system.

The induction of crystallization provoked by sunflower waxes suggests that these molecules could be used to structure lipids and modify their functional properties for food applications. An induction in the crystallization usually results in harder materials with higher solid fat contents. In addition, microstructural differences must be taken into account when evaluating the functional properties of lipids. The possibility of different polymorphic forms must not be neglected either. More research is necessary to evaluate the effect of sunflower waxes on the functional properties of AMF such as solid fat content, texture and sensory profile.

Acknowledgements

The authors are thankful to the Utah State University Agricultural Experiment Station and Undergraduate Research Collaborative Opportunity grant for financial support. This work was also supported by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) and Universidad Nacional del Sur, Argentina. Thanks to KRAFT for providing the AMF and to ADM for providing the tank settling as the raw material for wax isolation and purification. The authors will also like to thank Ms. Jennifer Thurgood and Mr. Lance Andreasen for helping in the data collection. This manuscript was approved as paper ° 7962 by the Utah Agricultural Experiment Station.

339 References

- 1. Hu FB, Manson JE, Willett WC (2001) Types of dietary fat and risk of coronary heart disease:
- a critical review. J Am Coll Nutr, 20:5-19
- 2. Tarrago-Trani M T, Phillips K M, Lemar LE, Holden JM (2006) New and existing oils and
- fats used in products with reduced trans-fatty acid content. J Am Diet Assoc, 106:867-880
- 3. Aro A, Jauhiainen M, Partanen R, Salminen I, Mutanen M (1997) Stearic acid, trans fatty
- acids, and dairy fat: effects on serum and lipoprotein lipids, apolipoproteins, lipoprotein (a),
- and lipid transfer proteins in health subjects. Am J Clin Nut, 65:1419-1426
- 4. Mensink RP, Zock PL, Kester ADM and Katan MB (2003) Effects of dietary fatty acids and
- carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and
- apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77:1146–1155
- 350 5. Toro-Vazquez JF, Morales-Rueda JA, Dibilidox-Alvarado E, Charo-Alonso M, Alonzo-
- Macias M, Gonzalez-Chavez MM (2007) Thermal and textural properties of organogels
- developed by candelilla wax in safflower oil. J Am Oil Chem Soc 84:989-1000
- 6. Wright AJ, Marangoni AG (2007) Time, temperature and concentration dependence of
- ricinelaidic acid-canola oil organogelation. J Am Oil Chem Soc 84:3-9
- 7. Rogers MA, Wright AJ, Marangoni AG (2008) Nanostructuring fiber morphology and solvent
- inclusions in 12-hydroxysteric acid/canola oil organogels. Current Opinion in Colloid &
- 357 Interface Science DOI:10.1016/j.cocis.2008.02.004
- 8. Rogers MA, Wright AJ, Marangoni AG (2008). Engineering the oil binding capacity and
- 359 crystallinity of self-assembeled fibrillar networks of 12-hydroxysteric acid in edible oils. Soft
- 360 Matter DOI: 10.1039/b803299h

- 9. Kaylegian KE, Hartel RW, Lindsay RC (1993) Applications of modified milk fat in food
- 362 products. J Dairy Sci 76:1782-1796
- 363 10. Cerdeira M, Martini S, Hartel RW, Herrera ML (2003) Effect of sucrose ester addition on
- nucleation and growth behavior of milk fat-sunflower oil blends. J Agric Food Chem
- 365 51:6550-6557
- 366 11. Cerderia M, Pastore V, Vera L, Martini S, Candal RJ, Herrera ML (2005) Nucleation
- behavior of blended high-melting fractions of milk fat as affected by emulsifiers. Eur J Lipid
- 368 Sci Technol 107:877-885
- 369 12. Cerdeira M, Martini S, Candal RJ, Herrera ML (2006) Polymorphism and growth behavior of
- low-trans fatty acids blends formulated with and without emulsifiers. J Am Oil Chem Soc
- 371 83:489-496
- 372 13. Martini S, Puppo MC, Hartel RW, Herrera ML (2002a) Effect of sucrose esters and
- sunflower oil addition on microstructure of a high-melting milk fat fractions. J Food Sci
- 374 67:3412-3418
- 375 14. Martini S, Herrera ML, Hartel RW (2002b) Effect of processing conditions on microstructure
- of milk fat fraction/sunflower oil blends. J Am Oil Chem Soc 79:1063-1068
- 377 15. Martini S, Herrera ML and Hartel RW (2002c) Effect of cooling rate on crystallization
- behavior of milk fat fraction/sunflower oil blends. J Am Oil Chem Soc 79:1055-1062
- 16. Martini S, Cerdeira M, Herrera ML (2004) Effect of sucrose esters on the crystallization
- behavior of bulk oil systems. J Am Oil Chem Soc 81:209-211
- 381 17. Puppo MC, Martini S, Hartel RW, Herrera ML (2002) Effect of sucrose esters on isothermal
- crystallization and rheological behaviors of blends of high-melting milk fat fraction and
- 383 sunflower oil. J Food Sci 67:3419-3426

- 18. Martini S, Herrera ML, Hartel RW (2001) Effect of cooling rate on nucleation behavior of
- milk fat-sunflower oil blends. J Agr Food Chem 49:3223-3229
- 386 19. Martini S, Añón MC (2000) Determination of wax concentration in sunflower-seed oil. J Am
- 387 Oil Chem Soc 77:1087-1092
- 388 20. Martini S and Añón MC (2003) Crystallization of sunflower oil waxes. J Am Oil Chem Soc
- 389 80:525-532
- 390 21. Martini S, Añón MC (2005) Storage of sunflower-seeds: variation on the wax content of the
- oil Eur J Lipid Sci Technol 107:74-79
- 392 22. Carelli AA, Frizzera LM, Forbito PR, Crapiste GH (2002) Wax composition of sunflower
- 393 seed oils. J Am Oil Chem Soc 79:763-768
- 394 23. Baümler ER, Crapiste GH, Carelli AA (2007) Sunflower-oil wax reduction by seed solvent
- 395 washing. J Am Oil Chem Soc 84:511-515
- 396 24. International Olive Oil Council (accessed November 2006) Trade Standards applied to Olive
- Oils and Olive Pomace Oils. COI/T20/Doc. 26, 2003 Determination of aliphatic alcohol
- content by gas chromatography, http://www.internationaloliveoil.org
- 399 25. Standard Methods for the Analysis of Oils, Fats and Derivatives (1992) Paquot C, Hautfenne
- 400 A (eds) 7th edn. International Union of Pure and Applied Chemistry, Blackwel., Oxford
- 401 26. Mariani C, Fedeli E (1989) Minor components of vegetable oils: non-glyceridic esters, Riv
- 402 Ital Sostance Grasse LXVI:397-401
- 403 27. Liu H, Przybylski R, Dawson K, Eskin NAM, Biliaderis CG (1996) Comparison of the
- 404 composition and properties of canola and sunflower oil sediments with Canola seed hull
- 405 lipids. J. Am. Oil Chem. Soc. 73:493-498

28. Ramos Ayerbe F, Rodriguez Berbel F (1985) A study on the recovery of byproducts from the
dewaxing of sunflower oils of national production Grasas y Aceites 36:1-4
29. Garti, N. (1988) Effects of surfactants on crystallization and polymorphic transformation of
fats and fatty acids. In *Crystallization and Polymorphism of Fats and Fatty Acids*. Ed. Garti,
N. and Sato, K., pp. 267–304.
411
412

- 413 Figures Legends
- 414 **Figure 1:** Induction times of crystallization for AMF (■), AMF + SFOw0.25 (○) and AMF +
- SFOw0.5 (∇) when crystallized in the DSC.
- 416 **Figure 2:** Crystallization (a) and melting enthalpy (b); melting onset (T_{on}) and melting peak (T_p)
- 417 temperature (c and d, respectively) for samples crystallized at different T_c. AMF (■), AMF +
- 418 SFOw0.25 (\circ) and AMF + SFOw0.5 (∇)
- 419 **Figure 3:** DSC melting profiles of AMF crystallized without and with the addition of waxes. a)
- 420 $T_c = 23 \text{ °C, b}$ $T_c = 25 \text{ °C, c}$ $T_c = 27 \text{ °C}$
- Figure 4: Morphology of crystals obtained when AMF is crystallized at 26 °C without and with
- the addition of waxes: Variation as a function of time
- 423 **Figure 5:** Morphology of crystals obtained after crystallizing AMF without and with the addition
- of sunflower waxes for 60 min at 24, 26 and 28 °C.

Table 1: Chemical composition of sunflower oil waxes in terms of their carbon number, fatty acid and alcohol content

Wax ^a	(wt %)	Fatty Acid ^b	(wt %)	Fatty Alcohol ^b	(wt %)
C40	Tr.	C14:0	1.19	C18	1.79
C41	Tr.	C16:0	9.39	C20	1.38
C42	1.92	C16:1	0.82	C21	0.22
C43	0.45	C17:0	1.10	C22	8.99
C44	17.89	C18:0	6.65	C23	0.87
C45	1.80	C18:1	34.63	C24	27.60
C46	25.89	C18:2	4.51	C25	2.32
C47	1.61	C20:0	11.64	C26	26.90
C48	18.81	C20:1	0.53	C27	0.88
C49	1.16	C20:2	6.39	C28	14.45
C50	12.69	C22:0	6.19	C29	0.77
C51	1.86	C22:1	1.21	C30	7.67
C52	8.35	C23:0	1.03	C32	5.40
C53	0.68	C24:0	1.68	C34	0.76
C54	4.26	C24:1	0.39		
C55	0.33	C25:0	0.81		
C56	2.30	C26:0	0.74		
		C27:0	1.07		
		C28:0	2.64		
		C29:0	3.84		
		C30:0	3.45		

^aAverage values of three determinations (n=3), ^bAverage values of two determinations (n=2),

tr = traces (< 0.1%)

Figure 1: Induction times of crystallization for AMF (\blacksquare), AMF + SFOw0.25 (\circ) and AMF + SFOw0.5 (∇) when crystallized in the DSC

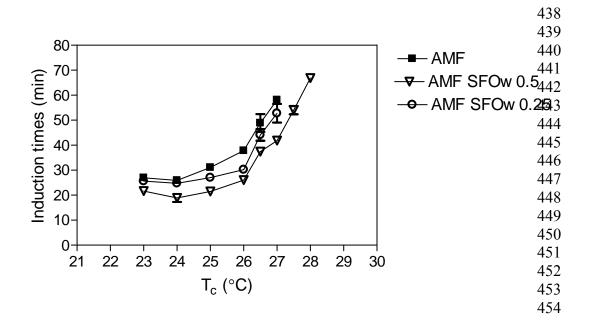
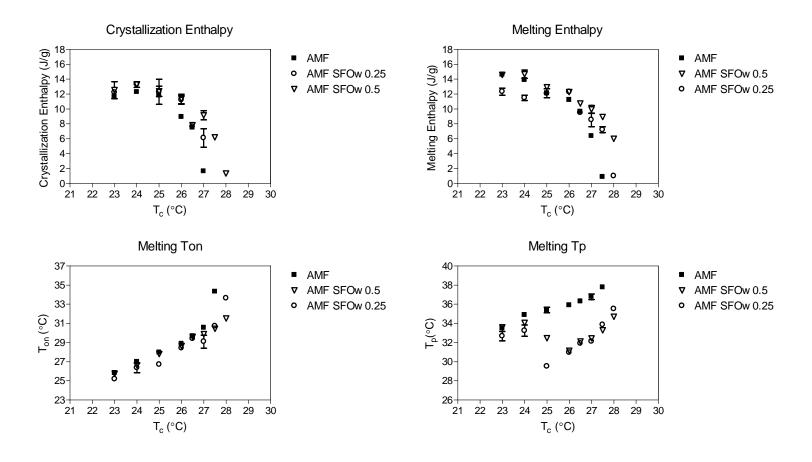
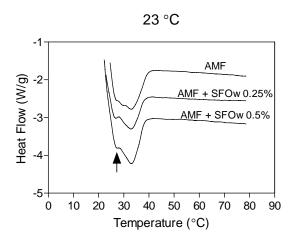
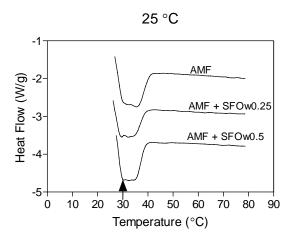
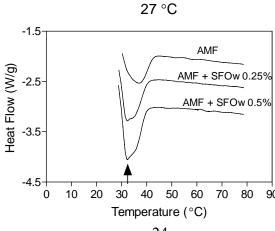



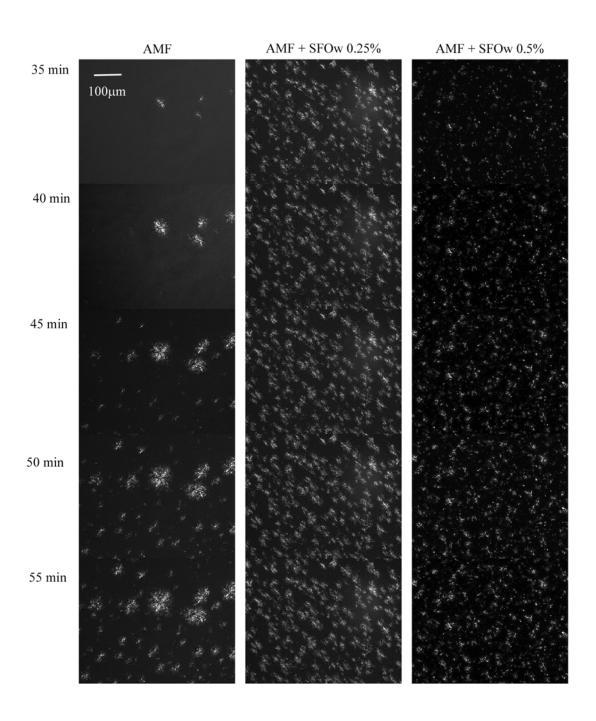
Figure 2: Crystallization and melting enthalpy; melting onset (T_{on}) and melting peak (T_p)


temperature for samples crystallized at different T_c. AMF (■), AMF + SFOw0.25 (○) and AMF


+ SFOw0.5 (∇)



<u>Figure 3:</u> DSC melting profiles of AMF crystallized without and with the addition of waxes. A) Tc = 23 °C, B) Tc = 25 °C, C) 27.5 °C



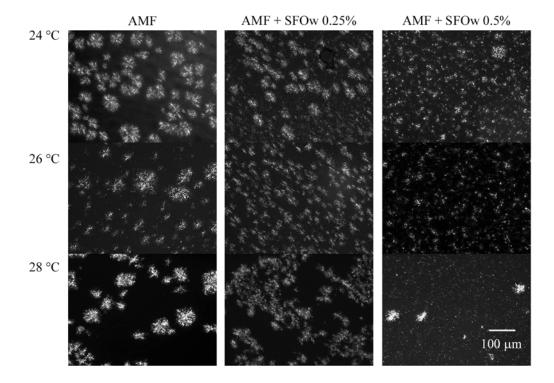


Figure 4: Morphology of crystals obtained when AMF is crystallized at 26 °C without and with the addition of waxes: Variation as a function of time.

