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Abstract

We review and further study the duality between string theory formulated on a curved
exact background (the two dimensional black hole) and string theory in flat space with
a tachyon-like potential. We generalize previous results on this subject by discussing a
twisted version of the Fateev-Zamolodchikov-Zamolodchikov conjecture. This duality is
shown to hold at the level of N -point correlation functions on the sphere topology, and
connects tree-level string amplitudes in the euclidean version of the 2D black hole (×
time) to correlation functions in a non-linear σ-model in flat space but in presence of a
tachyon wall potential and a linear dilaton. The dual CFT corresponds to the perturbed
2D quantum gravity coupled to c < 1 matter (× time), where the operator that describes
the tachyon-like potential can be seen as a n = 2 momentum mode perturbation, while the
usual sine-Liouville operator would correspond to the vortex sector n = 1. We show how
the sine-Liouville interaction term arises through a twisting of the marginal deformation
introduced here, and discuss such ’twisting’ as a non-trivial realization of the symmetries
of the theory. After briefly reviewing the computation of correlation functions in sine-
Liouville CFT, we give a precise prescription for computing correlation functions in the
twisted model. To show the new version of the correspondence we make use of a formula
recently proven by S. Ribault and J. Teschner, which connects the correlation functions
in the Wess-Zumino-Witten theory to correlation functions in the Liouville theory. Con-
versely, the duality discussed here can be thought of as a free field realization of such
remarkable formula.

This paper is an extended version of the authors’s contribution to the XVIth International
Colloquium on Integrable Systems and Quantum Symmetries, to be held in Prague, Czech
Republic, in June 2007. Part of the material presented here is based on the results that
one of the authors has reported in Refs. [1, 2], and it is in some way related to the recent
works [3, 4, 5, 6, 7].
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1 Introduction

One of the most profound concepts in string theory is the suggestive idea that the spacetime
itself could be a mere emergent notion, a sort of effective description of a more basic entity [8].
This conception relies on the existence of the duality symmetries of string theory, manifesting
that concepts such as the curvature and topology of the spacetime lose their preponderant roles.
This idea is particularly realized by examples that manifestly show the duality between string
theory formulated on curved backgrounds (e.g. black holes) and the theory in flat space but in
presence of tachyon-like potentials. This is the subject we will explore here; and we will do this
by studying the worldsheet description of the 2D string theory in the black hole background
(i.e. the gauged SL(2, R)k/U(1) Wess-Zumino-Witten (WZW) model).

1.1 The subject

The relation between string theory in the 2D black hole background and Liouville-like conformal
field theories representing “tachyon wall” potentials was extensively explored in the past. One of
the celebrated examples is the Mukhi-Vafa duality [9], relating a twisted version of the euclidean
black hole to the c = 1 matter coupled to 2D gravity. The literature on the connection between
the c = 1 CFT and the black hole CFT is actually quite rich; we should refer to the list of
papers [10]-[29] and the references therein. Recently, a new relation between the 2D string
theory in the euclidean black hole background and a deformation of the c = 1 matter CFT
has received remarkable attention: This is the renowned Fateev-Zamolodchikov-Zamolodchikov
conjecture (FZZ), which states the equivalence between the black hole and the often called sine-
Liouville field theory [30, 32]. In the last six years this FZZ duality has been applied to study
the spectrum and interactions of strings in both the black hole geometry and the Anti-de Sitter
space [31, 27, 26]; and the most important application of it was so far the formulation of
the matrix model for the two-dimensional black hole [32]. In fact, when one talks about the
“black hole matrix model” one is actually referring to the matrix model for the sine-Liouville
deformation of the c = 1 matter CFT, and thus the black hole description in such a framework
emerges through the FZZ correspondence. This manifestly shows how useful the FZZ duality
results in the context of string theory.

Although at the beginning it appeared as a conjecture, a proof of the FZZ duality was
eventually given some years ago. This was done in two steps: first, by proving the equivalence
of the corresponding N=2 supersymmetric extensions of both the 2D black hole σ-model and
the sine-Liouville theory [33]; and, secondly, by showing that the fermionic parts of the N=2
theories eventually decouple, yielding the bosonic duality as an hereditary property [34], see
also [35, 36]. This could be done because both sine-Liouville and the black hole theory admit
a natural1 embedding in N=2 theories, where the duality can be seen as a manifestation of the
mirror symmetry. However, one could be also interested in seeing whether a proof of such a
duality exists at the level of the bosonic theory itself. In this paper we will show how such

1The 2D black hole can be realized by means of the Kazama-Suzuki construction [37, 38], while the sine-
Liouville theory can be seen as a sector of the N=2 Liouville theory. The bosonic version of the FZZ duality
can be seen to arise by GKO quotienting the U(1) R-symmetry of the N=2 version.
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a duality can be actually proven (at the level of the sphere topology) without resorting to
arguments based on supersymmetry but just making use of the conformal structure of the
theory.

1.2 The result

Concisely, we will show that any N -point correlation functions in the SL(2, R)k/U(1) WZW
(× time) on the sphere topology is equivalent to a N -point correlation functions in a two-
dimensional conformal field theory that describes a linear dilaton σ-model perturbed by a
tachyon-like potential. This actually resembles the FZZ correspondence; however, instead of
considering a vortex perturbation with winding |n| = 1 here we will consider momentum modes
of the sector n = 2. To be precise, the theory we will consider is defined by turning on the
modes λn=2 6= 0 and λn=1 6= 0 in the following action

S =
1

4π

∫
d2z

(
∂X∂X + ∂ϕ∂ϕ − 1

2
√

2
Q̂Rϕ +

∑

n

λne
−αn√

2
ϕ+in

√
k
2
X

)
(1)

where Q̂ = (k − 2)−1/2 and αn = Q̂(1 +
√

1 + (kn2 − 4)(k − 2)). Namely, the perturbation we
will consider is given by the operator

O = λ1e
−
√

k−2
2

ϕ+i
√

k
2
X + λ2e

−
√

2
k−2

(k−1)ϕ+i
√

2kX ,

where we denoted X = XL(z)+XR(z), which has to be distinguished from the T-dual direction

X̃ = XL(z) − XR(z). Operators e
−αn√

2
ϕ+in

√
k
2
X

are (1, 1)-operators with respect to the stress-
tensor of the free theory

T (z) = −1

2
(∂X)2 − 1

2
(∂ϕ)2 − Q̂√

2
∂2ϕ,

so that they represent marginal deformations of the linear dilaton theory. Coefficients λn in (1)
must satisfy the condition λn = λ−n for the Lagrangian to be real, and thus the theory results
invariant under X → −X. The scaling relations between different couplings λn are given by
standard KPZ arguments [39, 40, 41], being the scale of the theory governed by one of these
constants, analogously as to how the Liouville cosmological constant introduces the scale in the
c = 1 matter CFT. The central charge of the theory is then obtained from the operator product
expansion of the stress-tensor, yielding c = 2+6Q̂2 = 2+ 6

k−2
. Eventually, we will be interested

in adding a time-like free boson to the theory in order to define a Lorentzian target space of
the form SL(2, R)k/U(1) × Rtime, so the central charge will receive an additional contribution
+1 coming from the time direction, yielding

c = 3 + 6Q̂2 = 3 +
6

k − 2
, (2)

while the stress-tensor will result supplemented by a term +1
2
(∂T )2. For practical purposes,

this time-like direction can be thought of as an auxiliary degree of freedom, and it does not enter
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in the non-trivial part of the duality we want to discuss, being coupled to the other directions
just by the value of the central charge2 c.

1.3 Outline

The particular correspondence between the model (1) and the 2D black hole we will discuss
turns out to be realized at the level of N -point functions on the sphere topology, and corresponds
to a twisted version of the FZZ correspondence3. Consequently, we will discuss the latter first.
Though being similar, the duality we will discuss here presents two important differences with
respects to the FZZ: The first difference is that the former admits to be proven in a relatively
simple way without resorting to arguments based on mirror symmetry of its supersymmetric
extension; secondly, it involves higher momentum modes (n = 2) instead of winding modes of
the sector n = 1. We will make the precise statement of the new correspondence in section
4, where we also address its proof. The paper is organized as follows: In section 2 we review
some features of the conformal field theories that play an important role in our work. First,
we review the computation of correlation functions in Liouville field theory with the purpose
of emphasizing some features and refer to the analogy with the Liouville case whenever an
illustrative example is needed. Secondly, we discuss some general aspects of the 2D black
hole σ-model. Once these two CFTs were introduced, we discuss how correlation functions
in both theories are related through a formula recently proven by S. Ribault and J. Teschner
[3, 4]. Their formula connects correlation functions in both WZW and Liouville theory in a
remarkably direct way [42], and it turns out to be important for proving our result. In section
3 we briefly review the FZZ dual for the 2D black hole; namely the sine-Liouville field theory.
In section 4 we introduce a “twisted” version of the sine-Liouville theory, and we show that
such “deformed” sine-Liouville turns out to be a dual for the 2D black hole as well. A crucial
piece to show this new version of the duality is the Ribault-Teschner formula mentioned above,
for which we present a realization that is eventually identified as being precisely the deformed
sine-Liouville model we want to study. Section 5 contains the conclusions.

2 Conformal field theory

To begin with, let us discuss some aspects of correlation functions in Liouville field theory. The
relevance of it is that Liouville theory is the prototypical example of non-compact conformal
field theory [43] and thus the techniques for computing correlation functions in this model are
analogous to those we will employ in the rest of the paper. Moreover, the models we will
consider here are actually deformations of the Liouville theory coupled to a c = 1 + 1 matter
field, so that it is clearly convenient to consider this model first.

2In the case the theory corresponds to the product SL(2, R)/U(1) × time the condition c = 26 demands
k = 52/23. On the other hand, if the space is just the coset SL(2, R)/U(1) the corresponding condition reads
k = 9/4.

3In the sense that it involves a deformation of the sine-Liouville interaction term in the action.
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2.1 Liouville theory

2.1.1 Liouville field theory coupled to c = 1(+1) matter

Liouville theory naturally arises in the formulation of the two-dimensional quantum gravity
and in the path integral quantization of string theory [44]. This is a non-trivial conformal field
theory [45, 46] whose action reads

SL[µ] =
1

4π

∫
d2z

(
∂ϕ∂ϕ +

1

2
√

2
QRϕ + 4πµe

√
2bϕ

)
(3)

where µ is a real positive parameter called “the Liouville cosmological constant”. The back-
ground charge parameter takes the value Q = b + b−1 in order to make the Liouville barrier
potential µe

√
2bϕ to be a marginal operator. In the conformal gauge, the linear dilaton term

QRϕ, which involves the two-dimensional Ricci scalar R, has to be understood as keeping
track of the coupling with the worldsheet curvature that receives a contribution coming from
the point at infinity. The theory is globally defined once one specifies the boundary condi-
tions, and this can be done by imposing the behavior ϕ ∼ −2

√
2Q log |z| for large |z|, that is

compatible with the spherical topology. Under holomorphic transformations z → w Liouville
field transforms in a way that depends on Q, namely ϕ → ϕ −

√
2Q log |dw

dz
|. In this paper we

will be interested in the coupling of Liouville theory to a U(1) boson field represented by an
additional − 1

4π

∫
d2z∂X∂X piece in the action (3) above. Moreover, we can also include the

“time” direction 1
4π

∫
d2z∂T∂T. Then, the central charge of whole theory is given by

c = 2 + cL = 3 + 6Q2,

where cL refers to the Liouville central charge. Important objects of the theory are the expo-
nential vertex operators [47]

Vα(z) × ei
√

2p1X(z)+i
√

2p0T (z) = e
√

2αϕ(z)+i
√

2p1X(z)+i
√

2p0T (z),

which turn out to be local operators of conformal dimension h = α(Q−α)+p2
1−p2

0 with respect
to the stress-tensor T (z) of the free theory,

T (z) =
1

2
(∂T )2 − 1

2
(∂X)2 − 1

2
(∂ϕ)2 +

Q√
2
∂2ϕ. (4)

Now, let us discuss correlation functions.

2.1.2 Liouville correlation functions

The non-trivial part of correlation functions in the theory (4) is given by the Liouville correlation
functions [46, 49, 50, 51], and these are formally defined by

AL
(α1,...αN |z1,...zN) = 〈Vα1(z1)...VαN

(zN)〉SL[µ] =

∫
Dϕe−SL[µ]

N∏

i=1

e
√

2αiϕ(zi)
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and, on the spherical topology, these can be written by using that
〈

N∏

i=1

Vαi
(zi)

〉

SL[µ]

= b−1µsΓ(−s)δ
(
s + b−1(α1 + α2 + ...αN ) − 1 − b−2

)
×

×
s∏

r=1

∫
d2wr

〈
N∏

i=1

Vαi
(zi)

s∏

r=1

Vb(wr)

〉

SL[µ=0]

, (5)

namely,

AL
(α1,...αN |z1,...zN) = b−1µsΓ(−s)δ

(
s + b−1(α1 + α2 + ...αN ) − 1 − b−2

)
×

×
s∏

r=1

∫
d2wr

∫
Dϕe−SL[µ=0]

N∏

i=1

e
√

2αiϕ(zi)
s∏

r=1

e
√

2bϕ(wr). (6)

This permits to compute correlation functions by employing the standard Gaussian measure and
free field techniques. The overall factor Γ(−s) and the δ-function come from the integration over
the zero-mode ϕ0 of the Liouville field ϕ, and it also yields the insertion of an specific amount,
s, of screening operators Vb(w) in the correlator. In obtaining this, the identity µsΓ(−s) =∫

dxx−1−se−µx and the Gauss-Bonnet theorem were used to find out the relation between s, b
and the momenta αi, which for a manifold of generic genus g and N punctures would yield

bs +
N∑

i=1

αi = Q(1 − g). (7)

So, the correlators can be computed through the Wick contraction of the N + s operators
by using the propagator 〈ϕ(z1)ϕ(z2)〉 = −2 log |z1 − z2|, which corresponds to the free theory
(4) and yields the operator product expansion eα1ϕ(z1)eα2ϕ(z2) ∼ |z1 − z2|−2α1α2e(α1+α2)ϕ(z2) +
.... In principle, this could be used to integrate the expression for AL

(α1,...αN |z1,...zN) explicitly.

Nevertheless, it is worth noticing that the expression (6) can be considered just formally since,
in general, s is not an integer number. Hence, in order to compute generic correlation functions
one has to deal with the problem of giving a concise meaning of such integral representation.
With the purpose of giving an example, let us describe here the computation of the partition
function on the sphere in detail. Such case corresponds to g = 0 and N = 0, and the number
of screening operators to be integrated out turns out to be m = s − 3 = −2 + b2. That is, in
order to compute the genus zero partition function we have to consider the correlation function
of three local operators e

√
2bϕ(z) inserted at the points z1 = 0, z2 = 1 and z3 = ∞ to compensate

the volume of the conformal Killing group, SL(2, C). This has to be distinguished from the
direct computation of the three-point function [49] of three “light” states α1 = α2 = α3 = b, as
we will discuss below.

2.1.3 A working example: the spherical partition function

Although it is usually said that string partition function on the spherical topology vanishes,
we know that this is not necessary the case when the theory is formulated on non-trivial
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backgrounds. A classical example of this is the two-dimensional string theory formulated in
both tachyonic and gravitational non-trivial backgrounds we will be discussing along this paper.
Such models admit a description in terms of the Liouville-type sigma model actions, so that the
computation of the corresponding genus zero partition functions involves the computation of
spherical partition function of Liouville theory or some deformation of it. Here, we will describe
a remarkably simple calculation of the Liouville partition function on the spherical topology by
using the free field techniques. The free field techniques to be employed here were developed
so far by Dotsenko and Fateev [52, 53], and by Goulian and Li [54] (see also [56, 57, 58]). The
partition function Zg=0 is then given by

Zg=0 =
µm+3

b
Γ(−m−3) lim

z3→∞
|z3|−4

m∏

r=1

∫
d2wr

∫
Dϕe−SL[µ=0]e

√
2bϕ(0)e

√
2bϕ(1)e

√
2bϕ(z3)

m∏

r=1

e
√

2bϕ(wr).

(8)
with m = −2 + b−2. According to the standard Wick rules, we can write

Zg=0 = b−1µ3+mΓ(−m − 3)
m∏

r=1

∫
d2wr

(
m∏

r=1

|wr|4ρ|1 − wr|4ρ

m−1,m∏

r<t

|wt − wr|4ρ

)
.

This can be explicitly solved for integer m by using the Dotsenko-Fateev integral formula worked
out in reference [53]. Even though we are interested in the case where m is generic enough, and
this can mean a negative real number, we can assume that this is an integer positive number
through the integration and then try to analytically extend the final expression accordingly.
Eventually, the consistency of the result strongly support this procedure. In this way, we get

Zg=0 =
µ3+m

b
Γ(−m−3)Γ(m+1)πmγm(1−ρ)

m∏

r=1

γ(rρ)

m−1∏

r=0

γ2(1+(2+r)ρ)γ(−1− (3+r+m)ρ).

where, as usual, we denoted γ(x) = Γ(x)/Γ(1−x); and we also denoted ρ = −b2 for notational
convenience. Once again, this expression only makes sense for m being a positive integer
number, so that the non-trivial point here is to handle the required analytic continuation. In
order to do this, we can rewrite the expression above by taking into account that γ(−1 − (3 +
r + m)ρ) = γ(−(r + 1)ρ). So we can expand it as

Zg=0 =
µ3+m

b
Γ(−m − 3)Γ(m + 1)πmγm(1 − ρ)

m∏

r=1

γ(rρ)γ(−rρ)
m+1∏

r=2

γ2(1 + rρ). (9)

Now, some simplifications are required. First, we can use that m = −2 + b−2 = −2 − ρ−1, and
thus 1 + rρ = −(m + 2 − r)ρ to arrange the last product. We can rewrite the product as

γ(1 + 2ρ)γ(1 + 3ρ)...γ(1 + mρ)γ(1 + (m + 1)ρ) = γ(−ρ)γ(−2ρ)...γ(−(m − 1)ρ)γ(−mρ),

that is
m+1∏

r=2

γ(1 + rρ) =

m∏

r=1

γ(−rρ),
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and then use γ(rρ)γ(1 − rρ) = 1 to eventually write

Zg=0 = b−1µQ/bΓ(−m − 3)Γ(m + 1)πmγm(1 − ρ)γ2(−ρ)(−1)mρ−2mΓ−2(m + 1),

where the identities γ(x)γ(−x) = γ(x)/γ(1 + x) = −x−2 were also used. Again, the properties
of the γ-function can be used to write γ(2+ρ−1) = −(1+ρ−1)2γ(1+ρ−1), γ(1−ρ) = −ρ2γ(−ρ)
and γ(−1−ρ) = −(1+ρ)−2γ(−ρ). Then, once all is written in terms of b, the partition function
reads4

Zg=0 =
(1 − b2) (πµγ(b2))

Q/b

π3Qγ(b2)γ(b−2)
. (10)

This is the exact result for the Liouville partition function on the spherical topology, which
turns out to be a non trivial function of b. It oscillates with growing frequency and decreasing
amplitude according b2 approaches the values b2 = 0 and b2 = 1. One can use the Stirling
asymptotic formula, n! ∼ nn

√
2πne−n, and the identity Γ(x)Γ(1−x) sin(πx) = π to verify that,

for fixed µ, it does vanish at those points. One of the puzzling features of the expression (10)
is the fact that it does not manifest the self-duality that the Liouville theory seems to present
under the transformation b → 1/b. In order to understand this point, it is convenient to compare
the direct computation of Zg=0 we gave above with the analogous computation of the Liouville
structure constant (three-point functions) C(α1, α2, α3) for the particular configuration α1 =
α2 = α3 = b. The difference between both calculations is merely given by the presence of
the overall factor Γ(−s) = Γ(−m − 3) in (8). As mentioned, this factor comes from the
integration over the zero-mode of the field ϕ, but it can be also thought of as coming from
the combinatorial problem of permuting all the screening operators. Actually, for integer s
this factor can be written as Γ(−s) = (−1)sΓ(0)/s!, where the divergent factor Γ(0) keeps
track of a divergence due to the non-compactness of the Liouville direction. In fact, this yields
the factorial 1/s! arising in the residue corresponding to the poles of resonant correlators. On
the other hand, in the case of being computing the structure constant C(b, b, b), unlike the
computation of Zg=0, such overall factor should be Γ(3 − s) instead of Γ(−s) since one has
to divide by the permutation of s − 3 screening charges. Hence, we have C(b, b, b)/Zg=0 =
Γ(3 − s)/Γ(−s) = −s!/(s − 3)! = −(b−2 + 1)b−2(b−2 − 1). This is precisely consistent with the
fact that d3Z

dµ3 = −C(b, b, b) ∼ µQ/b−3, see Ref. [55]. Thus, this combinatorial problem appears
as being the origin of the breakdown of the Liouville self-duality at the level of the partition
function.

Now, let us move to study another CFT that is also a crucial piece in our discussion: the
CFT that describes the 2D black hole σ-model.

2.2 String theory in the 2D black hole

2.2.1 The action and the semiclassical picture

String theory in two dimensions presents very interesting properties that make of it a fruitful
ground to study features of its higher dimensional analogues. One example is given by the

4Notice that we have absorbed a factor
√

2 in the definition of the measure of the path integral.
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2D black hole solution discovered in Refs. [59, 60]. This black hole solution is supported
by a dilaton configuration, and it turns out to be an exact conformal background on which
formulate string theory. In fact, the 2D black hole σ-model action corresponds to the gauged
level-k SL(2, R)k/U(1) WZW theory [59]. An excellent review on this model can be found in
Ref. [61].

The worldsheet action for string theory in a two dimensional metric-dilaton background,
once setting α′ = 2, reads

SP =
1

4π

∫
d2z
(
Gµν(X)∂Xµ∂Xν + RΦ(X)

)
, (11)

where the indices µ, ν = {1, D = 2} run over the two coordinates of the target space, whose
metric is Gµν(X). This action is written in the conformal gauge, so, as we discussed before,
the dilaton term R Φ(X) has to be understood as keeping track of the coupling with the world-
sheet curvature that receives a contribution coming from the point at infinity. The vanishing
of the one-loop β-functions demands Rµν = ∇µ∇νΦ, with Rµν being now the Ricci tensor
associated to the target space metric Gµν . Since the 2D black hole string theory corresponds
to the SL(2, R)k/U(1) WZW model, it admits an exact algebraic description in terms of the
current conformal algebra of the WZW theory; and we will comment on this in the following
subsection. In the semiclassical limit, governed by the large k regime, the euclidean version of
the background is described by the following configurations for the metric Gµν and the dilaton
Φ,

ds2 = k
(
dr2 + tanh2 r dX2

)
, Φ(r) = Φ0 − 2 log (cosh r) .

It is well known that the geometry of the euclidean black hole is that of a semi-infinite cigar
that asymptotically looks like a cylinder. The angular coordinate of such cylinder is X, while
the coordinate r is the one that goes along the cigar, running from r = 0 (the tip of the cigar,
where the string theory is strongly coupled) to r = ∞ (where the string coupling eΦ(r) tends
to zero). To get a semiclassical picture of this geometry, let us consider the large k regime and

redefine the radial coordinate as cosh2 r = M−1e
√

2/kϕ. Then, in the large ϕ approximation,
and by also rescaling the angular coordinate X by a factor

√
2/k, the metric reads

ds2 = 2
(
1 + Me−

√
2/kϕ

)
dϕ2 + 2

(
1 − Me−

√
2/kϕ

)
dX2, (12)

that asymptotically looks like the cylinder of radius R =
√

k/2. The parameter M is related to
the mass of the black hole, and it can be fixed to any positive value by shifting ϕ. Considering
finite-k corrections leads to a shifting in k and then the metric and the dilaton result corrected.
In such case, the dilaton reads

Φ(ϕ) = Φ0 − log M +
√

2Q̂ϕ, Q̂ = (k − 2)−1/2.

Thus, the 2D string theory in the euclidean black hole background can be semiclassically
described by a deformation of the linear dilaton theory

S0 =
1

4π

∫
d2z

(
∂X∂X + ∂ϕ∂ϕ − 1

2
√

2
Q̂Rϕ

)
; (13)
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and, according to (12) and taking into account the finite-k corrections, such “deformation”
corresponds to perturbing the action (13) with the graviton-like operator [16]

O = M ∂X∂X e−
√

2
k−2

ϕ; (14)

this is true up to a BRST-trivial5 operator of the form δO ∼ ∂ϕ∂ϕ e−
√

2
k−2

ϕ. In these terms,
the theory can be in principle solved (e.g. its correlation functions be computed) by using
the free field approach, yielding the Coulomb-like correlators 〈ϕ(z1)ϕ(z2)〉 = 〈X(z1)X(z2)〉 =
−2 log |z1−z2|. Operator (14) is usually called the “black hole mass operator”, and it is actually
a normalizable operator; so one can wonder whether its insertion is allowed since it would create
non-local deformations in the worldsheet. A similar feature is exhibited by the perturbations
considered in Ref. [5]. The inclusion of operator (14) in the action has to be thought of as
being valid in a semiclassical picture and, for instance, can be shown to be equivalent to the
free field representation of the WZW model.

Hence, in the large ϕ region of the space (where the theory turns out to be weakly coupled)
we have that the non-linear σ-model of strings in the black hole seems to coincide with the
action S0 + 1

4π

∫
d2z O. Furthermore, there is a way of seeing that operator (14) actually

describes the dilatonic black hole σ-model beyond the semiclassical picture. To do so, it is
necessary to argue that such an action unambiguously describes the full theory beyond the
weak limit region [21, 5] and, for instance, reproduces the exact correlation functions. This
seems to be hard to be proven in general; nevertheless, there is a nice way of showing that the
perturbation (14) corresponds to the theory on the black hole background. This relies on the
algebraic description of the SL(2, R)k/U(1)×R WZW theory and is quite direct: The point is
that the action S0 + 1

4π

∫
d2z O , once supplemented with the BRST-trivial operator δO and a

free time-like boson − 1
4π

∫
d2z ∂T∂T , can be shown to be related to the well known free field

realization of the SL(2, R)k WZW action through a SO(2, 1)-boost given by6

T = i

√
2

k
u − i

√
k − 2

k
φ, X = −

√
k

2
v + i

k − 2√
2k

u + i

√
k − 2

k
φ, ϕ =

√
k − 2

2
(u + iv) + φ,

and the standard bosonization γ = eu+iv, β = i∂ve−u−iv, with 〈β(z1)γ(z2)〉 ∼ (z1 − z2)
−1,

and with 〈φ(z1)φ(z2)〉 = −2 log |z1 − z2|, [62]. In fact, this leads to the Wakimoto free field
description of the SL(2, R)k current algebra in terms of the linear dilaton field φ and the β, γ
ghost system [63]. In Wakimoto variables one identifies the theory as being the WZW model
formulated on SL(2, R) with the elements of the group written in the Gauss parameterization.
Then, the coset theory SL(2, R)k/U(1) is obtained by simply taking out the time-like direction
T which realizes the U(1) current7

J3 = βγ +

√
k − 2

2
∂φ = i

√
k

2
∂T ;

5That means that it is pure gauge in the BRST cohomology.
6Please, do not mistake the time-like coordinate T for the notation used for the stress-tensor. Excuse us for

this overlap in the notation.
7Alternatively, an additional free boson, analogous to X, can be added in order to relize the gauging, see

[18, 19] and referenctes therein.
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recall that this is a time-like direction so that the corresponding correlator flips its sign and
thus turns out to be 〈T (z1)T (z2)〉 = +2 log |z1 − z2|.

On the other hand, let us mention that the dual theory (i.e. the sine-Liouville theory) is also
defined as a perturbation of (13); see (32) below. So, according to this picture, it is possible to
think the FZZ duality as a relation between different marginal deformations of the same free
linear dilaton background. This was the philosophy in Ref. [5], where the FZZ correspondence
was seen from a generalized perspective, considering it as an example of a set of connections
existing between different marginal deformations of (13). Here, we will be discussing a similar
correspondence; we will consider perturbations carrying momentum modes n = 2 of the tachyon
potential and discuss how it describes SL(2, R)k/U(1) × R WZW correlation functions. We
will dedicate some effort to understand the relation between such n = 2 perturbation and the
standard FZZ duality (that involves n = 1 modes). But, first, let us continue our description
of the theory in the black hole background with appropriated detail.

2.2.2 String spectrum in the 2D black hole and its relation to AdS3 strings

The spectrum of the 2D sting theory in the black hole background corresponds to certain sector
of the Hilbert space of the gauged SL(2, R)k/U(1) WZW model, and is thus given in terms
of certain representations of SL(2, R)k ⊗ SL(2, R)k. The string states are thus described by
vectors

∣∣Φω
j,m,m̄

〉
which are associated to vertex operators Φω

j,m,m̄, where j, m, and m̄ are indices
that label the states of the representations of the group. In order to define the string theory,
it is necessary to identify which is the subset of representations that have to be taken into
account. Such a subset has to satisfy several requirements8. In the case of the free theory
these requirements are associated to the normalizability and unitarity of the string states. At
the level of the interacting theory, additional properties are requested, like the closeness of the
fusion rules, the factorization properties of N -point functions, etc.

The SL(2, R)k WZW model is behind the description of string theory in both the 2D black
hole background (through the coset construction) and in AdS3 space. These two models are
closely related indeed, but still different. In the case of the black hole, the states of the spectrum
are labeled by the index j of the SL(2, R) representations with the indices m and m falling in
the lattice

m − m = n, m + m = −kω (15)

with n and ω being integer numbers, and the conformal dimension of the vertex operators is
given by

h = −j(j + 1)

k − 2
+

m2

k
. (16)

On the other hand, AdS3 string theory can be described in terms of the WZW model on
the product between the coset SL(2, R)k/U(1) and a time-like free boson [64], so that the
worldsheet turns out to be formulated in a background that is the product between the time
and the euclidean black hole. This can be realized by adding the contribution9 − 1

4π

∫
d2z ∂T∂T

8For an interesting discussion on non-compact conformal field theories see [43].
9Besides, one can represent string theory in AdS3 space in terms of the Wakimoto free field realization

mentioned above. In terms of these fields the AdS3 metric reads ds2 = k
(
dφ2 + e2φdγdγ

)
.
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to the action (13) and by supplementing the vertex operators with a factor ei
√

2
k
(m+ k

2
ω)T that

carries the charge under the field T . Thus, the vertex operators on AdS3 have conformal
dimension given by

h = −j(j + 1)

k − 2
− mω − k

4
ω2, (17)

which corresponds to adding the conformal dimension δh = − (m+kω/2)2

k
of the time-like part

to the coset contribution (16). In some sense, the string theory in the 2D black hole can be
thought of as having constrained the states of the theory in AdS3 to have vanishing bulk energy,
m + m + kω = 0. In this way, one has the theory on the background time×SL(2, R)k/U(1) as
an appropriated realization of sting theory in AdS3 space [66, 69, 68, 70]. However, before going
deeper into the string interpretation of the WZW model, some obstacles have to be overcame.
In fact, even in the case of the free string theory, the fact of considering non-compact Lorentzian
curved backgrounds is not trivial at all. The main obstacle in constructing the space of states
is the fact that, unlike what happens in flat space, in curved space the Virasoro constraints are
not enough to decouple the negative-norm string states. In the early attempts for constructing
a consistent string theory in AdS3, additional ad hoc constraints were imposed on the vectors
of the SL(2, R)k representations in order to decouple the ghosts. The vectors of SL(2, R)
representations are labeled by a pair of indices j and m, and thus such additional constraints
(demanded as sufficient conditions for unitarity) implied an upper bound for the index j of
certain representations, and consequently an unnatural upper bound for the mass spectrum.
The modern approaches to the “negative norm states problem” also include such a kind of
constraint, although this fact does not imply a bound on the mass spectrum as in the old
versions it did [66]. The upper bound for the index j of discrete representations, often called
“unitarity bound”, reads 1 − k < 2j < −1. In the case of Euclidean AdS3, the spectrum of
string theory is just given by the continuous series of SL(2, C), parameterized by the values
j = −1

2
+ iλ with λ ∈ R and by real m. On its turn, the case of string theory in Lorentzian

AdS3 is richer and its spectrum is composed by states belonging to both continuous Cα,ω
λ and

discrete Dω,±
j series. The continuous series Cα,ω

λ have states with j = −1
2

+ iλ with λ ∈ R and
m − α ∈ Z, with α ∈ [0, 1) ∈ R (as in SL(2, C), obviously). On the other hand, the states of
discrete representations D±,ω

j satisfy j = ±m − n with n ∈ Z≥0. Other important ingredient
for constructing the Hilbert space is the index ω labeling the operators Φω

j,m,m̄. In the black
hole background ω turns out to be given by (15), unlike what happens in AdS3. In AdS3 the
quantum number ω is independent of the bulk kinetic energy m + m and the bulk angular
momentum m−m, contributing to the total energy as m + m + kω. Then, the question arises
as to how the index ω appears in the Hilbert space of the SL(2, R)k WZW theory. The answer
is that in order to fully parameterize the spectrum in AdS3 we have to introduce the “flowed”
operators J̃a

n (with a = 3,−, +) which are defined through the spectral flow automorphism [66]

J3
n → J̃3

n = J3
n − k

2
ωδn,0, J±

n → J̃±
n = J±

n±ω (18)

acting of the original ˆsl(2)k generators Ja
n , which satisfy the Lie product that define the affine
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algebra

[J−
n , J+

m] = −2J3
n+m + nkδn,−m, [J3

n, J±
m] = ±J±

n+m, [J3
n, J3

m] = −n
k

2
δn,−m. (19)

Then, states
∣∣Φω

j,m,m̄

〉
belonging to the discrete representations D±,ω

j are those obeying10

J̃±
0

∣∣Φω
j,m,m̄

〉
= (±j − m)

∣∣Φω
j,m±1,m̄

〉
, J̃3

0

∣∣Φω
j,m,m̄

〉
= m

∣∣Φω
j,m,m̄

〉
(20)

and being annihilated by the positive modes, namely

J̃a
n

∣∣Φω
j,m,m̄

〉
= 0 , n > 0 . (21)

The states with m = ±j represent highest (resp. lowest) weight states, while primary states
of the continuous representations Cα,ω

λ are annihilated by all the positive modes. On the other
hand, the excited states in the spectrum are defined by acting with the negative modes Ja

−n

(n ∈ Z>0) on the Kac-Moody primaries
∣∣Φω

j,m,m̄

〉
; these negative modes play the role of creation

operators (i.e. creating the string excitation). The “flowed states” (namely those being primary

vectors with respect to the J̃a
n defined with |ω| > 1) are not primary with respect to the ˆsl(2)k

algebra generated by Ja
n , and this is clear from (18). However, highest weight states in the

series D+,ω
j are identified with lowest weight states of D−,ω

−k/2−j, which means that spectral flow

with |ω| = 1 is closed among certain subset of Kac-Moody primaries.
The states belonging to discrete representations have a discrete energy spectrum and rep-

resent the quantum version of those string states that are confined in the centre of AdS3 space;
these are called “short strings” and are the counterpart of those states that are confined close
to the tip of the cigar geometry. On the other hand, the states of the continuous represen-
tations describe massive “long strings” that can escape to the infinity, where the theory is
weakly coupled. In the case of the 2D black hole the index ω of these long strings has a clear
interpretation as an “asymptotically topological” degree of freedom (is not a topological one
though). Because of the euclidean black hole has the geometry of a semi-infinite cigar and thus
looks like a cylinder very far from the tip, the states in the asymptotic region have a winding
number around such cylinder. However, this is not strictly a cylinder but has topology R2

instead of R × S1, so that, as it happens in AdS3, the winding number conservation can be in
principle violated. Of course, this feasibility of violating ω is not evident from the background
(13)-(14), which is reliable only far from the tip of the cigar, but the phenomenon can occur
when string interactions take place. Instead, in the sine-Liouville theory, the violation of the
winding number is understood in a clear way, as due to the explicit dependence on the T-dual
direction X̃. We will return to this point later. Now, let us discuss the string interactions in
the black hole geometry.

2.2.3 String amplitudes and correlation functions in the SL(2, R)k WZW theory

The string scattering amplitudes in the 2D black hole background are given by (the integration
over the inserting points of) correlation functions in the SL(2, R)k WZW theory. The first

10or analogous relations for the Weyl reflected representations, namely j → −1 − j.
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exact computation of such WZW three and two-point functions was performed by K. Becker
and M. Becker in Refs. [17, 19], and it was subsequently extended and studied in detail in
Refs. [73]-[75] by J. Teschner. The interaction processes of winding string states were studied
later in [67, 68], after J. Maldacena and H. Ooguri proposed the inclusion of spectral flowed
states in the spectrum of the theory [66]. Moreover, several formalisms were employed to
study the correlators in this non-compact CFT [79]-[87]. One of the most fruitful tools to
work out the functional form of these WZW correlators was making use of the analogy existing
between these and the Liouville correlators [78, 46, 77, 79]. Another useful approach to compute
the exact correlation functions was the free field representation [17, 19, 84, 85, 68, 69, 70],
which for the WZW model turns out to be similar to what we discussed for the Liouville
theory. To be concise, let us briefly describe how this “free field computation” works for the
case of the two-point function: Consider the correlation functions of exponential operators

Φω
j,m,m = e

√
2

k−2
bjϕ−i

√
2
k
mX−i

√
2
k
(m+ k

2
ω)T (with ĵ = −1 − j) in the theory (13) perturbed by the

operator (14), namely

O = M

(√
k − 2

2
∂ϕ + i

√
k

2
∂X

)(√
k − 2

2
∂ϕ + i

√
k

2
∂X

)
e−

√
2

k−2
ϕ = M ββe−

√
2

k−2
φ. (22)

Then, written in terms of the Wakimoto free fields11 φ, γ, and β, such correlators read12

〈
Φω

j,m,m(z1)Φ
−ω
j,−m,−m(z2)

〉
WZW

= Γ(−s)δ(s + 2j + 1)
s∏

r=2

∫
d2ωr

〈
γ−1−j−m(z1)γ

−1−j−m(z1) ×

×γ−1−j+m(z2)γ
−1−j+m(z2)β(w1)β(w1)

s∏

r=2

β(wr)β(wr)
〉
×

×
〈
e−

√
2

k−2
(j+1)φ(z1)e−

√
2

k−2
(j+1)φ(z2)e−

√
2

k−2
φ(w1)

s∏

r=2

e−
√

2
k−2

φ(wr)
〉

, (23)

where the screening inserted at w1 is then taken to be fixed at infinity w1 → ∞, while z1 = 0
and z2 = 1 as usual (this is analogous to what we did when discussed the case of Liouville
partition function). It is easy to see that this can be solved by using the (analytic extension
of) Dotsenko-Fateev integrals, and one eventually finds13

〈
Φω

j,m,m(0)Φ−ω
j,−m,−m(1)

〉
WZW

= − Γ(−j − m)Γ(−j + m)

Γ(j + 1 + m)Γ(j + 1 − m)
× .

×
(
−πMγ

(
1

k − 2

))−1−2j
γ(2j + 2)

k − 2
γ

(
2j + 1

k − 2

)
, (24)

11Please, do not mistake the Wakimoto field γ (which is a local function on the variable z) for the Euler
γ-function introduced in Eq. (9) (which is defined by γ(x) = Γ(x)/Γ(1 − x)). That is, the fields γ in (23) have
to be distinguished from the function γ in (24). We preferred to employ the standard notation here.

12In order to compare with the original computation in Ref. [17] it is necessary to consider the Weyl reflection
j → −1 − j, which is a symmetry of the formula for the conformal dimension, actually.

13For instance, compare with formula (49) in Ref. [68], after the Weyl reflection.
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where the m-dependent Γ-functions stand from the combinatorial problem of counting the
different ways of (Wick) contracting the γ-functions with the β-functions in (23). Expression
(24) is the so called SL(2, R)k WZW reflection coefficient Rk(j, m) and corresponds to the
exact results for the two-point function. In articular, (24) does contain the factor γ

(
2j+1
k−2

)

that keeps track of finite-k effects. Analogously, the expression of the three-point functions〈
Φω1

j1,m1,m1
(z1)Φ

ω2
j2,m2,m2

(z2)Φ
ω3
j3,m3,m3

(z3)
〉

WZW
can be found by these means [19]. Moreover, some

features of the four-point function like the physical interpretation of its divergences [67], and the
crossing symmetry [46], were also studied in the last six years, and, certainly, our understanding
of correlation functions in both the 2D black hole and AdS3 backgrounds has substantially
increased recently. Nevertheless, some features remain still as open questions: One of these
puzzles is the factorization properties of the generic four-point function and the closeness of the
operator product expansion of unitary states. Addressing these questions would require a deeper
understanding of the analytic structure of the four-point function. The general expression for
the N -point functions for N > 3 is not known; however, a new insight about its functional form
appeared recently due to the discovery of a new relation between these and analogous correlators
in Liouville field theory [42, 3, 4]. This relation between WZW and Liouville correlators is one
of the key points for what we are going to study in this paper; so, let us give some details about
it.

2.3 A connection between Liouville and WZW correlation functions

Let us comment on the particular connection that exists between the correlation functions
of the two conformal theories we discussed above; namely, between Liouville and SL(2, R)k

WZW correlation functions. This relation is a result recently obtained by S. Ribault and J.
Teschner, who have found a direct way of connecting correlators in both SL(2, C)k/SU(2)
WZW and Liouville conformal theories [3, 4]. The formula they proved is an improved version
of a previous result obtained by A. Stoyanovsky some years ago [42]. The Ribault-Teschner
formula (whose more general form was presented by Ribault in Ref. [4]) connects the N -point
tree-level scattering amplitudes in Euclidean AdS3 string theory to certain subset of N + M-
point functions in Liouville field theory, where the relation between N and M turns out to be
determined by the winding number of the interacting strings. Even though this formula was
proven for the case of the Euclidean target space, it is likely that an analytic continuation of it
also holds for the Lorentzian model. The Ribault-Teschner formula reads as follows: If Φω

j,m,m̄

represent the vertex operators in the WZW model, and Vα represent the vertex operators of
Liouville theory, then it turns out that

〈
N∏

i=1

Φji,mi,m̄i
(zi)〉WZW = Nk(j1, ...jN ; m1, ...mN )

M∏

r=1

∫
d2wr Fk(z1, ...zN ; w1, ...wM) ×

×〈
N∏

t=1

Vαt
(zt)

M∏

r=1

V− 1
2b

(wr)〉SL[µ] , (25)

14



with the normalization factor given by

Nk(j1, ...jN ; m1, ...mN) =
2π3−2Nb

M ! cM+2
k

(π2µb−2)−s
N∏

i=1

ck Γ(−mi − ji)

Γ(1 + ji + m̄i)
(26)

and the z-dependent function given by

Fk(z1, ...zN ; w1, ...wM) =

∏N
1≤r<l |zr − zl|k−2(mr+ml+ωrωlk/2+ωlmr+ωrml)

∏M
1<r<l |wr − wl|−k

∏N
t=1

∏M
r=1 |wr − zt|k−2mt

×

×
∏N

1≤r<l(z̄r − z̄l)
mr+ml−m̄r−m̄l+ωl(mr−m̄r)+ωr(ml−m̄l)

∏M
1<r<l(w̄r − z̄t)mt−m̄t

, (27)

and where the parameter b of the Liouville theory is related to the Kac-Moody level k through
b−2 = k−2, while the quantum numbers of the states of both conformal models are related ones
to each others through the simple relation αi = bji + b + b−2/2 , with i = 1, 2, ...N. The factor
ck in (26) is a k-dependent (j-independent) normalization; see [4]. Furthermore, the following
constraints also hold m1 + ...mN = m̄1 + ...m̄N = k

2
(N − M − 2), ω1 + ..ωN = M + 2 − N ,

s = −b−1(α1 + ...αN ) + b−2 M
2

+ 1 + b−2, where s refers to the amount of screening operators

Vb = µe
√

2bϕ to be included in Liouville correlators in order to get a non vanishing result, as
in (7). Also notice that the Liouville correlator in the r.h.s. of (25) contains M degenerate
fields V−1/2b (i.e. states that contain null descendents in the modulo), which have conformal
dimension strictly lower than zero for positive b. So that the formula (25) relates N -point
functions in the WZW theory to M + N -point functions in Liouville field theory. Applications
of (25) were discussed in [88, 89, 27, 25], and ulterior generalizations were presented in [90, 91].
The way of proving (25) was making use of the relation existing between solutions to the BPZ
differential equations (satisfied by the Liouville correlation functions involved in (62), [71])
and the generalized KZ differential equation (satisfied by the WZW correlators [72, 4]). This
remarkable trick allowed to demonstrate the map between correlators in both theories even
though one does not know the generic form of such observables in any of the two cases.

The dictionary given by the formula (25) will play a crucial role in proving the corre-
spondence between the 2D black hole and the flat tachyonic background we are interested in.
Conversely, our result can be seen as a mere free field realization of the Ribault-Teschner for-
mula (25). In fact, in section 4 we will describe how (25) can be thought of as an identity
between the SL(2, R)k WZW theory and a CFT of the form Liouville × U(1) × R, for which
the U(1) dependences of the correlators factorize out yielding the piece Fk(z1, ...zN ; w1, ...wM)
in (27). In this realization, the operators V−1/2b are seen as M additional screening currents.
The details of this can be found in subsection 4.3; but, first, let us discuss the FZZ duality.

3 The FZZ dual for the 2D black hole

In this section we will study the FZZ dual for the two-dimensional black hole; that is, the
sine-Liouville field theory. We will discuss it as an example of tachyon background for the 2D
string theory.
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3.1 Tachyon-like backgrounds in 2D string theory

Let us consider the non-linear σ-model on a generic curved target space of metric Gµν , and in
presence of both dilatonic Φ and tachyonic T backgrounds14. If we supplement the worldsheet
action (11) with the tachyonic term, the σ-model takes the form

SP =
1

4π

∫
d2z
(
Gµν(X)∂Xµ∂Xν + RΦ(X) + T (X)

)
, (28)

where, as before, µ, ν = {1, 2}; and where now we adopt the convention X1 ≡ X and X2 ≡ ϕ
representing the two coordinates that parameterize the target space. Thus, conformal invariance
at quantum level demands the vanishing of the β-functions for the action (28); and for the
tachyon field, the one-loop linearized β-function reads [97]

βT = −∇µ∇µT + 2∇µΦ∇µT − 2T = 0, (29)

where higher powers of T were neglected. This equation, together with the one-loop β-functions
for the metric and the dilaton, admit solutions of the form

Gµν = δµν , Φ(ϕ) =
Q√
2
ϕ, T (X, ϕ) =

∑

n

λn e
√

2anϕ+i
√

2bnX , (30)

with an(Q−an)+b2
n = 1, Q = 2. Here, the coefficient λn are real numbers that can be regarded

as the Fourier modes of the tachyon potential. The tachyon momenta bn are chosen to be
consistent with the compactification conditions for the X direction; in particular, here we will
consider bn = n

√
k/2, and the tachyon potential will be of the Toda-like form

T (X, ϕ) =

∞∑

n=−∞
λne

√
2(1±

√
k|n|/2)ϕ+i

√
k/2nX ; (31)

see (32) and (38) below. Actually, background (30) is the type of configuration we will deal
with. A particular case that is of interest is the sine-Liouville theory, which we discuss below.

3.2 Sine-Liouville theory and the FZZ conjecture

3.2.1 Sine-Liouville field theory

As we said, sine-Liouville theory is a particular case of tachyon-like background, and, according
to the FZZ conjecture, this is dual to the 2D string theory on the black hole spacetime. Sine-
Liouville theory corresponds to perturb the free action S0 with the operator

Oeλ−1=eλ+1=λ = 4λe−
√

k−2
2

ϕ cos
(√

k/2X̃
)

, (32)

14As it is known, in two dimensions the expression “tachyonic” has to be understood just formally, since it is
well known that the tachyon is massless in D = 2; see [96] for an illustrative example.
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which is convenient to write as

Oeλ−1=eλ+1=λ = 2λe−
√

k−2
2

ϕ+i
√

k
2

eX + 2λe−
√

k−2
2

ϕ−i
√

k
2

eX , (33)

where X̃ = XL(z) − XR(z). The interaction term (32) resembles both the sine-Gordon and
the Liouville field theories, and this gives rise the name of “sine-Liouville”. Indeed, this field
theory corresponds to the sine-Gordon model coupled to two-dimensional gravity.

The sine-Liouville interaction (32) can be thought of as a particular case of the action (1) if

the X field is replace by its T-dual X̃. It would correspond to the coupling λ̃n = λ (δn+1 + δn−1).
This field theory describes the phase of vortex condensation in the 2D string theory. Unlike
the euclidean black hole geometry, whose topology is R2, sine-Liouville theory is an interacting
CFT formulated on the topology R × S1. The distinct topologies arise because the angular
direction of the (simple connected) cigar plays a crucial role in the duality. Besides, notice that
the sine-Liouville interaction term is not bounded from below, and this is ultimately related to
the R

2 topology of the cigar too.
Sine-Liouville theory and its relation to the 2D black hole have been extensively studied in

the last six years, and, as we mentioned, this has led to the formulation of the matrix model
for the black hole [32]. The matrix model then represented a very important tool for studying
black hole physics in string theory; in particular, it permitted to address the question about
the black hole formation in string theory [98]. Matrix model formulation also enabled to study
the integrability of the theory from a different point of view15, and we emphasize that all this
was possible because of FZZ duality.

3.2.2 The Fateev-Zamolodchikov-Zamolodchikov conjecture

The FZZ duality is a strong-weak duality. The semiclassical limit of sine-Liouville theory corre-
sponds to the limit k → 2, where the black hole is highly curved. Conversely, the semiclassical
limit of the black hole theory corresponds to the large k regime where the sine-Liouville wave
function is strongly suppressed in the ϕ direction. Perhaps, the correct way of thinking FZZ
duality is that the full theory is actually described by both the WZW and sine-Liouville mod-
els, and each of them dominates the dynamics of the theory in a different regime (where the
corresponding action is reliable as a good approximation). Nevertheless, it is worth mention-
ing that both theories have control on the observables beyond the regime in which one would
naively expect so. For instance, even though one would expect the black hole σ-model action to
describe the theory only in the large k regime, it turns out that the Coulomb gas computation

of correlation function using the screening operator behaving like ∼ e−
√

2
k−2

ϕ do reproduce
the exact result, including finite-k effects16 [17, 19, 68]. Besides, the same feature occurs for
the computation in sine-Liouville theory [94]. This sourprising feature is due to the analytic
extension of the Coulomb gas type expressions, which is powerful enough to reconstruct the

15The black hole turns out to be dual to the perturbed c = 1 theory, and, on the other hand, the c = 1 theory
perturbed by the vortex or tachyon potential turns out to be integrable with the integrable structure described
in terms of the Toda hierarchy [32].

16We have exemplified this in the previous section by computing the two-point function.
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exact expression for the correlators. This is precisely what permitted to perform consistency
checks of the conjecture. The interplay between perturbative poles and k-dependent poles in
correlation functions of both models was first discussed in [32], where it was shown that the
poles of bulk amplitudes in sine-Liouville precisely reproduce non-perturbative (finite-k effects)
poles of WZW correlators17.

The strong-weak FZZ correspondence turns out to be a very important piece for our under-
standing of black hole physics in string theory. So, let us briefly discuss how such correspondence
works operatively. First, we present the main ingredients: The sine-Liouville vertex operators
we have to consider are those of the form18

Tj,m,m = e
√

2
k−2

jϕ+i
√

2
k
mX . (34)

The spectrum of the theory contains states obeying m−m = kω and m+m = n, with integers
n and ω. Operators (34) have conformal dimension

h = −j(j + 1)

k − 2
+

m2

k
,

and the coincidence with (16) shows the convenience of this notation. A crucial observation is

that the sine-Liouville theory presents symmetry under the ŝl(2)k affine algebra, and this can
be realized by free field techniques by defining [86]

J±(z) =

(
−i

√
k

2
∂X ±

√
k − 2

2
∂ϕ

)
e∓i

√
2
k
(T+X), J3(z) = i

√
k

2
∂T. (35)

These currents satisfy the OPE

J3(z)J±(w) = ± 1

(z − w)
J±(w) + ..., J3(z)J3(w) = − k/2

(z − w)2
+ ...,

J−(z)J+(w) =
k

(z − w)2
− 2

(z − w)
J3(w) + ...,

and thus realize (19) by means of the usual relation Ja
n = 1

2πi

∮
dz z−1−nJa(z). It is possible to

verify that the sine-Liouville interaction commutes with these currents, in the sense that the
OPEs yield regular terms. This matching of symmetries is an important necessary condition
for stating the equivalence to the WZW theory. The next step would be that of proposing a

17However, again, it is important to emphasize that such finite-k poles can be directly obtained by considering
the perturbative action of the WZW theory [17]. For instance, in Ref. [68] it was shown that the computation in

the WZW model involving operators behaving like ∼ e−
√

2(k−2)ϕ exactly agree with those originally computed
in [17], even though the dependence on k is the opposite to the one appearing in (14).

18Here, we are not explicitly writing the antiholomorphic contribution ei
√

2/km̄X for short; it has to be
understood in all the formulae below. Besides, let us notice that vertex (34) would receive an extra piece

ei
√

2

k
(m+kω/2)T+i

√
2

k
(m̄+kω/2)T in the case that the theory one considers is the product between the sine-Liouville

action and the time direction T .
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dictionary between observables. According to FZZ prescription the operators (34) turn out to
be associated in one-to-one correspondence to those operators that expand SL(2, R)k represen-
tations in the theory on the coset [32], namely

Tj,m,m ↔ Φj,m,m,

where Φj,m,m are the vertex operators on the coset theory SL(2, R)k/U(1), defined through their

relation to the SL(2, R)k vertex, namely Φω
j,m,m = Φj,m,m × ei

√
2
k
(m+ k

2
ω)T . Then, once the sine-

Liouville operators were introduced, one can undertake the task of performing perturbative
checks of the duality. To do this, one should compare the analytic structure of correlation
functions in both conformal models; but, first, one has to know how to compute such quantities.
So, let us review the computation of correlators for the sine-Liouville field theory.

3.2.3 Correlation functions in sine-Liouville theory

Correlation functions in the sine-Liouville theory are assumed to reproduce the analytic struc-
ture of the WZW analogues. The former can be computed by standard Coulomb gas techniques,
and the precise prescription was studied in Ref. [93, 94]. In the case N ≤ 3 these correlators
were explicitly integrated, by the way. In general, N -point sine-Liouville amplitudes are ex-

pected to exhibit poles at s− + s+ = 2
k−2

(
1 +

∑N
i=1 ji

)
, where the residues turn out to be

expressed in terms of multiple integrals over the whole complex plane. These read

Asine−L
(j1,...jN |z1,...zN) =

λ
2

k−2
(j1+...jN+1)

s−!s+!

s+∏

r=1

∫
d2vr

s−∏

t=1

∫
d2vt 〈Tj1,m1,m1(z1)Tj2,m2,m2(z2)...

...TjN ,mN ,mN
(zN)

s+∏

r=1

T1− k
2
, k
2
, k
2
(ur)

s−∏

t=1

T1− k
2
,− k

2
,− k

2
(vt)
〉

S[λ=0]

(36)

with S[λ=0] = S0, yielding

Asine−L
(j1,...jN |z1,...zN) =

λ
2

k−2
(j1+...jN+1)

Γ(s− + 1)Γ(s+ + 1)

N−1,N∏

a<b

|za − zb|−
4jajb
k−2 (za − zb)

2
k
mamb (z̄a − z̄b)

2
k
m̄am̄b ×

×
s+∏

r=1

∫
d2ur

s−∏

l=1

∫
d2vl

s+−1,s+∏

r<t

|ur − ut|2
s−−1,s−∏

l<t

|vt − vs|2
s−∏

l=1

s+∏

r=1

|vl − ur|2−2k ×

×
N∏

a=1

s+∏

r=1

|za − ur|2(ja+ma) (z̄a − ūr)
ma−ma

N∏

b=1

s−∏

l=1

|zb − vl|2(jb−mb) (z̄b − v̄l)
mb−mb , (37)

that follows from the Wick contraction of operators Tj,m,m and T1− k
2
,± k

2
,± k

2
. The poles that

correspond to bulk amplitudes in sine-Liouville theory can be shown to arise though the inte-
gration over the zero-mode of the field ϕ [65]. In the case N = 3 the pole structure of (37)
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was shown to agree with that of the black hole theory, for which the finite-k poles represent
non-perturbative worldsheet effects. This non-trivial matching between analytic structures was
one of the strongest evidence in favor of the FZZ conjecture at perturbative level [32, 94, 70].
An important piece of information is encoded in the fact that the sine-Liouville correlators

scale as λ
2

k−2
(j1+j2+...jN+1) while the black hole correlators scale as M1+bj1+bj2+...bjN . In particular,

it tells us something about how the sine-Liouville correlators behave in the large k limit.
In Ref. [94] the authors translated the integrals

∏
r,l

∫
d2ur

∫
d2vl in (36) into the product of

contour integrals. In this way, the integral representation above results described by standard
techniques developed in the context of rational conformal field theory. Such techniques were
used to evaluate the correlators to give a formula for the contour integrals. The first step
in the calculation is to decompose the ur complex variables (resp. vl) into two independent
real parameters (i.e. the real and imaginary part of ur) which take values in the whole real
line. Secondly, a Wick rotation for the imaginary part of (ur) has to be performed in order to
introduce a shifting parameter ε which is subsequently used to elude the poles in za. Then,
the contours are taken in such a way that the poles at vr → za are avoided by considering the
alternative order with respect to this inserting points. A detailed description for the prescription
can be found in the section 3 of Ref. [94]; see also Ref. [95].

3.2.4 On the violation of the winding number conservation

Now, let us return to the feature of the violation of winding conservation. From the point of
view of the sine-Liouville field theory the violation of the total winding number in (36) is given
by
∑N=3

a=1 ωa = k−1
∑N=3

a=1 (ma + ma) = s− − s+ and comes from the insertion of a different
amount of screening operators s− and s+. It can be proven that for the three-point functions,
the winding can be violated up to |

∑N=3
a=1 ωa| ≤ N − 2 = 1 and, presumably, this is the same

for generic N . The key point for obtaining such a constraint is noticing that the integrand that
arises in the Coulomb gas-like prescription contains contributions of the form

∫
d2vrd

2vt|vr − vt|2...

that come from the product expansion of two operators T1− k
2
,± k

2
,± k

2
inserted at the points vr

and vt for 0 ≤ r, t ≤ s− (and the same for the points ul with 0 ≤ l ≤ s+), and where
the dots “...” stand for “other dependences” on vr and ul. As explained in [94], the integral
vanishes for certain alignments of contours due to the fact that the exponent of |vr − vt| is
+2. Conversely, in the case where such exponent is generic enough (let us say 2ρ, following the
notation of [94]), the integral has a phase ambiguity due to the multi-valuedness of |vr − vt|2ρ

in the integrand. Then, those integrals containing two contours of vr and vt just next to each
other vanish, and this precisely happens for all the contributions of those correlators satisfying
|s+ − s−| = |

∑N
a=1 ωa| > N − 2. This led Fukuda and Hosomichi to prove that, for the three-

point function, there are only three terms that contribute: one with
∑3

a=1 ωa = 1, a second
with

∑3
a=1 ωa = −1, and the conserving one,

∑3
a=1 ωa = 0. A similar feature is exhibited in

the “twisted” sine-Liouville model we will consider in the next section, see [1].
On the other hand, one can wonder about how the violation of the winding number con-

servation is seen from the point of view of the black hole theory, where, unlike what happens

20



in sine-Liouville theory, the action does not seem to break the winding conservation. That it,
even though the geometric reason why the winding is not conserved in the cigar is quite clear, it
is not obvious how to understand such non-conservation in the calculation of correlators. The
answer to this puzzle was first given in Ref. [30], and subsequently reviewed in [67]. In fact,
the computation of the winding violating correlators in the WZW theory is far from being as
simple as in the case of sine-Liouville theory. In the WZW theory such computation requires
the insertion of one additional operator for each unit in which the winding number is being
violated. This additional operator is the often called “spectral flow operator” Φ1

− k
2
,± k

2
,± k

2

, and

this is an auxiliary operator that plays the role of changing (in one unit) the winding number
ω of a given SL(2, R)-state involved in the correlator. The spectral flow operator corresponds
to a conjugate representation of the identity operator, so it has conformal dimension zero. For
instance, the three-point scattering amplitudes (violating winding in one unit) in the 2D black
hole would be actually given in terms of a four-point correlation functions involving a fourth
dimension-zero operator Φ1

− k
2
,± k

2
,± k

2

, before extracting the appropriate divergent factor coming

from the coincidence limit of spectral flow operator and the evaluation at m = m̄ = ±k/2; see
[67, 27] for the details.

Regarding the computation of correlation functions where the winding number conservation
is violated, let us mention that the most simple way of computing such observables is that of
making use of the twisted dual model we will introduce in the next section. Perhaps this is
the most useful application it has, and we will comment on it later. Now, let us to introduce
the new dual model for the 2D black hole; which we will call the “twisted model” because it
involves momentum modes of the higher sector n = 2.

4 A twisted dual for the 2D black hole

Now, we will discuss an alternative dual description of string theory in the 2D black hole (×
time). First, we will introduce a family of perturbations of the linear dilaton background (13)
and, in particular, we will introduce the perturbation that corresponds to the twisted version
of the sine-Liouville model which we want to relate to the black hole σ-model. After doing
this, we will make the precise statement of such duality and show how to prove it by using the
formula (25).

4.1 Perturbations of higher winding and momentum modes

4.1.1 Momentum mode perturbations

Let us begin by considering a rather general deformation of the theory (13), including higher
modes of momentum and winding. The interaction term in (1) is given by the operator

Oλn
=

∞∑

n=−∞
λne

−αn√
2
ϕ+in

√
k
2
X

, (38)
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for which the condition λn = λ−n is required to be real. Each term in this sum represents a
marginal deformation of the linear dilaton theory (13), and if the T-dual direction X̃ is consid-
ered instead of X then this operator describes the sine-Liouville field theory in the particular
case λ̃n=1 = λ̃n=−1 6= 0. The case n = 0 is also included in the sum. In that case the exponent

is given by αn=0 = 1+
√

9−4k√
k−2

, so that it is real (represents a “Liouville-like wall potential”) only

for values k ≤ 9/4. The value that saturates this bound, k = 9/4, precisely corresponds to
the black hole background, i.e. for which the central charge of the coset SL(2, R)k/U(1) itself

turns out to be 26. At k = 9/4 the interaction term for n = 0 turns out to be e−
√

2ϕ, i.e. the
cosmological constant. We have to point out that for k = 9/4 the interaction (38) agrees with
the two-dimensional string theory in an arbitrary winding background studied by V. Kazakov,
I. Kostov and D. Kutasov in19 Ref. [32]. That is, for k = 9/4 operator (38) reads20

Oλn
= λ0ϕe−

√
2ϕ +

∑

n 6=0

λne
(|n|R−

√
2)ϕ+inRX . (39)

with R =
√

k/2 = 3/2
√

2. The matrix model incorporating these perturbations is constructed
by implementing a deformed version of the Haar measure on the U(N) group manifold. The
details of the matrix model construction can be found in [32]; here we will not discuss the
subject beyond the scope of the continuous limit.

4.1.2 Adding vortex type perturbations

It is instructive to explore other deformations. For instance, let us consider the more general
family

Oλn,eλn
=
∑

n 6=0

e
−α

(−)
n√
2

ϕ
(
λ(−)

n ein
√

k
2
X + λ̃(−)

n ein
√

k
2

eX
)

+
∑

n 6=0

e
−α

(+)
n√
2

ϕ
(
λ(+)

n ein
√

k
2
X + λ̃(+)

n ein
√

k
2

eX
)

,

(40)

with α
(±)
n = Q̂(1∓

√
1 + (kn2 − 4)(k − 2)), so that (38) corresponds to the branch α

(−)
n . In the

2D black hole, couplings λn turn the momentum modes on, while λ̃n are the couplings of vortex
operators turning winding modes on, instead. Notice that perturbation (40) not only includes

the usual sine-Liouville interaction α
(−)
±1 , but also includes the dual sine-Liouville interaction

introduced by A. Mukherjee, M. Mukhi and A. Pakman in Ref. [5] when the modes α
(+)
±1 are

considered21. Operators of the branches α
(±)
n have a large k behavior ∼ e±

√
k
2
|n|ϕ, so that only

those of the branch α
(−)
n decrease for large ϕ (where the theory is weakly coupled) in the black

19See formula (3.19) in Ref. [32] and notice that the notation there relates to the one employed here by
ϕ =

√
2φ.

20Actually, the contribution n = 0 at the point k = 9/4 leads to the operator ϕe−
√

2ϕ instead of e−
√

2ϕ. This
comes from the fact that there are two possible values for αn=0 = (1 ±

√
9 − 4k)/

√
k − 2 which coincide (a

resonance) in the limit k → 9/4 producing a degenerangy analogous to the case of the Liouville cosmological
term in the b → 1 limit [92]. Also notice the difference between the signs of the exponents of (31) and (39);
which is due to the sign of the background charge in each case.

21Notice that the notation in [5] relates with ours here by ϕ = −
√

2φ.
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hole semiclassical limit k → ∞. For our purpose, the interesting operators are those having
momentum n = 2. In particular, here we are mainly interested in the case α

(−)
2 = 2√

k−2
(k − 1);

this is the one that will enable us to present an alternative dual description for the 2D black
hole. For notational convenience, let us point out that operators with momentum α

(±)
n can be

written as

Tj±n ,mn,mn
= e

−α
(±)
n√
2

ϕ+in
√

k
2
X

, Tj±n ,mn,−mn
= e

−α
(±)
n√
2

ϕ+in
√

k
2

eX
,

so carrying momentum j±n = −1
2
± 1

2

√
1 + (k − 2)(kn2 − 4) and momentum or winding number

mn ± m̄n = kn. Here we will discuss how certain correlation functions of the model defined
by the action (1), when the momentum modes n = 2 (represented by operators T1−k,k,k) and
n = 1 (respectively represented by T1− k

2
, k
2
, k
2
) are turned on, precisely agree with the correlation

functions of the SL(2, R)k WZW model. So, now we are ready to make the main statement
about the correspondence and describe the precise prescription for computing the correlators.

4.2 Statement of the correspondence

4.2.1 Preliminary: some definitions

We will discuss how the particular deformation of the family (38) given by λn = µδn−2 + λδn−1

is dual to the 2D black hole, in a similar way as the sine-Liouville model is so. That is, by
“dual” we mean that there exists a direct correspondence between correlation functions of both
CFTs at the level of the sphere topology. Then, the interaction operator we will consider is

Oλ1=λ,λ2=µ = λe−
√

k−2
2

ϕ+i
√

k
2
X + µe−

√
2

k−2
(k−1)ϕ+i

√
2kX , (41)

where the scaling relation between the coupling constants µ and λ goes like λ2 = akµ with a
k-dependent proportionality factor ak that will be specified below. In the large k limit this
operator behaves as

Oλ1=λ,λ2=µ ∼ λe−
√

k/2(ϕ−iX) +
1

ak
(λe−

√
k/2(ϕ−iX))2 ∼ λe−

√
k/2(ϕ−iX) +

1

ak
(Oλ1=λ,λ2=0)

2 .

Also notice that

T1− k
2
, k
2
, k
2

= e−
√

k−2
2

ϕ+i
√

k
2
X , T1−k,k,k = e−

√
2

k−2
(k−1)ϕ+i

√
2kX , (42)

so that

Oλ1=λ,λ2=µ = λT1− k
2
, k
2
, k
2

+
λ2

ak
T1−k,k,k. (43)

Taking into account (34), we notice that the perturbation T1− k
2
, k
2
, k
2

corresponds to an operator

that satisfies the unitarity bound 1 − k < 2j < −1 only for k > 3, while the operator T1−k,k,k

does not satisfy that bound for any value of k grater than 2. With operators (42), we define
the following correlationfunctions

〈
T̃j1,m1,m1(z1)...T̃jN ,mN ,mN

(zN )
〉

S[λ]

=
Γ(−s)

b
δ (s + 1 + j1 + ...jN + M + (N − 2 − M)k/2)×
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× 1

M !cM
k

δ (m1 + m1 + ...mN + mN + k(M + 2 − N)) δm1−m1+...+mN−mN
×

×
M∏

r=1

∫
d2wr

s∏

t=1

∫
d2vt

〈
T̃j1,m1,m1(z1)...T̃jN ,mN ,mN

(zN )

M∏

r=1

T1− k
2
, k
2
, k
2
(wr)

s∏

t=1

T1−k,k,k(vt)

〉

S[λ=0]

,(44)

where b−2 = k − 2, and where we fixed ak = c−2
k . The value of λ was also fixed to a specific

value. The vertex operators T̃j,m,m appearing in this expression are related to those introduced
in (34) through

T̃j,m,m =
ckΓ(−m − j)

π2Γ(1 + j + m)
Tej, em, em, (45)

with
j̃ = −j(k − 1) − m(k − 2) − k/2, m̃ = jk + m(k − 1) + k/2, (46)

and analogously for m̃. Again, notice that in (44) we already fixed the value of λ to a specific
value ck, which is a k-dependent numerical factor that is ultimately related to the one appearing
in (25). Realization (44) is similar to (5) in Liouville field theory and defines the correlators

we will consider here. The overall factor Γ(−s)

bM !cM
k

and the δ-functions are understood once the

prescription for inserting the screenings when computing the correlators is specified. These
factors come from the integration over the zero-modes of the fields ϕ and X. Besides, the
condition

∑N
i=1(mi − mi) = 0 also holds. The conditions imposed by these δ-functions are

equivalent to demand
∑N

i=1(m̃i − m̃i) = 0 and
∑N

i=1(m̃i + m̃i) + k(M + 2s) = 0, being M + s
the total amount of screenings to be inserted. We discuss our prescription for the insertion of
the screening charges below.

4.2.2 A Coulomb gas-like prescription

In this realization, the interaction operators T1− k
2
, k
2
, k
2

and T1−k,k,k act in (44) as screening

operators, analogously to the computation of Liouville correlation functions. Because of the
δ-functions appearing in (44), the amount of these screening operators to be inserted turns out
to be given by

s = 1 − N −
N∑

i=1

ji +
k − 2

2
(M + 2 − N), M = N − 2 +

N∑

i=1

ωi. (47)

However, the statement is not complete unless one specifies how conditions (47) are to be
satisfied. This is because in principle there is no a unique way of choosing s and M in order
to obey the first of the charge symmetry conditions in (47). Thus, let us be precise about the
prescription to compute the r.h.s. of (44): The prescription adopted here is that M represents
a positive integer number of operators T1− k

2
, k
2
, k
2

to be inserted, and M is actually fixed by the

winding numbers ωi of the N interacting states. On the other hand, the amount s of operators
T1−k,k,k is then appropriately chosen to make the r.h.s. of (44) to be nonzero; and this is
going to be the case even if (44) has to be analytically extended to non-integer values of s
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(we already discussed correlation functions with a non-integer amount of screening operators
in section 2). This is the set of correlation functions we will consider here; and we emphasize
that the equivalence between CFTs we will state in the following subsection 4.2.3 has to be
understood as holding only if the prescription employed to compute the observables is the one
we just gave in this subsection. Now, once we precisely defined the correlators (44), let us
present the main assertion.

4.2.3 Correspondence between correlation functions

The statement is that the following identity between correlation functions holds

〈
Φω1

j1,m1,m1
(z1)...Φ

ωN

jN ,mN ,mN
(zN)

〉
WZW

= ĉ−2
k

〈
T̃j1,m1,m1(z1)...T̃jN ,mN ,mN

(zN)
〉

S
(48)

where ĉ2
k is a numerical factor (independent of N) that will be specified below, and where the

correlators in the r.h.s. are given by (44) computed with the prescription specified above. This
relation reads

〈
Φω1

j1,m1,m1
(z1)...Φ

ωN

jN ,mN ,mN
(zN)

〉
WZW

=
Γ(−s)

ĉ2
kbM !cM−N

k

N∏

i=1

Γ(−mi − ji)

Γ(1 + ji + mi)
δm1−m̄1+...+mN−m̄N

×

×δ

(
N∑

i=1

(mi + mi) + (M + 2 − N)k

)
δ

(
s + 1 +

N∑

i=1

ji + M + (N − 2 − M)k/2

)
×

×
M∏

r=1

∫
d2wr

s∏

t=1

∫
d2vt

〈
N∏

i=1

Teji, emi, emi
(zi)

M∏

r=1

T1− k
2
, k
2
, k
2
(wr)

s∏

t=1

T1−k,k,k(vt)

〉

S[λ=0]

. (49)

This is the main result here. Equation (48) gives a realization of any N -point function of
the SL(2, R)k/U(1) WZW correlators in terms of the analogous observables in the theory (1)
if the perturbation is taken to be λn = µδn−2 + λδn−1. The perturbation involved in this
realization corresponds to the operators T1− k

2
, k
2
, k
2

and T1−k,k,k, having momentum modes n = 1

and n = 2, respectively. This is different from the standard FZZ duality, which corresponds to
λn = λ̃δn−1 + λ̃δn+1, instead. The perturbation of the linear dilaton theory (13) with operators
of different winding numbers was also considered in Ref. [5], where it was suggested that the
multiply-wound tachyon operators are linked to the called higher-spin black holes. It would be
very interesting to understand the relation with the realization of [5] better and confirm such
picture.

4.2.4 Conjugate representations and spectral flow

An interesting feature of the statement made above is that the r.h.s. of (48) involves “conjugate
operators” instead of the ones introduced in (34). Ones are related to each others by (46), which
represents a symmetry of the formula for the conformal dimension (17) (and not only for it,
actually). Notice that, in particular, we have

T̃1− k
2
, k
2
, k
2
∼ T1−k,k,k, (50)
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and operators T̃j,m,m and Tj,m,m have exactly the same conformal dimension. Moreover, the
automorphism can be extended in order to be valid for the theory formulated on the product
SL(2, R)k/U(1) × R by including the new winding number

ω̃ = −ω − 1 − 2(j + m). (51)

In such case, the operators T̃j,m,m and Tj,m,m, when both are extended by including the time-like

factor ei
√

2
k
(m+ k

2
ω)T , satisfy

−j(j + 1)

k − 2
− mω − k

4
ω2 = − j̃(j̃ + 1)

k − 2
− m̃ω̃ − k

4
ω̃2

and also have the same momentum under the J3 current of the WZW model, namely

m +
k

2
ω = m̃ +

k

2
ω̃.

To understand the relation between T̃j,m,m and Tj,m,m in the algebraic framework, let us com-
ment on the SL(2, R)k representations again: As we said, the principal continuous series Cα,ω

λ

correspond to j = −1
2

+ iλ with λ ∈ R and thus, through (46), this results in the new values

j = −1
2
+iλ̃−m(k−2) with λ̃ ∈ R, which only belong to the continuous series if m = 0. Besides,

if we perform the change (46) for generic λ̃, then m turns out to be a non-real number after of
that. Then, the relation between j, m and j̃, m̃ can not be thought of as a simple identification
between states of different continuous representations but it does correspond to different free
field realizations (at least in what respects to the continuous series Cα,ω

λ ). On the other hand,
concerning the discrete representations, it is worth mentioning that the quantity j +m remains
invariant under the involution (46); though it is not the case for the difference j − m that,
instead, remains invariant under a Z2 reflected version of (46). Then, unlike the states of con-
tinuous representations, the transformation defined by (46) and (51) is closed among certain
subset of states of discrete representations. This is because such transformation maps states
of the discrete series with 2(j + m) ∈ Z among themselves. In particular, the case m + j = 0
corresponds to the well known identification between discrete series D±,ω=0

j and D∓,ω=±1
−k/2−j since

in that case (46) and (51) reduce to j → −k/2 − j, m → k/2 − m = k/2 + j, ω → −1 − ω
(i.e. it includes22 such spectral flow transformation as a particular case). Also notice that the
condition m− m̄ ∈ Z is not preserved for generic values of k. The fixed points of (46) describe
a line in the space of representations, parameterized by j + 1/2 = −m(k − 2)/k; in particu-
lar, a fixed point for generic k corresponds to j = −1/2 and m = 0, for which (51) reduces
to ω → −ω. Also, in the tensionless limit k → 2 transformation (46) agrees with the Weyl
reflection j → −1 − j. The relation between quantum numbers manifested by (46) permits to
visualize the relation between the vertex considered in our construction and those of reference
[62], and we emphasize that these correspond to two different (alterative) representations of

22More precisely, the identification between Kac-Moody primary highest-weight (lowets-weight) states that is
induced by the sector ω = 1 of the spectral flow coincides with a particular case of the identification given by
the symmetry (46), (51).
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the vertex operators. The relation between both is a kind of “twisting” and is presumably
related to the representations studied in [70] for the WZW theory. Certainly, the conjugate
representations of the SL(2, R)k vertex algebra do resemble the twisting (45), and it seems
to be a nice connection between correlators (44) and the free field representation studied in
[69, 68, 70, 62]. Conjugate representations transform in a particular way under the Kac-Moody

affine ŝl(2)k algebra, and are analogous to those introduced by Dotsenko for the case of ŝu(2)k

in Refs. [56, 57]. For the non-compact WZW these were first introduced in Ref. [30] to describe
winding violating amplitudes. Here, through Eq. (45), these appear again (although we are
referring to them as “twisted”) within a similar context.

4.2.5 Remark on the ŝl(2)k affine symmetry

To understand these twisted sectors better, let us make some remarks on the sl(2)k symmetry
of the action (1) when it is perturbed as we did so. We are claiming (and we will prove in
the following subsection) that correlators (44) do transform appropriately under the sl(2)k

symmetry in order to describe the WZW correlators. However, even though one can prove this
a posteriori, the question arises as to why does it happen if the operators T1−k,k,k do not seem

to commute with the ŝl(2)k currents though. To be precise, even though one eventually proves
that the free field representation employed here transforms properly by construction (e.g. it
reproduces solutions of the KZ equation), it is also true that this is not obvious because the
screening operators do not seem to commute with the free field representation of the sl(2)k

current algebra (35) as one could naively expect. The explanation of this puzzling feature is

that the vertex operators T̃j,m,m do not satisfy the usual OPE with the sl(2)k currents either,
and thus this restores the symmetry. To see this explicitly, one has to consider the generators
of the affine algebra (35), and then verify that those currents do not have regular OPE with the
operators T1−k,k,k. The remarkable point is that this is precisely what makes the SL(2, R)k to
be restored: While these currents do not present regular OPE with the operator T1−k,k,k, these

do not satisfy the usual OPE with the twisted vertex operators T̃j,m,m either; and both facts
seem to combine in such a way that render the set of observables (44) SL(2, R)k invariant23.

This depends on the presence of the normalization factor Γ(−j−m)
Γ(j+m+1)

in (45), since its presence is

not innocuous for the transformation properties under the generators J±
n . This feature makes

out of the correspondence (48) a non-trivial assertion.

4.3 Proving the correspondence

Here we will show that the formula (48) immediately follows from the relation (25) between
WZW and Liouville correlators. With the aim of being clear, here we address the proof in
two steps: First, we rewrite the correlators (44) and the operators involved there in a conve-
nient way24. The second step will be using the formula (25) to make contact with the WZW
correlators.

23G.G. thanks Yu Nakayama for addressing his attention to this remarkable point.
24In Ref. [7] similar techniques were used to prove a different (though related) correspondence: the one

between Liouville and sine-Liouvile correlation functions.
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4.3.1 Step 1: Rewriting the correlators

As we said, the proof of formula (48) directly follows from the Stoyanovsky-Ribault-Teschner
map (25) we discussed in section 2. In order to make the proof simpler, let us begin by redefining
fields as follows

ϕ(z) = (1 − k)ϕ̂(z) + i
√

k(k − 2)X̂(z), X(z) = i
√

k(k − 2)ϕ̂(z) + (k − 1)X̂(z). (52)

That is

−
√

k − 2

2
ϕ̂ + i

√
k

2
X̂ = −

√
k − 2

2
ϕ + i

√
k

2
X (53)

and

− 1√
k − 2

ϕ =
k − 1√
k − 2

ϕ̂ − i
√

kX̂. (54)

Also notice that it implies

∂ϕ∂ϕ + ∂X∂X = ∂ϕ̂∂ϕ̂ + ∂X̂∂X̂; (55)

so that the free field correlators are 〈ϕ̂(z1)ϕ̂(z2)〉 =
〈
X̂(z1)X̂(z2)

〉
= −2 log |z1 − z2|. One

can wonder whether the field redefinition (52) is well defined or not since it is a complex

transformation and then both ϕ̂ and X̂ would acquire a non-real part. However, the correct
way of thinking this transformation is first considering a Wick rotation of the X direction and
then, after the transformation, Wick rotate X̂ back. It turns out to be a perfectly defined
transformation for the Wick rotated fields iX and iX̂, which can be seen as real time-like
bosons. Transformation (52) is a U(1, 1) transformation, with determinant −1. In fact, one
can also turn it into a SU(2)-rotation by supplementing (52) with a reflection X → −X (that
is also a symmetry of the theory). In that case, it is clear that (54) and (55) remain invariant,
while (53) changes its sign in the second term of the r.h.s.. So, in principle, it would be possible
to consider a U(1, 1) × SU(2) chiral transformation (for the holomorphic part and the anti-
holomorphic part, respectively) in order to transform dependences on X into dependences on

X̃.
In terms of these new fields ϕ̂ and X̂ one finds that the linear dilaton theory defined by the

action S0 − 1
4π

∫
d2z ∂T ∂̄T takes the form

S =
1

4π

∫
d2z

(
−∂T ∂̄T + ∂X̂∂̄X̂ + ∂ϕ̂∂̄ϕ̂ +

1

2
√

2
QRϕ̂ − i

√
2kRX̂

)
(56)

with Q = b + b−1, and b−2 = k − 2, so that Q = k−1√
(k−2)

= b + b−1 (cf. Eq. (4) in section

2). That is, the background charge operator e−
√

2
k−2

ϕ transform through (46) into a new

background charge operator e
√

2Qϕ−i
√

2k, where j̃ = −1, m̃ = 0 while j = k − 1, m = −k.
Consequently, the stress-tensor reads [1]

T (z) =
1

2
(∂T )2 − 1

2
(∂X̂)2 − i

√
k

2
∂2X̂ − 1

2
(∂ϕ̂)2 +

k − 1√
2(k − 2)

∂2ϕ̂, (57)
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and the dilaton now acquires a linear dependence on both directions X̂ and ϕ̂. This kind of
CFT, representing c < 1 matter coupled to perturbed 2D gravity, was recently discussed in Refs.
[99, 100, 101, 102, 55]. It is possible to verify that this stress-tensor leads to the appropriated
central charge c = 3 + 6

k−2
, as it is of course expected. On the other hand, in terms of the new

fields the interaction (perturbation) term λT1− k
2
, k
2
, k
2
(wr) + µT1−k,k,k(vt) takes the form

Oλ1,λ2 = c−1
k e−

√
k−2
2

bϕ+i
√

k
2

bX + e
√

2
k−2

bϕ, (58)

where we already fixed the scale µ to a specific value by shifting the zero-mode of the Liouville
field ϕ̂, and we also specified the numerical factor ck as being the ratio between the couplings µ
and λ2 in (41). Notice that in these coordinates the second term in the perturbation Oλ2,λ1 turns

to be diagonalized (no dependence on X̂ arise there) and agrees with the Liouville cosmological

constant µe
√

2bbϕ. On the other hand, the first term in (58) still has the form of one of the two
exponentials that form the cosine interaction (33) in sine-Liouville theory; this is due to (53).

On the other hand, the vertex operators in terms of X̂ and ϕ̂ take the form25

T̃j,m,m =
ckΓ(−m − j)

π2Γ(1 + m + j)
Vα × ei

√
2
k
(m− k

2
) bX+i

√
2
k
(m+ k

2
ω)T , (59)

with the Liouville field Vα = e
√

2αbϕ, with α = bj + b + b−2/2 = b(j + k/2). Expanding the
correlators we get

1

ĉ2
k

〈
T̃j1,m1,m1(z1)...T̃jN ,mN ,mN

(zN)
〉

S[λ,µ]

=
Γ(−s)

bM !cM
k ĉ2

k

M∏

r=1

∫
d2wr

s∏

t=1

∫
d2vt

〈
N∏

i=1

T̃ji,mi,mi
(zi) ×

×
M∏

r=1

T1− k
2
, k
2
, k
2
(wr)

s∏

t=1

T1−k,k,k(vt)

〉

S[λ=0,µ=0]

and this can be written as

=
1

kĉ2
k

δ (ω1 + ...ωN + N − 2 − M)

N∏

a=1

ck Γ(ma − ja)

π2Γ(1 + ja − m̄a)

〈
N∏

t=1

ei
√

2
k
(mt+

k
2
ωt)T (zt)

〉

S[λ=0]

×

× 1

M !cM
k

δm1−m1+...mN−mN

M∏

r=1

∫
d2wr

〈
N∏

t=1

ei
√

2
k
(mt− k

2
) bX(zt)

M∏

r=1

ei
√

k
2

bX(wr)

〉

S[λ=0]

×

×Γ(−s)

b
δ

(
s − 1 − 2 + M

2b2
+

α1 + ...αN

b

) s∏

t=1

∫
d2vt

〈
N∏

t=1

Vαt
(zt)

M∏

r=1

V− 1
2b

(wr)

s∏

t=1

Vb(vt)

〉

SL[µ=0]

,

(60)

25Again, we are not explicitly writing the antiholomorphic contribution ei
√

2

k
m bX for short. It has to be

understood in what follows.
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where S[λ=0] here refers to the unperturbed action

S[λ=0] =
1

4π

∫
d2z

(
−∂T∂T + ∂X̂∂X̂ − i

2

√
k

2
RX̂

)
. (61)

The third line in (60) turns out to be a N + M-point correlation function in Liouville field
theory (see Eq. (5) in section 2), defined by the Liouville action

SL[µ] =
1

4π

∫
d2z

(
∂ϕ̂∂ϕ̂ +

1

2
√

2
QRϕ̂ + 2πµe

√
2bbϕ

)
,

with Q = b + b−1. Recall that the parameter b of the Liouville theory is related to the Kac-
Moody level k through b−2 = k − 2, while the quantum numbers αi are defined in terms of ji

by αi = bji + b + b−2/2, for i = 1, 2, ...N. After the Wick contraction, we find

Γ(−s)

bM !cM
k ĉ2

k

M∏

r=1

∫
d2wr

s∏

t=1

∫
d2vt

〈
T̃j1,m1,m1(z1)...T̃jN ,mN ,mN

(zN)
M∏

r=1

T1− k
2
, k
2
, k
2
(wr)

s∏

t=1

T1−k,k,k(vt)

〉

S[λ=0]

=

= Nk(j1, ...jN ; m1, ...mN )

M∏

r=1

∫
d2wr Fk(z1, ...zN ; w1, ...wM)〈

N∏

t=1

Vαt
(zt)

M∏

r=1

V− 1
2b

(wr)〉SL[µ] ,

(62)
where µ = b2/π2 and where, after fixing the value ĉ2

k = 2c2
k/bπ

3, the normalization factor is

Nk(j1, ...jN ; m1, ...mN ) =
2π3−2Nb

M ! cM+2−N
k

N∏

i=1

Γ(−mi − ji)

Γ(1 + ji + m̄i)
(63)

and the function Fk(z1, ...zN ; w1, ...wM) is given by

Fk(z1, ...zN ; w1, ...wM) =

∏N
1≤r<l |zr − zl|k−2(mr+ml+ωrωlk/2+ωlmr+ωrml)

∏M
1<r<l |wr − wl|−k

∏N
t=1

∏M
r=1 |wr − zt|k−2mt

×

×
∏N

1≤r<l(z̄r − z̄l)
mr+ml−m̄r−m̄l+ωl(mr−m̄r)+ωr(ml−m̄l)

∏M
1<r<l(w̄r − z̄t)mt−m̄t

. (64)

Remarkably, this has reproduced the r.h.s. of formula (25); cf. Eq. (27). Notice that the
exponents of the differences |zr−zl| in (64) do depend on whether the theory is being formulated
on the coset SL(2, R)k/U(1) or on its product with the time T . The vertex operators (59) are
the only fields that carry the T -dependences, so that the rest of the OPEs are not affected.

According to (47), the amount of perturbations involved in (62) is constrained by the fol-
lowing conditions

N∑

i=1

mi =
N∑

i=1

m̄i =
k

2
(N − M − 2), s = −b−1

N∑

i=1

αi + b−2 M

2
+ 1 + b−2 , (65)
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where the number s corresponds to the amount of screening operators Vb = µe
√

2bbϕ to be
included in Liouville correlators. The whole amount of vertex operators involved in the r.h.s.
of (62) is then N + M + s, and is related to the winding numbers of the strings through

N∑

i=1

ωi = M + 2 − N ≥ −|N − 2|. (66)

Notice that the value of
∑N

i=1 ωi can not be lower than 2 − N if M represents a positive
integer number. Allowing negative values of winding numbers requires the insertion of screening
operators with n = −1 in addition to those of n = +1. M runs between 0 and N − 2, which
implies that, according to the prescription given in subsection 4.2.2, the absolute value of the
violation of winding number conservation could not exceed N−2. This is an interesting feature,
and it is not trivial at all to fully understand this bound. We can say here that it is closely
related to the ŝl(2)k symmetry of the theory, and we refer to the appendix D of Ref. [67] for a
nice explanation. It is worth mentioning that the selection rule for winding number violation
(66) was already part of the original FZZ conjecture [30]. A short note about this rule can be
also found in Ref. [103].

The formula (62)-(64), with the conditions (65), is the main ingredient for proving (48).
It only remains to argue that the r.h.s. of (62) actually represents a WZW correlator; and,
actually, it can be already observed since it directly follows from the formula (25). Indeed, the
r.h.s. of (62) agrees with the l.h.s. of (25) and this would complete the proof of (48). Let us
conclude the job by further commenting on it.

4.3.2 Step 2: Realizing the Stoyanovsky-Ribault-Teschner map

As we just mentioned, the last step in proving (48) is showing that the r.h.s. of Eq. (62)
precisely describes a WZW N -point function, and, actually, this immediately follows from the
main result of Ref. [4] (see formula (3.29) there, which we wrote in the Eq. (25) in section 2).
Hence, we have managed to rewrote our result (48) in such a way that its proof turns out to be
a direct consequence of the observation made by S. Ribault in his paper [4], where he showed
that the l.h.s. of Eq. (62) is precisely equal to a correlation function in the SL(2, R)k WZW
model. Our achievement was to prove that the auxiliary overall function Fk(z1, ...zN ; w1, ...wM)
standing in the Ribault-Teschner formula can be also thought of as coming from the correlation
functions of the linear dilaton CFT realized by the field X̂; namely

Fk(z1, ...zN ; w1, ...wM) =

〈
N∏

t=1

ei
√

2
k((mt− k

2
) bX(zt)+(mt+

k
2
ωt)T (zt))

M∏

r=1

ei
√

k
2

bX(wr)

〉

S[λ=0]

. (67)

That is, we showed how the Ribault-Teschner formula can be seen as an identity between
correlators of two different two-dimensional σ-models with three-dimensional target space each.
While one of these is the SL(2, R)k WZW, the other is of the form

Liouville ×Mk ⊗ R (68)
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of which Liouville theory is just a part. The R factor corresponds to the time-like direction,
parameterized by T . On the other hand, the Mk factor is a U(1) direction, parameterized by

the field X̂, and describes a linear dilaton theory with central charge c = 1 − 6k < 1. In fact,
notice that the contribution of X̂ to the central charge is actually negative because k > 2. The
field X̂ interacts with the Liouville field ϕ̂ through the tachyon-like potential, so that the first
product in (68), unlike the second, is not a direct product. The time direction, instead, does
not interact with the other fields, and it only contributes to the total central charge and the
conformal dimension of the vertex operators.

The fact that a construction like (68) is possible is not a minor detail: Realizing that
the Ribault-Teschner formula (25) admits to be interpreted as the equivalence between these
two CFTs demanded not only the existence of a realization like (67), but also demanded
the contribution of the central charge coming from the U(1) ⊗ time part to agree with the
difference between the Liouville central charge cL = 1 + 6Q2 and the SL(2, R) WZW central

charge cSL(2) = 3 + 6Q̂2 = 3k/(k − 2), being reminded of b−2 = k − 2. Moreover, such value

for the central charge of the CFT defined by fields X̂ and T had to be consistent with the
conformal dimension of the fields in (67), leading to reproduce the formula for the conformal
dimension of the WZW vertex operators. Besides, another feature that had to be explained
was the presence of the M additional fields V−1/2b arising in the r.h.s. of (62). Their presence
is now understood as follows: Since we know that the (the M-multiple integral of the) product
between the function Fk(z1, ...zN ; w1, ...wM) and the N +M-point Liouville correlation function
does satisfy the KZ equation and so represents a correlation function in the WZW theory, it
is then expected that the Liouville degenerate fields V−1/2b arising there admit to be expressed
as a (1, 1)-operator in a “bigger” theory with the form Liouville × CFT (i.e. the screening

charge V−1/2b × ei
√

k/2 bX standing as the first term of the r.h.s. of (58)). That is, even though
V−1/2b has dimension h = −1

2
− 3

4b2
6= 1 with respect to the Liouville stress-tensor, it does

correspond to a (1, 1)-operator26 V−1/2b ⊗ VCFT with respect to the stress-tensor of the bigger
model Liouville×CFT . Of course, the theory also admits as a screening operator the one that
was already the screening for the “Liouville part of the theory”, namely Vb ⊗ I; so (58) can be

written as the sum of both, Oλ1,λ2 = c−1
k V−1/2be

i
√

k/2 bX + Vb.
Notice that all the requirements mentioned above are actually obeyed by the theory defined

by the action (61) perturbed by the operator (58). Hence, we have given a free field repre-
sentation of the Ribault-Teschner formula (25). Related to this, in Ref. [4] it was commented
that a parafermionic realization of (25) is also known, and the unpublished work by V. Fateev
was referred. The parafermion representation leads (see Eq. (3.31) in [4]) to a formula simi-

lar to (25) provided the replacement of the factor
∏N

1≤r<l(zr−zl)
k
2
−(mr+ml+ωrωl

k
2
+ωlmr+ωrml)(zr−

zl)
k
2
−(mr+ml+ωrωl

k
2
+ωlmr+ωrml) in (27) by a factor

∏N
1≤r<l(zr−zl)

k
2
+ 2

k
mrml−mr−ml(zr−zl)

k
2
+ 2

k
mrml−mr−ml,

and notice that this is exactly what we find in our language (67) if we exclude the T dependence
in the vertex operators. This realizes a correspondence like (25) but for the case of the coset
SL(2, R)k/U(1). See the “notes” at the end of Ref. [1] where the similarities with Fateev’s

26Even though the operator V−1/2b × ei
√

k/2 bX has dimension 1, it is not strictly correct to refer to it as a

“screening” operator due to the remark on the ŝl(2)k transformation properties made in section 4.2.5.
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work were already mentioned. Besides, a realization of the Ribault-Teschner formula in terms
of Liouville times a c < 1 matter CFT was independently presented by S. Nakamura and V.
Niarchos in Ref. [6]. We would like to explore the similarities between our realization and the
one in that paper; we just realized that the realization in [6] does closely parallels ours.

Summarizing: because of Ribault-Teschner formula, it turns out that the correlation func-
tion in the r.h.s. of (62) does correspond to the string amplitude in the black hole (×time)
background, where the winding number conservation is being violated in an amount |N−2−M |.
Consequently, this implies that the l.h.s. of (62) do correspond to WZW correlators as well,
and this completes the proof of (48). However, it has to be emphasized that the correspon-
dence between BPZ and KZ equations was proven for the Lorentzian theory, namely holding
for continuous representations. Thus, considering its validity beyond such regime assumes a
sort of analytic continuation. The convergence of integrals in (62) is the subtle point here.

4.4 A consistency check of the correspondence

We have proven formula (48); this was first done in Ref. [1], but the order of the presentation
was rather different there. Formula (48) turns out to be a useful tool for computing correlators
in the WZW theory. A concise example was given in Ref. [2], where the free field representation
in terms of the Liouville×U(1)⊗R conformal field theory (56)-(58) was employed to compute
WZW three-point functions for the particular case where the total winding number is violated
in one unit. This quantity turns out to be proportional to the Liouville correlator

〈
Φω1

j1,m1,m1
(0)Φω2

j2,m2,m2
(1)Φω3

j3,m3,m3
(∞)

〉
WZW

∼
3∏

i=1

Γ(−mi − ji)

Γ(ji + 1 + m̄i)

s∏

t=1

∫
d2vt

〈
e
√

2
k−2

(j1+1)bϕ(0) ×

×e
√

2
k−2

(j2+1)bϕ(1)e
√

2
k−2

(j3+1)bϕ(∞)
s∏

t=1

e
√

2
k−2

bϕ(vt)
〉

SL[µ=0]
δ

(
s + j1 + j2 + j3 + 1 +

k

2

)
,

and, up to an irrelevant k-dependent (j-m-independent) factor and having fixed the value of
the black hole mass, the final result reads

〈
Φω1

j1,m1,m1
(0)Φω2

j2,m2,m2
(1)Φω3

j3,m3,m3
(∞)

〉
WZW

=

(
πγ

(
1

k − 2

))−j1−j2−j3− k
2
−1 3∏

i=1

Γ(−mi − ji)

Γ(ji + 1 + m̄i)
×

×Gk(j1 + j2 + j3 + k
2
)Gk(−j1 − j2 + j3 − k

2
)Gk(j1 − j2 − j3 − k

2
)Gk(1 + j1 − j2 + j3 − k

2
)

γ
(
−j1 − j2 − j3 − k

2

)
γ
(
−2j2+1

k−2

)
Gk(−1)Gk(2j1 + 1)Gk(1 − k − 2j2)Gk(2j3 + 1)

×

×δ(m1 + m2 + m3 − k/2)δ(m̄1 + m̄2 + m̄3 − k/2)δ(s + j1 + j2 + j3 + 1 + k/2). (69)

where the special function Gk(x) is defined through

Gk(x) = (k − 2)
x(k−1−x)

2(k−2) Γ2(−x|1, k − 2)Γ2(k − 1 + x|1, k − 2),
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in terms of the Barnes function Γ2(x|1, y)

ln Γ2(x|1, y) = lim
ε→0

d

dε

∞∑

n=0

∞∑

m=0

(
(x + n + my)−ε − (1 − δn,0δm,0)(n + my)−ε

)
,

where the presence of the factor (1 − δn,0δm,0) in the r.h.s. means that the sum in the second
term does not take into account the step m = n = 0. Expression (69) does reproduce the
exact result, so that agrees with the result obtained in Refs. [30, 67, 81]. The details of
the computation can be found in [2]. Rather than an application, the calculation of (69) can
be considered as a consistency check of the representation (68) proposed here (and in [1]) to
represent WZW correlators. Besides, it also represents an operative advantage since (unlike
other free field realizations for which the computation of violating winding three-point function
involves the additional spectral flow operator) this turns out to be integrable in terms of the
Dotsenko-Fateev type integrals (cf. the calculations in Refs. [68, 67]). Nevertheless, it is
worth pointing out that the consistency check discussed here is the most simple (non-trivial)
computation one can do within this framework; this is because it did not involve the degenerate
Liouville fields V−1/2b. Unlike, the screening that we did use to realize (69) was the new one

we introduced; namely, the operator T1−k,k,k = e
√

2
k−2

bϕ = e−
√

2
k−2

(k−1)ϕ+i
√

2kX , which represents
a n = 2 perturbation. A less trivial consistency check would be that of trying to reproduce
the winding-conservative WZW three-point function in the often called m-basis, which would
require to make use of a non-trivial integral representation of the (hypergeometric) special
function of the kind studied in Refs. [82, 83, 104]. Related to this point, let us mention that
explicit expressions for Liouville four-point functions involving one degenerate state V− 1

2b
were

recently obtained [52, 102]. According to the relation (25), these four-point functions are the
ones representing three-point functions that conservate the winding conservation in the WZW
side.

Other applications of the Stoyanovsky-Ribault-Teschner correspondence (25), (48), were
early discussed in Ref. [88, 89, 27, 25]. In subsection 4.5.3, we will review one of the observations
made in [27].

4.5 Remarks

4.5.1 A comment on generalized minimal gravity

Now, we would like to make a brief comment on the theory defined by the action (56) and the
perturbation (58); and let us focus our attention on the two-dimensional sector corresponding

to the fields ϕ̂ and X̂. Because of the field redefinitions (52), it turns out that the theory could
be written as the Liouville theory coupled to a c < 1 CFT. Then, the natural question arises as
to whether such a c < 1 model can be identified with one of the quoted minimal models. As it is
well known, the CFT minimal models are characterized by two integers p and q which yield the
value of the central charge, being c = 1− 6(β−1 − β)2 with rational27 β2 = p/q satisfying q > p
(so that β < 1). In our case, the value of the central charge of the c < 1 theory (corresponding

27Besides, a generalized version of these CFTs can be considered, being valid for generic values of β, [50].
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to the part of the theory governed by the field X̂) turns out to be c = 1 − 6k and, then, in
order to identify this with one of the minimal models we should demand k = (p− q)2/pq (that
is k = (β−1 − β)

2
) [71]. However, since we are interested in the whole range k > 2, it turns out

that the condition c = 1−6(p−q)2/pq is only consistent with particular values of k. One example
is precisely the model (p = 1, q = 4) which does correspond to k = 9/4, which is the value of
k for the 2D theory on the coset. In such case, and taking into account that k also satisfies
k = 2+b−2, we would have β = b so that the theory corresponds to the often called 2D minimal
gravity (model that is supposed to be exactly solved). For more general case, the 2D theory

defined by the fields ϕ̂ and X̂ can be regarded as the Liouville theory coupled to a generalized
minimal model (with non-necessarily rational β2) perturbed by (58). Such perturbation would
then correspond to a Liouville-dressed operator in the minimal model too. The operators of
the minimal models admit a representation in terms of the exponential form Φmn = eiαmn

bX ,
having conformal dimension hmn = 1

4
(mβ−1−nβ)2− 1

4
(β−1−β)2 = αmn(αmn +β−β−1) for two

positive integers m and n; that is, the momenta can take values αmn = 1
2
(n−1)β− 1

2
(m−1)β−1

or αmn = 1
2
(m + 1)β−1 − 1

2
(n + 1)β. So, a perturbation operator with the form ei

√
k/2n bX+

√
2an bϕ

can be regarded as a dressed field Φn−1,n−1 of the minimal model (p, q) with k = (p − q)2/pq.
In these terms, what we have proven is a correspondence between N -point functions in the
WZW theory and a subset of correlation functions of perturbed Liouville gravity coupled to
generalized minimal models.

4.5.2 Duality between tachyon-like backgrounds

By using the relation between Liouville correlators and WZW correlators we wrote down iden-
tity (48). This gives a dual description for the 2D string theory in the black hole background.
One of the questions that arise is about the relation between (48) and the standard FZZ cor-
respondence. In fact, both models appear as alternative dual descriptions of the WZW theory,
so that we can use WZW correlators as an intermediate step to eventually write the following
seemly self-duality relation

s+∏

r=1

∫
d2ur

s−∏

t=1

∫
d2vt

〈
N∏

i=1

Tji,mi,mi
(zi)

s+∏

r=1

T1− k
2
, k
2
, k
2
(ur)

s−∏

t=1

T1− k
2
,− k

2
,− k

2
(vt)

〉

S[λ=0]

∼

∼
es+∏

r=1

∫
d2ur

es++∏

t=1

∫
d2ωt

〈
N∏

i=1

T̃ji,mi,mi
(zi)

es+∏

r=1

T1− k
2
, k
2
, k
2
(ur)

es++∏

t=1

T1−k,k,k(ωt)

〉

S[λ=0]

, (70)

where the fearful symbol ∼ stands to make explicit the fact that this identity depends on
the details of how the FZZ conjecture relates the WZW correlators to those of sine-Liouville
theory28. This relation between correlators, realized by means of the Coulomb gas realization,
yields a non-trivial integral identity. On the other hand, one can wonder whether (70) has to
be referred as a self-duality of sine-Liouville field theory or not. In fact, it merely looks like

28As far as we know, the checks of FZZ duality were performed by comparing the analytic structures of both
theories rather than verifying exact numerical matching.

35



a duality between two different deformations of the linear dilaton theory (13) rather than a
“self-duality”. However, one can see that both sides in the identity above are in some sense
connected to sine-Liouville theory, and not only the left hand side. Actually, the perturbation
T1−k,k,k, that represents the momentum n = 2 operator, is connected to that of n = 1 by the
conjugation relation (45). That is, while j = 1 − m = 1 − k for the n = 2 operator T1−k,k,k,

the dual momenta (dual according to (46)) are29 j̃ = 1 + m̃ = 1 − k/2, and correspond to the
momenta of the n = −1 operator T1− k

2
,− k

2
,− k

2
. Thus, we could relate the correlators in the l.h.s.

of (70) to the following one30

∼
es+∏

r=1

∫
d2ur

es−∏

t=1

∫
d2ωt

〈
N∏

i=1

T̃ji,mi,mi
(zi)

es+∏

r=1

T1− k
2
,+ k

2
,+ k

2
(ur)

es−∏

t=1

T̃1− k
2
,− k

2
,− k

2
(ωt)

〉

S[λ=0]

(71)

with k−2
2

s̃+− s̃−− k
2
(N − 2) = k−2

2
(s+ + s−) and s̃+−(N −2) = s+−s−. Hence, (70) turns out

to be a twisted version of the sine-Liouville model, i.e. can be written as in (71). The presence
of the tildes ∼ on the operators in gives rise to the expression “twisted”; twisted in the sense
that (46) is applied to the operators T1− k

2
,− k

2
,− k

2
but is not applied to the operators T1− k

2
,+ k

2
,+ k

2
.

This kind of relation between correlators (70) and (71) is reminiscent of what happens in the
WZW theory, where standard and conjugate representations stand as alternative realizations of
the same correlation functions. Thus, this suggests that (70) could be manifesting some kind of
self-duality relating two different realization of the same conformal theory31. Morally, the price
to be paid to twist (namely, to conjugate) the N vertex operators Tji,mi,mi

in (70) is that of

twisting the lelf-handed screening operators T1− k
2
,− k

2
,− k

2
→ T̃1− k

2
,− k

2
,− k

2
∝ T1−k,k,k, while keeping

the right-handed T1− k
2
,+ k

2
,+ k

2
unchanged. Consequently, the number of insertions changes from

s− to s̃++ = s̃− (and also from s+ to s̃+) by keeping the formal relation N − 2 = s̃+ − s+ + s−
fixed. Roughly speaking, the right hand side of (70) looks like a “half” of a sine-Liouville theory,
because just one of the two exponential operators T1− k

2
,± k

2
,± k

2
that form the cosine interaction

(33) is present, while the operators T1−k,k,k seem to arise there for compensating the conservation
laws that make the correlator to be nonzero. In the WZW theory, the analogue to the “twisting”
that connects the operators T̃j,m,m to operators Tj,m,m would be the relation existing between

conjugate and standard representations of the ŝl(2)k vertex algebra [18, 20, 69, 68, 70]. The

relation between representations T̃j,m,m and Tj,m,m connects operators of the winding sector n
to those of the sector n + 1. Presumably, the twisted version of the FZZ duality we presented
in (48) can be extended in order to include higher momentum and winding modes n > 2. This
would rise the obvious question as to what would these twisted sectors be describing in terms
of the black hole picture. As it was pointed out in [32], if the c = 1 theory is perturbed by
operators of the sector n, then it behaves equivalently to the theory compactified in a different

29Strictly speaking, one has to consider the automorphism m → m̃ = −jk − m(k − 1) − k/2 instead of (46),
which is a composition with the reflection m → −m.

30up to a k-dependent factor of the form (bk)
es
− , with bk being independent on ji, mi and mi.

31Let us also mention that another realization of the same correlators is possible if one replace T̃1− k

2
,−k

2
,− k

2

∝
e−

√
2

k−2
(k−1)bϕ+i

√

2k bX by its k−2 power e−
√

2(k−2)(k−1)bϕ+i
√

2k(k−2) bX . This is because of the Liouville self-duality
under b ↔ b−1.
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radius R/n and perturbed by the sine-Liouville operators. In some sense, this is related to
what was early studied in Ref. [21]. Nevertheless, the perturbation we considered here presents
operators of both sectors n = 1 and n = 2, so being a sort of chirally twisted case. We would
like to understand this deformations better. Our hope is to make contact to the results of Refs.
[5] and [21] in trying to answer this question, but this certainly requires further study.

4.5.3 The c → 0 limit of the Liouville × U(1) × R model

To conclude, we would like to discuss the particular limit where the central charge of the model
(68) vanishes. This was first studied in Refs. [26] and [27] (see also [105]-[108]). This limit
corresponds to k → 0, which, in fact, is far from being well understood. Actually, one can rise
several question concerning whether in such a limit the CFT is well defined or not. However,
let us avoid these questions here and merely assume that such an extension is admissible. In
the limit k → 0, the Liouville central charge becomes cL = −2 while the background charge
for the field X̂ vanishes, so that the central charge for the U(1) × R theory (i.e. the fields X̂
and T ) turns out to be +2. The functional form of the correlation functions in the k → 0 limit
requires a careful analysis because of subtle features arising through the analytic continuation
in the b complex plane [109, 50]. However, we can further speculate and assume for a while
that an extension of the correspondence (25) between WZW and Liouville theory still holds
at k = 0. At this point, the sine-Liouville action actually coincides with the Liouville action
supplemented with that of a c = 1 field X̂. This is because of the identification b−2 = k − 2
and the fact that Q = −Q̂ at the point k = 0. Besides, at k = 0 the sine-Liouville interaction
(32) does correspond to the Liouville cosmological constant eibϕ/

√
2. This suggestive matching

between both actions can be tested at the level of correlation functions as well. In fact, with
the authors of [26], we could assume that the FZZ conjecture is still valid in the limit k → 0
and, then, by invoking the Ribault-Teschner formula (25), eventually conclude that the sine-
Liouville correlators model coincide with the correlators of the Liouville theory (times the free

boson X̂) at k = 0. To see this, let us point out the following remarkable facts: First, notice
that, because we are taking a limit R =

√
k/2 going to zero (i.e. the asymptotic radius of the

cigar), it is just enough to observe what happens with the modes m = m̄ = 0 on the cigar.
From the point of view of the T-dual model, the dual radius R̃ ∼ 1/

√
k of the cylinder goes

to infinity and the states with finite momentum p = m√
k

(keeping p fixed) decouple generating

a U(1) factor ∼ ei
√

2p bX in the correlation functions. Secondly, one can show (see [27]) that for
k = 0 the formula (25) reads

〈
Φω1

j1,m1,m1
(z1)...Φ

ωN

jN ,mN ,mN
(zN )

〉
WZW

∼
N∏

i=1

R0(ji, 0) 〈V− i√
2
j1

(z1)...V− i√
2
jN

(zN )〉SL[µ]; (72)

with p1 + p2 + ...pN = ω1 +ω2 + ...ωN = M −N +2 = 0. The function Rk(j, m) is the reflection
coefficient of WZW model, which is given by the two-point function (24). The arising of these
reflection coefficients (one for each vertex operator) is ultimately attributed to the fact that the
momenta of the WZW vertex operators were the Weyl reflected ĵi = −1−ji instead of ji (notice

that the Liouville correlator in (72) scales like µĵ1+...ĵN+1). We also observe in (72) that, besides
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the s integrals over the screening insertions required in the Liouville correlators, we implicitly
have M = N − 2 additional integrals over the variables vt where M operators V−1/2b(vt) are
inserted. This is consistent with what one would expect since k = 0 implies b2 = −1/2 and
then the degenerate fields V−1/2b turn out to agree with the screening operators Vb. Hence,
at k = 0 the integrals over such variables vt are nothing more than screening insertions in
Liouville correlation functions32, and this is the reason why we did not explicitly write them in
(72). This shows that the Ribault-Teschner formula turns out to be consistent with the FZZ
conjecture. That is, at k = 0 sine-Liouville agrees with the product between Liouville theory
and a free c = 1 boson, so that for the particular case k = 0 equation (25) actually states the
identity between N -point correlation functions in sine-Liouville theory and N -point correlation
functions in the 2D black hole. Nevertheless, we should emphasize that all these digressions
are strongly based on the assumption that the CFT is still well defined in the regime k < 2
and, as far as we know, this is still far from being clear.

5 Conclusions

It is usually accepted that, probably, the FZZ duality is just an example of a more general
phenomenon which should be interesting to understand in a deeper way [32, 5]. The purpose
of this paper was precisely to discuss an example of such kind of generalization. We studied
a correspondence between two-dimensional string theory in the euclidean black hole (×time)
and a (higher mode) tachyon perturbation of a linear dilaton background. Our main result is
presented in Eq. (48).

The tachyon perturbation we considered here corresponds to momentum modes n = 1 and
n = 2, and so it can be considered as a kind of deformation of the standard FZZ sine-Liouville
theory. We argued that such a “deformation” (or “twisting” in the sense of (46)) can be thought
of as a conjugate representation of the sine-Liouville interaction term, presumably related to
the conjugate representations of operators in the WZW model [70].

In section 4 we have given a dictionary that permits to express any N -point correlation
function in the SL(2, R)k WZW model on the sphere topology in terms of a correlation function
in the tachyon perturbed linear dilaton background, and we have given a precise prescription
for computing those correlators in the Coulomb gas approach. This correspondence between
correlators was proven by rewriting a nice formula worked out by S. Ribault and J. Teschner
in Refs. [4, 3], which directly follows from the relation between the solutions of the KZ and
the BPZ equations. Our result (44) realizes the general version of the formula proven in [4]. In
fact, following [1], we showed that the auxiliary overall function Fk(z1, ...zN ; w1, ...wM) standing
in the Ribault-Teschner formula (25) can be also seen as coming from the correlation functions
of a linear dilaton CFT perturbed by a tachyon-like operator of higher (n ≥ 1) momentum
modes. Thus, the twisted dual we discussed here turns out to be a free field realization of the
Ribault-Teschner formula. A remarkable feature of such realization is that the n = 2 mode
perturbation T1−k,k,k turns out to be related to the sine-Liouville potential in the same way as

32G.G. specially thanks Yu Nakayama for collaboration in this particular computation. See Ref. [27].
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to how the twisted tachyon-like vertex operators T̃ji,mi,mi
are related to the operators Tji,mi,mi

of the standard FZZ prescription. Both representations T̃ji,mi,mi
and Tji,mi,mi

have the same
eigenvalues under the Cartan U(1) generator J3

0 and the Virasoro-Casimir operator L0. Besides,

it turns out that the fact that Tji,mi,mi
and T̃ji,mi,mi

transform distinctly under the action of the

ŝl(2)k generators J±
n combines with the fact that the n = 2 operator T1−k,k,k transforms non-

trivially under those generators either, and this makes the correlation functions (44) behave
properly under the sl(2)k algebra.

Tachyon-like perturbations of the linear dilaton background involving higher winding modes
were also studied recently by Mukherjee, Mukhi and Pakman in Ref. [5], where they presented
a generalized perspective of the FZZ correspondence. One of the task for the future is to
understand the relation to [5] better. Besides, the understanding of the connection of our
result to the standard FZZ correspondence also deserves more analysis. Regarding this, we
would like to conclude by mentioning that the idea of the proof of (48) given in section 4 here
could be actually adapted to prove the standard FZZ duality (on the sphere) if one considers
the appropriated pieces in the literature. A key point in doing this would be a result obtained
some time ago by V. Fateev, who has found a very direct way of showing the relation between
correlation functions in both Liouville and sine-Liouville theories [7]. Such connection, once
combined with the Ribault-Teschner formula [3, 4], would yield a proof of the FZZ duality at
the level of correlation functions on the sphere topology without resorting to arguments based
on supersymmetry.

This paper is an extended version of our contribution to the XVIth International Colloquium
on Integrable System and Quantum Symmetries, to be held in Prague, in June 2007. Besides,
these notes are based on Refs. [1, 2] and summarize the contents of the seminars that one of the
authors has delivered at several institutions in the last year and a half. Gaston Giribet would
like to thank S. Murthy and K. Narain for conversations and for very important comments.
He is also grateful to V. Fateev for sharing his unpublished work [7], and to Yu Nakayama for
previous collaboration in related subjects. The partial support of Universidad de Buenos Aires,
Agencia ANPCyT and CONICET through grants UBACyT X861, PICT 34557, PIP6160 is
also acknowledged. G.G. is member of CIC, CONICET, Argentina.
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[104] S. Iguri and C. Núñez, Coulomb integrals for the SL(2, R) WZW model, [arXiv:0705.4461].

[105] A. Nichols, The SU(2)0 WZNW model, School and Workshop on Logarithmic Conformal
Field Theory, Tehran, Iran, 2001.

[106] A. Nichols, Phys. Lett. B516 (2001) pp. 439.

[107] I. Kogan and A. Nichols, Int. J. Mod. Phys. A17 (2002) pp. 2615.

[108] A. Nichols, JHEP 0204 (2002) pp. 056.

[109] V. Schomerus, JHEP 0311 (2003) pp. 043.

44


	Introduction
	Conformal field theory
	Liouville theory
	Liouville field theory coupled to c=1(+1) matter
	Liouville correlation functions
	A working example: the spherical partition function

	String theory in the 2D black hole
	The action and the semiclassical picture
	String spectrum in the 2D black hole and its relation to AdS3 strings
	String amplitudes and correlation functions in the SL(2,R)k WZW theory

	A connection between Liouville and WZW correlation functions

	The FZZ dual for the 2D black hole
	Tachyon-like backgrounds in 2D string theory
	Sine-Liouville theory and the FZZ conjecture
	Sine-Liouville field theory
	The Fateev-Zamolodchikov-Zamolodchikov conjecture
	Correlation functions in sine-Liouville theory
	On the violation of the winding number conservation


	A twisted dual for the 2D black hole
	Perturbations of higher winding and momentum modes
	Momentum mode perturbations
	Adding vortex type perturbations

	Statement of the correspondence
	Preliminary: some definitions
	A Coulomb gas-like prescription
	Correspondence between correlation functions
	Conjugate representations and spectral flow
	Remark on the (2)k affine symmetry

	Proving the correspondence
	Step 1: Rewriting the correlators
	Step 2: Realizing the Stoyanovsky-Ribault-Teschner map

	A consistency check of the correspondence
	Remarks
	A comment on generalized minimal gravity
	Duality between tachyon-like backgrounds
	The c0 limit of the LiouvilleU(1)R model


	Conclusions

