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Abstract Matrix-valued spherical functions related to the quantum symmetric pair
for the quantum analogue of (SU(2) × SU(2), diag) are introduced and studied in
detail. The quantum symmetric pair is given in terms of a quantised universal envelop-
ing algebra with a coideal subalgebra. The matrix-valued spherical functions give
rise to matrix-valued orthogonal polynomials, which are matrix-valued analogues
of a subfamily of Askey–Wilson polynomials. For these matrix-valued orthogonal
polynomials, a number of properties are derived using this quantum group interpreta-
tion: the orthogonality relations from the Schur orthogonality relations, the three-term
recurrence relation and the structure of the weight matrix in terms of Chebyshev poly-
nomials from tensor product decompositions, and the matrix-valued Askey–Wilson
type q-difference operators from the action of the Casimir elements. A more ana-
lytic study of the weight gives an explicit LDU-decomposition in terms of continuous
q-ultraspherical polynomials. The LDU-decomposition gives the possibility to find
explicit expressions of the matrix entries of the matrix-valued orthogonal polynomials
in terms of continuous q-ultraspherical polynomials and q-Racah polynomials.
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1 Introduction

Shortly after the introduction of quantum groups, it was realised that many special
functions of basic hypergeometric type [15] have a natural relation to quantum groups,
see e.g. [9,Chap. 6], [20,31] for references. In particular,manyorthogonal polynomials
in the q-analogue of the Askey scheme, see e.g. [26], have found an interpretation on
compact quantum groups analogous to the interpretation of orthogonal polynomials
of hypergeometric type from the Askey scheme on compact Lie groups and related
structures, see e.g. [46,47].

In case of the harmonic analysis on classical Gelfand pairs, one studies spherical
functions and related Fourier transforms, see [43]. For our purposes, a Gelfand pair
consists of a Lie group G and a compact subgroup K so that the trivial representation
of K in the decomposition of any irreducible representation of G restricted to K
occurs with multiplicity at most one. The spherical functions are functions onG which
are left- and right-K -invariant. The zonal spherical functions are realised as matrix
elements of irreducibleG-representations with respect to a fixed K -vector. For special
cases, the zonal spherical functions can be identified with explicit special functions of
hypergeometric type, see [43, Chap. 9], [12, §IV]. The zonal spherical functions are
eigenfunctions to an algebra of differential operators, which includes the differential
operator arising from the Casimir operator in case G is a reductive group. For special
cases with G compact, we obtain orthogonality relations and differential operators for
the spherical functions, which can be identified with orthogonal polynomials from the
Askey scheme. For the special case G = SU(2) × SU(2) with K ∼= SU(2) embedded
as the diagonal subgroup, the zonal spherical functions are the characters of SU(2),
which are identified with the Chebyshev polynomials Un of the second kind by the
Weyl character formula. The Gelfand pair situation has been generalised to the setting
of quantum groups, mainly in the compact context, see e.g. Andruskiewitch andNatale
[3] for the case of finite dimensional Hopf algebra with a Hopf subalgebra, Floris [13],
Koornwinder [32], Vainermann [45] for more general compact quantum groups, and,
for a non-compact example, Caspers [7].

The notions of matrix-valued and vector-valued spherical functions have already
emerged at the beginning of the development of the theory of spherical functions,
see e.g. [14] and references given there. However, the focus on the relation with
matrix-valued or vector-valued special functions only came later, see e.g. references
given in [18,44]. Grünbaum et al. [17] give a group theoretic approach to matrix-
valued orthogonal polynomials emphasising the role of the matrix-valued differential
operators, which are manipulated in great detail. The paper [17] deals with the
case (G, K ) = (SU(3),U(2)). Motivated by [17] and the approach of Koornwinder
[29], the group theoretic interpretation of matrix-valued orthogonal polynomials on
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(G, K ) = (SU(2) × SU(2),SU(2)) is studied from a different point of view, in par-
ticular with less manipulation of the matrix-valued differential operators, in [23,24],
see also [18,44]. The point of view is to construct the matrix-valued orthogonal poly-
nomials using matrix-valued spherical functions, and next using this group theoretic
interpretation to obtain properties of the matrix-valued orthogonal polynomials. This
approach for the case (G, K ) = (SU(2) × SU(2),SU(2)) leads to matrix-valued
orthogonal polynomials for arbitrary size, which can be considered as analogues of
the Chebyshev polynomials of the second kind. A combination of the group theoretic
approach and analytic considerations then allows us to understand thesematrix-valued
orthogonal polynomials completely, i.e. we have explicit orthogonality relations,
three-term recurrence relations,matrix-valued differential operators having thematrix-
valued orthogonal polynomials as eigenfunctions, expression in terms of Tirao’s [41]
matrix-valued hypergeometric functions, expression in terms of well-known scalar-
valued orthogonal polynomials from theAskey scheme, etc. This has been analytically
extended to arbitrary sizematrix-valued orthogonal Gegenbauer polynomials [25], see
also [39] for related 2 × 2 cases.

The interpretation on quantum groups and related structures leads to many new
results for special functions of basic hypergeometric type. In this paper, we use quan-
tum groups in order to obtain matrix-valued orthogonal polynomials as analogues of a
subclass of the Askey–Wilson polynomials. In particular, we consider the Chebyshev
polynomials of the second kind, recalled in (5.6), as a special case of theAskey–Wilson
polynomials [4, (2.18)]. Moreover, we know that the Chebyshev polynomials occur
as characters on the quantum SU(2) group, see [48, §A.1]. The approach in this paper
is to establish the quantum analogue of the group theoretic approach as presented in
[23,24], see also [18,44], for the example of the Gelfand pair G = SU(2) × SU(2)
with K ∼= SU(2). For this approach, we need Letzter’s approach [34–36] to quantum
symmetric spaces using coideal subalgebras. We stick to the conventions as in Kolb
[27] and we refer to [28, §1] for a broader perspective on quantum symmetric pairs. So
we work with the quantised universal enveloping algebra Uq(g) = Uq(su(2)⊕su(2)),
introduced in Sect. 3, equipped with a right coideal subalgebra B, see Sect. 4. Once
we have this setting established, the branching rules of the representations of Uq(g)
restricted to B follow by identifying B with the image of Uq(su(2)) (up to an isomor-
phism) under the comultiplication using the standard Clebsch–Gordan decomposition.
In particular, it gives explicit intertwiners. Next we introduce matrix-valued spheri-
cal functions in Sect. 4. Using the matrix-valued spherical functions, we introduce the
matrix-valued orthogonal polynomials. Then we use a mix of quantum group theoretic
and analytic approaches to study these matrix-valued orthogonal polynomials. So we
find the orthogonality for the matrix-valued orthogonal polynomials from the Schur
orthogonality relations, and the three-term recurrence relation follows from tensor
product decompositions of Uq(g)-representations, and the matrix-valued q-difference
operators for which these matrix-valued orthogonal polynomials are eigenvectors fol-
low from the study of the Casimir elements in Uq(g). More analytic properties follow
from the LDU-decomposition of the matrix-valued weight function, and this allows
to decouple the matrix-valued q-difference operators involved. The decoupling gives
the possibility to link the entries of the matrix-valued orthogonal polynomials with
(scalar-valued) orthogonal polynomials from the q-analogue of the Askey scheme, in
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particular the continuous q-ultraspherical polynomials and the q-Racah polynomials.
The approach of [17] does not seem to work in the quantum case, because the possi-
bilities to transform q-difference equations are very limited compared to transforming
differential equations. We note that in [3, §5] matrix-valued spherical functions are
considered for finite dimensional Hopf algebras with respect to a Hopf subalgebra.

The approach to matrix-valued orthogonal polynomials from this quantum group
setting also leads to identities in the quantised function algebra. This paper does not
include the resulting identities after using infinite dimensional representations of the
quantised function algebra. Furthermore, we have not supplied a proof of Lemma 5.4
using infinite dimensional representations and the direct integral decomposition of the
Haar functional, but this should be possible as well.

In general, the notion of a quantum symmetric pair seems to be best-suited for the
development of harmonic analysis in general and in particular of matrix-valued spheri-
cal functions on quantumgroups, see e.g. [28,34–38] and references given there.When
considering other quantum symmetric pairs in relation tomatrix-valued spherical func-
tions, the branching rule of a representation of the quantised universal enveloping
algebra to a coideal subalgebra seems to be difficult. In this paper, it is reduced to the
Clebsch–Gordan decomposition, and there is a nice result by Oblomkov and Stokman
[38, Proposition 1.15] on a special case of the branching rule for quantum symmet-
ric pair of type AIII, but in general the lack of the branching rule for the quantum
symmetric pairs is an obstacle for the study of quantum analogues of matrix-valued
spherical functions of e.g. [17,18,38,44].

Thematrix-valued orthogonal polynomials resulting from the study in this paper are
matrix-valued analogues of the Chebyshev polynomials of the second kind viewed as
an example of the Askey–Wilson polynomials. We expect that it is possible to obtain
matrix-valued analogues of the continuous q-ultraspherical polynomials viewed as
subfamily of the Askey–Wilson polynomials using the approach of [25] using the
Askey–Wilson q-derivative instead of the ordinary derivative. We have not explicitly
worked out the limit transition q ↑ 1 of the results, but by the set-up it is clear that the
formal limit gives back many of the results of [23,24].

The contents of the paper are as follows. In Sect. 2, we fix notation regarding
matrix-valued orthogonal polynomials. In Sect. 3, the notation for quantised universal
enveloping algebras is recalled. Section4 states all the main results of this paper.
It introduces the quantum symmetric pair explicitly. Using the representations of
the quantised universal enveloping algebra and the coideal subalgebra, the matrix-
valued polynomials are introduced. We continue to give explicit information on the
orthogonality relations, three-term recurrence relations, q-difference operators, the
commutant of the weight, the LDU-decomposition of the weight, the decoupling of
the q-difference equations and the link to scalar-valued orthogonal polynomials from
the q-Askey scheme. The proofs of the statements of Sect. 4 occupy the rest of the
paper. In Sect. 5, the main properties derivable from the quantum group set-up are
derived, and we discuss in Appendix 1 the precise relation of the branching rule for
this quantum symmetric pair and the standard Clebsch–Gordan decomposition. In
Sect. 6, we continue the study of the orthogonality relations, in which we make the
weight explicit. This requires several identities involving basic hypergeometric series,
whose proofs we relegate to Appendix 2. Section7 studies the consequences of the
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explicit form of the matrix-valued q-difference operators of Askey–Wilson type to
which the matrix-valued orthogonal polynomials are eigenfunctions.

In preparing this paper, we have used computer algebra in order to verify the state-
ments up to certain size of the matrix and up to certain degree of the polynomial in
order to eliminate errors and typos. Note, however, that all proofs are direct and do
not use computer algebra. A computer algebra package used for this purpose can be
found on the homepage of the second author.1

The convention on notation follows Kolb [27] for quantised universal enveloping
algebras and right coideal subalgebras and we follow Gasper and Rahman [15] for the
convention on basic hypergeometric series and we assume 0 < q < 1.

2 Matrix-valued orthogonal polynomials

In this section, we fix notation and give a short background to matrix-valued orthog-
onal polynomials, which were originally introduced by Krein in the forties, see e.g.
references in [5,10]. General references for this section are [5,10,16], and references
given there.

Assume thatwehave amatrix-valued functionW : [a, b] → M2�+1(C), 2�+1 ∈ N,
a < b, so thatW (x) > 0 for x ∈ [a, b] almost everywhere. We use the notation A > 0
to denote a strictly positive definite matrix. Moreover, we assume that all moments
exist, where integration of a matrix-valued function means that each matrix entry is
separately integrated. In particular, the integrals are matrices in M2�+1(C). It then
follows that for matrix-valued polynomials P, Q ∈ M2�+1(C)[x] the integral

〈P, Q〉 =
∫ b

a
P(x)∗ W (x) Q(x) dx ∈ M2�+1(C) (2.1)

exists. This gives a matrix-valued inner product on the space M2�+1(C)[x] of matrix-
valued polynomials, satisfying

〈P, Q〉 = 〈Q, P〉∗, 〈P, QA + RB〉 = 〈P, Q〉A + 〈P, R〉B,

〈P, P〉 = 0 ∈ M2�+1(C) ⇐⇒ P(x) = 0 ∈ M2�+1(C) ∀ x

for all P, Q, R ∈ M2�+1(C)[x] and A, B ∈ M2�+1(C). More general matrix-valued
measures can be considered [5,10], but for this paper the above set-up suffices.

A matrix-valued polynomial P(x) = ∑n
r=0 x

r Pr , Pr ∈ M2�+1(C) is of degree
n if the leading coefficient Pn is non-zero. Given a weight W , there exists a family
of matrix-valued polynomials (Pn)n∈N so that Pn is a matrix-valued polynomial of
degree n and

∫ b

a

(
Pn(x)

)∗
W (x) Pm(x) dx = δn,mGn, (2.2)

1 http://www.math.ru.nl/~koelink/publist-ro.html.
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where Gn > 0. Moreover, the leading coefficient of Pn is non-singular. Any other
family of polynomials (Qn)n∈N so that Qn is a matrix-valued polynomial of degree
n and 〈Qn, Qm〉 = 0 for n = m satisfies Pn(x) = Qn(x)En for some non-singular
En ∈ M2�+1(C) for all n ∈ N. We call the matrix-valued polynomial Pn monic in
case the leading coefficient is the identity matrix I . The polynomials Pn are called
orthonormal in case the squared norm Gn = I for all n ∈ N in the orthogonality
relations (2.2).

Thematrix-valued orthogonal polynomials Pn always satisfy amatrix-valued three-
term recurrence of the form

x Pn(x) = Pn+1(x)An + Pn(x)Bn + Pn−1(x)Cn (2.3)

for matrices An, Bn,Cn ∈ M2�+1(C) for all n ∈ N. Note that in particular An is non-
singular for all n. Conversely, assuming P−1(x) = 0 (by convention) and fixing the
constant polynomial P0(x) ∈ M2�+1(C)we can generate the polynomials Pn from the
recursion (2.3). In case the polynomials are monic, the coefficient An = I for all n and
P0(x) = I as the initial value. In general, the matrices satisfy Gn+1An = C∗

n+1Gn ,

GnBn = B∗
nGn , so that in the monic case Cn = G−1

n−1Gn for n ≥ 1. In case the
polynomials are orthonormal, we have Cn = A∗

n−1 and Bn Hermitian.
Note that the matrix-valued ‘sesquilinear form’ (2.1) is antilinear in the first entry

of the inner product, which leads to a three-term recurrence of the form (2.3) where
the multiplication by the constant matrices is from the right, see [10] for a discussion.

In case a subspace V ⊂ C
2�+1 is invariant for W (x) for all x , V⊥ is also invari-

ant for W (x) for all x . Let ιV : V → C
2�+1 be the embedding of V into C

2�+1

so that PV = ιV ι∗V ∈ M2�+1(C) is the corresponding orthogonal projection. Then
W (x)PV = PVW (x) for all x . Let PV

n : [a, b] → End(V )[x] be the matrix-valued
polynomial defined by PV

n (x) = ι∗V Pn(x)ιV , where Pn are the monic matrix-valued
orthogonal polynomials for the weight W . Then PV

n form a family of monic V -

endomorphism-valued orthogonal polynomials, and Pn(x) = PV
n (x) ⊕ PV⊥

n (x). The
same decomposition can be written down for the orthonormal polynomials.

The projections on invariant subspaces are in the commutant ∗-algebra {T ∈
M2�+1(C) | TW (x) = W (x)T ∀x}. In case the commutant algebra is trivial, the
matrix-valued orthogonal polynomials are irreducible. The primitive idempotents
correspond to the minimal invariant subspaces, and hence they determine the decom-
position of the matrix-valued orthogonal polynomials into irreducible cases.

Remark 2.1 In [42] the authors discuss non-orthogonal decompositions by consider-
ing, instead of the commutant algebra, the real vector space

A = {Y ∈ End(H�) : YW (x) = W (x)Y ∗, ∀x ∈ (−1, 1)}.

It follows that if IR � A , then the weight W reduces, non-unitarily, to weights of
smaller size. Koelink and Román [22, Example 4.3] showed that A = {W (x) : x ∈
(−1, 1)}′ so that, in our case, both decompositions coincide.

We denote by Ei, j ∈ M2�+1(C) the matrix with zeroes except at the (i, j)th entry
where it is 1. So for the corresponding standard basis {ek}2�k=0 we set Ei, j ek = δ j,kei .
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We usually use the basis {ek}2�k=0 in describing the results for the matrix-valued orthog-
onal polynomials, but occasionally the basis is relabelled {e�

k}�k=−�, as is customary
for the Uq(su(2))-representations of spin �. In the latter case, we use superscripts to
distinguish from the previous case: E�

i, j e
�
k = δ j,ke�

i , i, j, k ∈ {−�, . . . , �}.

3 Quantised universal enveloping algebra

We recall the setting for quantised universal enveloping algebras and quantised func-
tion algebras, and this section is mainly meant to fix notation. The definitions can be
found at various sources on quantum groups, such as the books [9,11,20], and we
follow Kolb [27].

Fix for the rest of this paper 0 < q < 1. The quantised universal enveloping algebra
can be associated to any root datum, but we only need the simplest cases g = sl(2) and
g = sl(2)⊕ sl(2). The quantised universal enveloping algebra is the unital associative
algebra generated by k, k−1, e, f subject to the relations

kk−1 = 1 = k−1k, ke = q2ek, k f = q−2 f k, e f − f e = k − k−1

q − q−1 , (3.1)

where we follow the convention as in [27, §3]. For our purposes, it is useful to extend
the algebra with the roots of k and k−1, denoted by k1/2, k−1/2 satisfying

k1/2k−1/2 = 1 = k−1/2k1/2, k1/2k1/2 = k, k−1/2k−1/2 = k−1,

k1/2e = qek1/2, k1/2 f = q−1 f k1/2.
(3.2)

The extended algebra is denoted by Uq(sl(2)), and it is a Hopf algebra with comulti-
plication �, counit ε, antipode S defined on the generators by

�(e) = e ⊗ 1 + k ⊗ e, �( f ) = f ⊗ k−1 + 1 ⊗ f,

�(k±1/2) = k±1/2 ⊗ k±1/2,

S(e) = −k−1e, S( f ) = − f k, S(k±1/2) = k∓1/2,

ε(e) = 0 = ε( f ), ε(k±1/2) = 1.

The Hopf algebra has a ∗-structure defined on the generators by

(k±1/2)∗ = k±1/2, e∗ = q2 f k, f ∗ = q−2k−1e.

We denote the corresponding Hopf ∗-algebra by Uq(su(2)).
The identification as Hopf ∗-algebras with [21,30] is (A, B,C, D) ↔ (k1/2,

q−1k−1/2e, q f k1/2, k−1/2).
The irreduciblefinite dimensional type1 representations of the underlying∗-algebra

have been classified. Here type 1 means that the spectrum of K 1/2 is contained in q
1
2Z.

For each dimension 2� + 1 of spin � ∈ 1
2N, there is a representation in H� ∼= C

2�+1

with orthonormal basis {e�
−�, e

�
−�+1, . . . , e

�
�} and on which the action is given by
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t�(k1/2)e�
p = q−pe�

p, t�(e)e�
p = q2−pb�(p)e�

p−1,

t�( f )e�
p = q p−1b�(p + 1)e�

p+1, (3.3)

b�(p) = 1

q−1 − q

√
(q−�+p−1 − q�−p+1)(q−�−p − q�+p),

where t� : Uq(su(2)) → End(H�) is the corresponding representation. Note that
b�(p) = b�(1 − p). Finally, recall that the centre Z(Uq(su(2))) is generated by
the Casimir element ω,

ω = q−1k−1 + qk − 2

(q−1 − q)2
+ f e = qk−1 + q−1k − 2

(q−1 − q)2
+ e f,

t�(ω) =
(
q− 1

2−� − q
1
2+�

q−1 − q

)2

I.

(3.4)

We use the notation Uq(g) to denote the Hopf ∗-algebra Uq(su(2) ⊕ su(2)), which

we identify with Uq(su(2)) ⊗ Uq(su(2)), where K 1/2
i , K−1/2

i , Ei , Fi , i = 1, 2, are
the generators. The relations (3.1) and (3.2) hold with (k1/2, k−1/2, e, f ) replaced
by (K 1/2

i , K−1/2
i , Ei , Fi ) for any fixed i and the generators with different index i

commute. The tensor product of two Hopf ∗-algebras is again a Hopf ∗-algebra, where
the maps on a simple tensor X1 ⊗ X2 are given by, see e.g. [9, Chap. 4],

�(X1 ⊗ X2) = �13(X1)�24(X2), ε(X1 ⊗ X2) = ε(X1)ε(X2),

S(X1 ⊗ X2) = S(X1) ⊗ S(X2), (X1 ⊗ X2)
∗ = X∗

1 ⊗ X∗
2,

(3.5)

where we use leg-numbering notation.
The irreducible finite dimensional type 1 representations of Uq(g) are labelled

by (�1, �2) ∈ 1
2N × 1

2N, and the representations t�1,�2 from Uq(g) to End(H�1,�2),
H�1,�2 = H�1⊗H�2 , are obtained as the exterior tensor product of the representations
of spin �1 and �2 of Uq(su(2)). Here type 1 means that the spectrum of K 1/2

i , i = 1, 2,

is contained in q
1
2Z.

We have used the notation �, ε and S for the comultiplication, counit and antipode
for all Hopf algebras, respectively. From the context, it should be clear which comul-
tiplication, counit and antipode is meant. The corresponding dual Hopf ∗-algebra
related to the quantised function algebra is not needed for the description of the results
in Sect. 4, and it will be recalled in Sect. 5.1.

4 Matrix-valued orthogonal polynomials related to the quantum
analogue of (SU(2) × SU(2), diag)

In this section, we state the main results of the paper. First we introduce the spe-
cific quantum symmetric pair, which is to be considered as the quantum analogue of
a symmetric space G/K , in this case SU(2) × SU(2)/SU(2). Quantum symmetric
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spaces have been introduced and studied in detail by Letzter [34–36], see also Kolb
[27]. In particular, Letzter has shown that Macdonald polynomials occur as spheri-
cal functions on quantum symmetric pairs motivated by the works of Koornwinder,
Dijkhuizen, Noumi and others. In our case, B ⊂ Uq(g), as in Definition 4.1, is the
appropriate right coideal subalgebra. Using the explicit branching rules for t (�1,�2)|B
of Theorem 4.3, we introduce matrix-valued spherical functions in Definition 4.4.
To these matrix-valued spherical functions, we associate matrix-valued polynomials
in (4.8), and we spend the remainder of this section to describe properties of these
matrix-valued polynomials. This includes the orthogonality relations, the three-term
recurrence relation and the matrix-valued polynomials as eigenfunctions of a com-
muting set of matrix-valued q-difference equations of Askey–Wilson type. Moreover,
we give two explicit descriptions of the matrix-valued weight function W , one in
terms of spherical functions for this quantum symmetric pair and one in terms of the
LDU-decomposition. The LDU-decomposition gives the possibility to decouple the
matrix-valued q-difference operator, and this leads to an explicit expression for the
matrix entries of the matrix-valued orthogonal polynomials in terms of scalar-valued
orthogonal polynomials from the q-Askey scheme in Theorem 4.17.

For the symmetric pair (G, K ) = (SU(2) × SU(2),SU(2)), K = SU(2) corre-
sponds to the fixed points of the Cartan involution θ flipping the order of the pairs
in G. The quantised universal enveloping algebra associated to G is Uq(g) as intro-
duced in Sect. 3. As the quantum analogue of K , we take the right coideal subalgebra
B ⊂ Uq(g), i.e.B ⊂ Uq(g) is an algebra satisfying�(B) ⊂ B⊗Uq(g), as in Definition
4.1. Letzter [34, Sect. 7,(7.2)] has introduced the corresponding left coideal subalgebra,
and we followKolb [27, §5] in using right coideal subalgebras for quantum symmetric
pairs. Note that we have modified the generators slightly in order to have B∗

1 = B2.

Definition 4.1 The right coideal subalgebra B ⊂ Uq(g) is the subalgebra generated
by K±1/2, where K = K1K

−1
2 , and

B1 = q−1K−1/2
1 K−1/2

2 E1 + qF2K
−1/2
1 K 1/2

2 ,

B2 = q−1K−1/2
1 K−1/2

2 E2 + qF1K
1/2
1 K−1/2

2 .

Remark 4.2 (i) B is a right coideal as follows from the general construction, see
[27, Proposition 5.2]. It can be verified directly by checking it for the generators.
Note �(K±1/2) = K±1/2 ⊗ K±1/2 is immediate, and

�(B1) = B1 ⊗ (K1K2)
−1/2 + K 1/2 ⊗ q−1(K1K2)

−1/2E1

+K−1/2 ⊗ qF2K
−1/2

is in B⊗Uq(g) by a straightforward calculation. Since B2 = B∗
1 , it also follows

for B2, since K±1/2 are self-adjoint. The relations, cf. [27, Lemma 5.15],

K 1/2B1 = qB1K
1/2, K 1/2B2 = q−1B2K

1/2, [B1, B2] = K − K−1

q − q−1 , (4.1)

hold in Uq(g) as can also be checked directly.
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(ii) Let Ψ : Uq(su(2)) → Uq(su(2)) be defined by

Ψ (k1/2) = k−1/2, Ψ (k−1/2) = k1/2, Ψ (e) = q3 f, Ψ ( f ) = q−3e,

then Ψ extends to an involutive ∗-algebra isomorphism. Consider the map

ι ◦ (Ψ ⊗ Id) ◦ � : Uq(su(2)) → Uq(g),

where ι is the algebra morphism mapping x ⊗ y ∈ Uq(su(2)) ⊗ Uq(su(2)) to
the corresponding element X1Y2 ∈ Uq(g) for x and y generators of Uq(su(2)).
Then we see that k1/2 �→ K−1/2, q f k1/2 �→ B1, and q−1k−1/2e �→ B2 under
themap ι◦(Ψ ⊗Id)◦�. In particular, the relations (4.1) follow.We conclude that
B is isomorphic as a ∗-algebra to �(Uq(su(2)) ⊂ Uq(g) by the ∗-isomorphism
ι ◦ (Ψ ⊗ Id).

(iii) In particular, B ∼= Uq(su(2)) as ∗-algebras. So the irreducible type 1 represen-
tations of B are labelled by the spin � ∈ 1

2N. This can be made explicit by
t� : B → End(H�) and setting

t�(K 1/2)e�
p = q−pe�

p, t�(B1)e
�
p = b�(p)e�

p−1, (4.2)

t�(B2)e
�
p = b�(p + 1)e�

p+1

with the notation of (3.3). We use the same notation t� for these representations
here and in (3.3), since they correspondunder the identificationofB asUq(su(2)).

(iv) Let σ be the ∗-algebra isomorphism on Uq(g) = Uq(su(2)) ⊗ Uq(su(2)) by
flipping the order in the tensor product, or equivalently by flipping the subscripts
1 ↔ 2. Then σ : B → B is an involution B1 ↔ B2, K ↔ K−1. On the level of
representations of Uq(g) and B, it follows t�1,�2(σ (X)) = P∗t�2,�1(X)P , X ∈
Uq(g), where P : H�1,�2 → H�2,�1 is the flip, and t�(σ (Y )) = (J �)∗t�(Y )J �,
Y ∈ B, where J � : H� → H�, J � : e�

p �→ e�−p.

Theorem 4.3 The finite dimensional representation t�1,�2 of Uq(g) restricted to B
decomposes multiplicity-free into irreducible representations t� of B:

t�1,�2 |B �
�1+�2⊕

�=|�1−�2|
t�, H�1,�2 �

�1+�2⊕
�=|�1−�2|

H�.

With respect to the orthonormal basis {e�
p}�p=−� of H� and the orthogonal basis

{e�1
i ⊗e�2

j }�1,�2i=−�1, j=−�2
for H�1,�2 , the B-intertwiner β�

�1,�2
: H� → H�1,�2 is given

by

β�
�1,�2

: e�
p �→

�1∑
i=−�1

�2∑
j=−�2

C�1,�2,�
i, j,p e�1

i ⊗e�2
j ,

where C�1,�2,�
i, j,p are Clebsch–Gordan coefficients satisfying C�1,�2,�

i, j,p = 0 if i − j = p.
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The proof of Theorem4.3 is a reduction to thewell-knownClebsch–Gordan decom-
position for the quantised universal enveloping algebra Uq(su(2)), see e.g. [9,20],
using Remark 4.2. The proof is presented in Appendix 1. In particular, (β�

�1,�2
)∗β�

�1,�2

is the identity on H�. Note that

(β�
�1,�2

)∗ : H�1,�2 → H�, e�1
n1 ⊗ e�2

n2 �→
�∑

p=−�

C�1,�2,�
n1,n2,p e

�
p.

In general, the decomposition of an irreducible representation restricted to a right
coideal subalgebra seems a difficult problem. In this particular case, we can reduce
to the Clebsch–Gordan decomposition, and yet another known special case is by
Oblomkov and Stokman [38, Proposition 1.15], but in general this is an open problem.

In particular, for fixed � ∈ 1
2N, we have [t�1,�2 |B : t�] = 1 if and only if

(�1, �2) ∈ 1

2
N × 1

2
N, |�1 − �2| ≤ � ≤ �1 + �2, �1 + �2 − � ∈ Z. (4.3)

We use the reparametrisation of (4.3) by

ξ = ξ� : N × {0, 1, . . . , 2�} → 1

2
N × 1

2
N, ξ(n, k) =

(
n + k

2
, � + n − k

2

)
,

(4.4)

see also Fig. 1 and [24, Figs. 1, 2]. In case � = 0, we have t0 = ε|B, where ε is the
counit of Uq(g) and is the trivial representation of B, and the condition (4.3) gives
�1 = �2 and ξ0(n, 0) = ( 12n, 1

2n).
With these preparations, we can introduce the matrix-valued spherical functions

associated to a fixed representation t� of B, where we use the notation of Theorem
4.3.

Definition 4.4 Fix � ∈ 1
2N and let (�1, �2) ∈ 1

2N× 1
2N so that [t�1,�2 |B : t�] = 1. The

spherical function of type � associated to (�1, �2) is defined by

Φ�
�1,�2

: Uq(g) → End(H�), Z �→ (β�
�1,�2

)∗ ◦ t�1,�2(Z) ◦ β�
�1,�2

.

Remark 4.5 (i) Note that the requirement on (�1, �2) in Definition 4.4 corresponds
to the condition (4.3). Since β�

�1,�2
is a B-intertwiner, we have

Φ�
�1,�2

(X ZY ) = t�(X)Φ�
�1,�2

(Z)t�(Y ), ∀ X,Y ∈ B, ∀ Z ∈ Uq(g). (4.5)

(ii) Note that the condition (4.3) is symmetric in �1 and �2. With the notation of
Remark 4.2(iv), we have Φ�

�2,�1
(Z) = J �Φ�

�1,�2
(σ (Z))J � for Z ∈ Uq(g). This

follows from β�
�2,�1

= Pβ�
�1,�2

J �, which is a consequence of (8.2).

In case � = 0,H0 ∼= C, we need �1 = �2. ThenΦ0
�1,�1

are linear maps Uq(g) → C.

In particular, Φ0
0,0 equals the counit ε, and the spherical function ϕ = 1

2 (q
−1 +
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Fig. 1 The spherical functions Φ�
�1,�2

when � = 2 and interpretation of ϕ · Φ�
5/2,5/2 in terms of the

matrix-valued spherical functions. The reparametrisation ξ is depicted

q)Φ0
1/2,1/2 is scalar-valued linear map on Uq(g). The elementsΦ0

n/2,n/2 can be written
as a multiple of Un(ϕ), where Un denotes the Chebyshev polynomial of the second
kind of degree n, see Proposition 5.3. This statement can be considered as a special
case of Theorem 4.8, but we need the identification with the Chebyshev polynomials
in the spherical case � = 0 in order to obtain the weight function in Theorem 4.8.
Proposition 5.3 will follow from Theorem 4.6. The identification of the spherical
functions for � = 0 with Chebyshev polynomials corresponds to the classical case,
since the spherical functions on G × G/G are the characters on G and the characters
on SU(2) are Chebyshev polynomials of the second kind, as the simplest case of the
Weyl character formula. It also corresponds to the computation of the characters on
the quantum SU(2) group byWoronowicz [48], since the characters are identified with
Chebyshev polynomials as well.

Next Theorem 4.6 gives the possibility to associate polynomials in ϕ to spherical
functions of Definition 4.4. Theorem 4.6 essentially follows from the tensor product
decomposition of representations of Uq(g), which in turn follows from tensor prod-
uct decomposition for Uq(su(2)), and some explicit knowledge of Clebsch–Gordan
coefficients.

Theorem 4.6 Fix � ∈ 1
2N and let (�1, �2) ∈ 1

2N× 1
2N satisfy (4.3), then for constants

Ai, j we have

ϕΦ�
�1,�2

=
∑

i, j=±1/2

Ai, jΦ
�
�1+i,�2+ j , A1/2,1/2 = 0.
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In order to interpret the result of Theorem 4.6, we evaluate both sides at an arbitrary
X ∈ Uq(g). The right-hand side is a linear combination of linear maps from H� to
itself after evaluating at X . For the left-hand side, we use the pairing of Hopf algebras
so that multiplication and comultiplication are dual to each other and the left-hand
side has to be interpreted as(

ϕΦ�
�1,�2

)
(X) =

∑
(X)

ϕ(X(1)) Φ�
�1,�2

(X(2)) ∈ End(H�), (4.6)

which is a linear combination of linear maps from H� to itself, using �(X) =∑
(X) X(1) ⊗ X(2). The convention in Theorem 4.6 is that Ai, j is zero in case

(�1 + i, �2 + j) does not satisfy (4.3). The proof of Theorem 4.6 can be found in
Sect. 5.2.

Since B is a right coideal subalgebra, we see that the left-hand side of Theorem 4.6
has the same transformation behaviour as (4.5). Indeed, for X ∈ B and Y ∈ Uq(g) we
have(

ϕΦ�
�1,�2

)
(XY ) =

∑
(X),(Y )

ϕ(X(1)Y(1)) Φ�
�1,�2

(X(2)Y(2))

=
∑

(X),(Y )

ε(X(1))ϕ(Y(1)) Φ�
�1,�2

(X(2)Y(2))

=
∑
(Y )

ϕ(Y(1)) Φ�
�1,�2

(
∑
(X)

ε(X(1))X(2)Y(2))

=
∑
(Y )

ϕ(Y(1)) Φ�
�1,�2

(XY(2))

=
∑
(Y )

ϕ(Y(1)) t
�(X)Φ�

�1,�2
(Y(2)) = t�(X)

(
ϕΦ�

�1,�2

)
(Y ), (4.7)

where we have used that X(1) ∈ B by the right coideal property and (4.5) for ϕ =
Φ0

1/2,1/2 in the second equality, and the counit axiom
∑

(X) ε(X(1))X(2) = X in the

fourth equality and then (4.5) for Φ�
�1,�2

and the fact that ϕ(Y(1)) is a scalar. Similarly,
the invariance property from the right can be proved.

Theorem4.6 leads to polynomials in ϕ by iterating the result and using that A1/2,1/2
is non-zero.

Corollary 4.7 There exist 2� + 1 polynomials r�,k
n,m, 0 ≤ k ≤ 2�, of degree at most n

so that

Φ�
ξ(n,m) =

2�∑
k=0

r�,k
n,m(ϕ)Φ�

ξ(0,k), n ∈ N, 0 ≤ m ≤ 2�.

The aim of the paper is to show that the polynomials r�,k
n,m give rise to matrix-valued

orthogonal polynomials. Put

Pn = P�
n ∈ End(H�)[x] (Pn)i, j = r�,i

n, j , 0 ≤ i, j ≤ 2�, (4.8)
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where the matrix-valued polynomials Pn are taken with respect to the relabelled stan-

dard basis ep = e�
p−�, p ∈ {0, 1, . . . , 2�} so that Pn = ∑2�

i, j=0 r
�,i
n, j ⊗ Ei, j . From

Corollary 4.12 or Theorem 4.17, we see that the polynomial r�,i
n, j has real coefficients.

The case � = 0 corresponds to a three-term recurrence relation for (scalar-valued)
orthogonal polynomials, and then the polynomials coincide with the Chebyshev poly-
nomials Un viewed as a subclass of Askey–Wilson polynomials [4, (2.18)], see
Proposition 5.3.

We show that the matrix-valued polynomials (Pn)∞n=0 are orthogonal with respect
to an explicit matrix-valued weight function W , see Theorem 4.8, arising from the
Schur orthogonality relations. The expansion of the entries of weight function in
terms of Chebyshev polynomials is given by quantum group theoretic considerations
except for the calculation of the coefficients in this expansion. The matrix-valued
orthogonal polynomials satisfy a matrix-valued three-term recurrence relation as fol-
lows from Theorem 4.6, which in turn is a consequence of the decomposition of
tensor product representations of Uq(g). However, in order to determine the matrix
coefficients in the matrix-valued three-term recurrence we use analytic methods. The
existence of two Casimir elements in Uq(g) leads to the matrix-valued orthogonal
polynomials being eigenfunctions of two commutingmatrix-valued q-difference oper-
ators, see [23] for the group case. This extends Letzter [35] to the matrix-valued
set-up for this particular case. The q-difference operators are the key to determin-
ing the entries of the matrix-valued orthogonal polynomials explicitly in terms of
scalar-valued orthogonal polynomials from the q-Askey scheme [26], namely the
continuous q-ultraspherical polynomials and the q-Racah polynomials. In this deduc-
tion, the LDU-decomposition of the matrix-valued weight function W is essential,
since the conjugation with L allows us to decouple the matrix-valued q-difference
operator.

In the remainder of Sect. 4, we state these results explicitly, and we present the
proofs in the remaining sections. First we give the main statements which essen-
tially follow from the quantum group theoretic set-up, except for explicit calculations,
and these are Theorems 4.8, 4.11, 4.13. The remaining Theorems 4.15, 4.17 are
obtained using scalar orthogonal polynomials from the q-analogue of the Askey
scheme [26] and transformation and summation formulas for basic hypergeometric
series [15].

We start by stating that the matrix-valued polynomials (Pn)∞n=0 introduced in (4.8)
are orthogonal with the conventions of Sect. 2. The orthogonality relations of The-
orem 4.8 are due to the Schur orthogonality relations. The expansion of the entries
of the weight function in terms of Chebyshev polynomials follows from the fact that
the entries are spherical functions, i.e. correspond to the case � = 0 so that they are
polynomial in ϕ. The non-zero entries follow by considering tensor product decom-
positions, but the explicit values for the coefficients αt (m, n) in Theorem 4.8 require
summation and transformation formulae for basic hypergeometric series.

Theorem 4.8 The polynomials (Pn)∞n=0 of (4.8) form a family of matrix-valued
orthogonal polynomials so that Pn is of degree n with non-singular leading coeffi-
cient. The orthogonality for the matrix-valued polynomials (Pn)n≥0 is given by

123



MVOPs related to the quantum analogue of (SU(2) × SU(2), diag)

2

π

∫ 1

−1
Pm(x)∗W (x)Pn(x)

√
1 − x2dx = Gmδm,n,

where the squared norm matrix Gm is diagonal:

(Gn)i, j = δi, j q
2n−2� (1 − q4�+2)2

(1 − q2n+2i+2)(1 − q4�−2i+2n+2)
.

Moreover, for 0 ≤ m ≤ n ≤ 2� the weight matrix is given by

W (x)m,n =
n∑

t=0

αt (m, n)Um+n−2t (x),

where

αt (m, n) = q2n(2�+1)−n2−(4�+3)t+t2−2�+m 1 − q4�+2

1 − q2m+2

(q2; q2)2�−n(q2; q2)n
(q2; q2)2�

× (−1)m−t (q2m−4�; q2)n−t

(q2m+4; q2)n−t

(q4�+4−2t ; q2)t
(q2; q2)t ,

and W (x)m,n = W (x)n,m if m > n.

The proof of Theorem4.8 proceeds in steps. First we study explicitly the case � = 0,
motivated by the works of Koornwinder [30], Letzter [34–36] and others. Secondly,
we show that taking traces of a matrix-valued spherical function of type � associated
to (�1, �2) times the adjoint of a spherical function of type � associated to (�′

1, �
′
2)

gives, up to an action by an invertible group-like element of Uq(g), a polynomial in
the generator for the case � = 0. Then the explicit expression of the Haar functional on
this polynomial algebra, stated in Lemma 5.4, gives the matrix-valued orthogonality
relations. Finally, the explicit expression for the weight is obtained by analysing the
explicit expression of W in terms of the matrix entries of the intertwiners β�

�1,�2
in

case �1 + �2 = �. These matrix entries are Clebsch–Gordan coefficients.
The leading coefficient of Pn can be calculated explicitly from the proof of Theorem

4.8:

Corollary 4.9 The leading coefficient of Pn is a non-singular diagonal matrix:

lc(Pn)i, j = δi, j2
nqn

(q2i+2, q4�−2i+2; q2)n
(q2, q4�+4; q2)n .

The weight W is not irreducible, see Sect. 2, but splits into two irreducible block
matrices. The symmetry J of the weight function of Theorem 4.8 is essentially a
consequence of Remark 4.5(ii), but we need the explicit expression of the weight in
order to prove that the commutant algebra is not bigger, see also [22, §4].

Proposition 4.10 The commutant algebra

{W (x) | x ∈ [−1, 1]}′ = {Y ∈ End(H�) | W (x)Y = YW (x),∀x ∈ (−1, 1)},

123



N. Aldenhoven et al.

is spanned by I and J , where J : ep �→ e2�−p, p ∈ {0, . . . , 2�}, is a self-adjoint
involution. Then J Pn(x)J = Pn(x) and JGn J = Gn. Moreover, the weight W
decomposes into two irreducible block matrices W+ and W−, where W+, respectively
W−, acts in the+1-eigenspace, respectively−1-eigenspace, of J . So for P++P− = I ,
where P+, P− are the orthogonal self-adjoint projections P+ = 1

2 (I + J ), P− =
1
2 (I − J ), we have that W+, respectively W−, corresponds to P+W (x)P+, respectively
P−W (x)P−, restricted to the +1-eigenspace, respectively −1-eigenspace, of J .

The special cases for � = 1
2 and � = 1 are given at the end of this section.

In particular, we identify all scalar-valued orthogonal polynomials occurring in this
framework explicitly in terms of Askey–Wilson polynomials.

Theorem 4.6 can be used to find a three-term recurrence relation for the matrix-
valued orthogonal polynomials Pn , cf. Sect. 2, so the underlying tensor product
decompositions provide the three-term recurrence relation. However, the resulting
expressions for the entries of the coefficients of the matrices are rather complicated
expressions in terms of Clebsch–Gordan coefficients. For the corresponding matrix-
valued monic polynomials Qn(x) = Pn(x)lc(Pn)−1, see Corollary 4.9 for the explicit
expression for the leading coefficient, we can derive a simple expression for the
matrices in the three-term recurrence relation once we have obtained more explicit
expressions for the matrix entries of Qn . This is obtained in Sect. 7 using an explicit
link of the matrix entries to scalar orthogonal polynomials in the q-Askey scheme.

Theorem 4.11 The monic matrix-valued orthogonal polynomials (Qn)n≥0 satisfy the
three-term recurrence relation

xQn(x) = Qn+1(x) + Qn(x)Xn + Qn−1(x)Yn,

where Q−1(x) = 0, Q0(x) = I and

Xn =
2�−1∑
i=0

q2n+1(1 − q2i+2)2(1 − q4�+2n+2)2

2(1 − q2i+2n)(1 − q4�+2n−2i )(1 − q2n+2i+2)(1 − q4�−2i+2n+2)
Ei,i+1

+
2�∑
i=1

q2n+1(1 − q2n)2(1 − q4�+2n+2)2

2(1 − q2n+2i )(1 − q4�+2n−2i )(1 − q2n+2i+2)(1 − q4�−2i+2n+2)
Ei,i−1,

Yn =
2�∑
i=0

1

4

(1 − q2n)2(1 − q4�+2n+2)2

(1 − q2n+2i )(1 − q4�+2n−2i )(1 − q2n+2i+2)(1 − q4�−2i+2n+2)
Ei,i .

Note that Xn → 0, Yn → 1
4 as n → ∞.

The three-term recurrence relation for thematrix-valued orthogonal polynomials Pn
is given inCorollary 4.12,which follows fromTheorem4.11, sincewehaveGn+1An =
lc(Pn+1)

∗lc(Pn), GnBn = lc(Pn)∗Xn lc(Pn), and Gn−1Cn = lc(Pn−1)
∗Yn lc(Pn). For

future reference, we give the explicit expressions in Corollary 4.12.
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Corollary 4.12 The matrix-valued orthogonal polynomials (Pn)n≥0 satisfy the three-
term recurrence relation

x Pn(x) = Pn+1(x)An + Pn(x)Bn + Pn−1(x)Cn,

where P−1(x) = 0, P0(x) = I and

An =
2�∑
i=0

1

2q

(1 − q2n+2)(1 − q4�+2n+4)

(1 − q2i+2n+2)(1 − q4�−2i+2n+2)
Ei,i ,

Bn =
2�−1∑
i=0

q2n+1

2

(1 − q4�−2i )(1 − q2i+2)

(1 − q4�+2n−2i )(1 − q2n+2i+4)
Ei,i+1

+
2�∑
i=1

q2n+1

2

(1 − q2i )(1 − q4�−2i+2)

(1 − q2n+2i )(1 − q4�−2i+2n+4)
Ei,i−1,

Cn =
2�∑
i=0

q

2

(1 − q2n)(1 − q4�+2n+2)

(1 − q2n+2i+2)(1 − q4�+2n−2i+2)
Ei,i .

Note that the case � = 0 gives a three-term recurrence relation that can be solved
in terms of the Chebyshev polynomials, see Proposition 5.3.

In the group case, the spherical functions are eigenfunctions of K -invariant differ-
ential operators on G/K , see e.g. [8,14]. For matrix-valued spherical functions this
is also the case, see [40], and this has been exploited in the special cases studied in
[17,23,24]. In the quantum group case, the action of the Casimir operator gives rise to
a q-difference operator for the corresponding spherical functions, see [35]. The first
occurrence of an Askey–Wilson q-difference operator, see [4,15,19], in this context
is due to Koornwinder [30]. For the matrix-valued orthogonal polynomials, we have a
matrix-valued analogue of the Askey–Wilson q-difference operator, as given in The-
orem 4.13. We obtain two of these operators, one arising from the Casimir operator
for Uq(su(2)) in the first leg of Uq(g) and one from the Uq(su(2)) Casimir operator of
the second leg. This is related to a kind of Cartan decomposition of Uq(g), cf. (4.5),
which, however, does not exist in general for quantised universal enveloping algebras.
We can still resolve this problem using techniques based on [8, §2], see the first part
of the proof in Sect. 5. The proof of Theorem 4.13 is completed in Sect. 7.

Theorem 4.13 Define two matrix-valued q-difference operators by

Di = Mi (z)ηq + Mi (z
−1)ηq−1, i = 1, 2,

where the multiplication by the matrix-valued functionsMi (z) andMi (z−1) is from
the left and ηq is the shift operator defined by (ηq f̆ )(z) = f̆ (qz), f̆ (z) = f (μ(z)),
where x = μ(z) = 1

2 (z + z−1). The matrix-valued function M1 is given by
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M1(z) = −
2�−1∑
i=0

q1−i (1 − q2i+2)

(1 − q2)2
z

(1 − z2)
Ei,i+1

+
2�∑
i=0

q1−i

(1 − q2)2
(1 − q2i+2z2)

(1 − z2)
Ei,i ,

and M2(z) = JM1(z)J , where Jep = e2�−p. The matrix-valued orthogonal poly-
nomials Pn are eigenfunctions for the operators Di with eigenvalue matrices given by
Λn(i) such that Di Pn = PnΛn(i) and

Λn(1) =
2�∑
j=0

q− j−n−1 + q j+n+1

(q−1 − q)2
E j, j , Λn(2) = JΛn(1)J.

Explicitly,

(Di Pn)(μ(z)) = Mi (z)(ηq P̆n)(z) + Mi (z
−1)(ηq−1 P̆n)(z) = Pn(μ(z))Λn(i),

where ηq and ηq−1 are applied entry-wise to thematrix-valued orthogonal polynomials
Pn.

Theorem 4.13 shows that J D1 J = D2, since J is constant. In particular, D1 +
D2 commutes with J and reduces to a q-difference operator for the matrix-valued
orthogonal polynomials associated with the weight W+ or W−, see Proposition 4.10.
Similarly, D1 − D2 anticommutes with J .

Note that the expressionMi (z)P̆(qz)+Mi (z−1)P̆(z/q) is symmetric in z ↔ z−1

for any matrix-valued polynomial P , and hence again is a function in x = μ(z). The
case � = 0 corresponds to only one q-difference operator, which we rewrite as

(
1 − q2z2

1 − z2
ηq + 1 − q2z−2

1 − z−2 ηq−1

)
p̆n = (q−n + qn+2) p̆n . (4.9)

For the Chebyshev polynomials, Un(x) = (qn+2; q)−1
n pn(x; q,−q, q1/2,−q1/2|q)

rewritten as Askey–Wilson polynomials [4, (2.18)] are solutions for the relation (4.9),
see [26, §14.1], [15, §7.7], [19, Chap. 15–16]. In particular, we consider the operators
of Theorem 4.13 asmatrix-valued analogues of the Askey–Wilson operator, see Askey
and Wilson [4], or [2,15,19].

Corollary 4.14 The q-difference operators D1 and D2 are symmetric with respect to
the matrix-valued weight W, i.e. for all matrix-valued polynomials P, Q, we have

∫ 1

−1

(
(Di P)(x)

)∗
W (x)Q(x) dx =

∫ 1

−1

(
P(x)

)∗
W (x)(Di Q)(x) dx, i = 1, 2.

By [16, §2] it suffices to check Corollary 4.14 for P = Pn , Q = Pm , so that by
Theorems 4.13 and 4.8 we need to check that Λn(i)∗Gnδm,n = GnΛm(i)δm,n , which
is true since the matrices involved are real and diagonal.
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In order to study the matrix-valued orthogonal polynomials and the weight function
in more detail, we need the continuous q-ultraspherical polynomials [2, Chap. 2], [15],
[19, Chap.20], [26]:

Cn(x;β|q) =
n∑

r=0

(β; q)r (β; q)n−r

(q; q)r (q; q)n−r
ei(n−2r)θ , x = cos θ. (4.10)

The continuous q-ultraspherical polynomials are orthogonal polynomials for |β| < 1.
The orthogonality measure is a positive measure in case 0 < q < 1 and β real with
|β| < 1. Explicitly,

∫ 1

−1
Cn(x;β|q)Cm(x;β|q)

w(x;β | q)√
1 − x2

dx = δnm,

2π
(β, βq; q)∞
(β2, q; q)∞

(β2; q)n

(q; q)n

1 − β

1 − βqn
w(cos θ;β|q) = (e2iθ , e−2iθ ; q)∞

(βe2iθ , βe−2iθ ; q)∞
.

(4.11)

Note that in the special case β = q1+k , k ∈ N, the weight function is polynomial in
x = cos θ , and

w(cos θ; q1+k |q) = 4(1 − cos2 θ) (qe2iθ , qe−2iθ ; q)k . (4.12)

We use the continuous q-ultraspherical polynomials (4.10) for any β ∈ C. In
particular, for β = q−k with k ∈ N the sum in (4.10) is restricted to n − k ≤ r ≤ k,
and in particular Cn(x; q−k; q) = 0 in case n − k > k. With this convention, we can
now describe the LDU-decomposition of the weight matrix, and state the inverse of
the unipotent lower triangular matrix L in Theorem 4.15.

Theorem 4.15 The matrix-valued weight W as in Theorem 4.8 has the following
LDU-decomposition:

W (x) = L(x)T (x)L(x)t , x ∈ [−1, 1],

where L : [−1, 1] → M2�+1(C) is the unipotent lower triangular matrix

L(x)mk = qm−k (q2; q2)m(q2; q2)2k+1

(q2; q2)m+k+1(q2; q2)kCm−k(x; q2k+2|q2), 0 ≤ k ≤ m ≤ 2�,

and T : [−1, 1] → M2�+1(C) is the diagonal matrix, 0 ≤ k ≤ 2�,

T (x)kk = ck(�)
w(x; q2k+2|q2)

1 − x2
,

ck(�) = q−2�

4

(1 − q4k+2)(q2; q2)2�+k+1(q2; q2)2�−k(q2; q2)4k
(q2; q2)22k+1(q

2; q2)22�
.
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The inverse of L is given by

(
L(x)

)−1
k,n = q(2k+1)(k−n)

(q2; q2)k(q2; q2)k+n

(q2; q2)2k(q2; q2)n Ck−n(x; q−2k |q2), 0 ≤ n ≤ k.

Note that T , L and L−1 are matrix-valued polynomials, which is clear from the
explicit expression and (4.12). It is remarkable that the LDU-decomposition is for
arbitrary size 2� + 1, but that there is no dependence of L on the spin � and that the
dependence of T on the spin � is only in the constants ck(�).

We prove the first part of Theorem 4.15 in Sect. 6. The proof of Theorem 4.15
is analytic in nature, and a quantum group theoretic proof would be desirable. The
statement on the inverse of L(x) is taken from [1], where the inverse of a lower
triangular matrix with matrix entries continuous q-ultraspherical polynomials in a
more general situation is derived. The inverse L−1 is derived in [1, Example 4.2].
The inverse of L in the limit case q ↑ 1 was derived by Cagliero and Koorn-
winder [6], and the proof of [1] is of a different nature than the proof presented
in [6].

Theorem 4.15 shows that det(W (x)) is the product of the diagonal entries of T (x).
Since all coefficients ck(�) > 0 and the weight functions are positive, we obtain
Corollary 4.16.

Corollary 4.16 The matrix-valued weight W (x) is strictly positive definite for x ∈
[−1, 1]. In particular, the matrix-valued weight W (x)

√
1 − x2 of Theorem 4.8 is

strictly positive definite for x ∈ (−1, 1).

Using the lower triangular matrix L of the LDU-decomposition of Theorem 4.15,
we are able to decouple D1 of Theorem 4.13 after conjugation with Lt (x). We get a
scalar q-difference equation for each of the matrix entries of Lt (x)Pn(x), which is
solved by continuous q-ultraspherical polynomials up to a constant. Since we have
yet another matrix-valued q-difference operator for Lt (x)Pn(x), namely Lt D2(Lt )−1

with D2 as in Theorem 4.13, we get a relation for the constants involved. This relation
turns out to be a three-term recurrence relation along columns, which can be identified
with the three-term recurrence for q-Racah polynomials. Finally, use (Lt (x))−1 to
obtain an explicit expression for the matrix entries of the matrix-valued orthogonal
polynomials of Theorem 4.17.

Before stating Theorem 4.17, recall that the q-Racah polynomials, see e.g. [15,
§7.2], [19, §15.6], [26, §14.2], are defined by

Rn(μ(x);α, β, γ, δ; q) = 4ϕ3

(
q−n, αβqn+1, q−x , γ δqx+1

αq, βδq, γ q
; q, q

)
, (4.13)

where n ∈ {0, 1, 2, . . . , N }, N ∈ N, μ(x) = q−x + γ δqx+1 and so that one of the
conditions αq = q−N , or βδq = q−N , or γ q = q−N holds.
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Theorem 4.17 For 0 ≤ i, j ≤ 2�, we have

Pn(x)i, j =
2�∑
k=i

(−1)kqn+(2k+1)(k−i)+ j (2k+1)+2k(2�+n+1)−k2

× (q2; q2)k(q2; q2)k+i

(q2; q2)2k(q2; q2)i
(q−4�, q−2 j−2n; q2)k

(q2, q4�+4; q2)k
(q2; q2)n+ j−k

(q4k+4; q2)n+ j−k

× Rk(μ( j); 1, 1, q−2n−2 j−2, q−4�−2; q2)
× Ck−i (x; q−2k |q2)Cn+ j−k(x; q2k+2|q2).

Note that the left-hand side is a polynomial of degree at most n, whereas the right-
hand side is of degree n + j − i . In particular, for j > i the leading coefficient of the
right-hand side of Theorem 4.17 has to vanish, leading to Corollary 4.18.

Corollary 4.18 With the notation of Theorem 4.17, we have for j > i

2�∑
k=i

(−1)kq(2k+1)(k−i)+ j (2k+1)+2k(2�+n+1)−k2

× (q2; q2)k(q2; q2)k+i

(q2; q2)2k
(q−4�, q−2 j−2n; q2)k

(q2, q4�+4; q2)k
× (q2+2k; q2)n+ j−k

(q4k+4; q2)n+ j−k
Rk(μ( j); 1, 1, q−2n−2 j−2, q−4�−2; q2) = 0.

By evaluating Corollary 4.7 at 1 ∈ Uq(g), we obtain Corollary 4.19, which is not
clear from Theorem 4.17.

Corollary 4.19 For m ∈ {0, . . . , 2�}, we have ∑2�
k=0(Pn

( 1
2 (q + q−1)

)
)k,m = 1.

4.1 Examples

We end this section by specialising the results for low-dimensional cases. The case
� = 0 reduces to the Chebyshev polynomials Un(x) of the second kind as observed
following Theorem 4.13. This is proved in Proposition 5.3, which is required for the
proofs of the general statements of Sect. 4.

4.1.1 Example: � = 1
2

In this case we work with 2 × 2 matrices. By Proposition 4.10, we know that the
weight is block-diagonal, so that in this case we have an orthogonal decomposition to
scalar-valued orthogonal polynomials. To be explicit, the matrix-valued weight W is
given by
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YW (x)Y t =
√
1 − x2

(
2x + (q + q−1) 0

0 −2x + (q + q−1)

)
,

Y = 1

2

√
2

(
1 1

−1 1

)
, x ∈ [−1, 1].

In this case, see Sect. 2, the polynomials Pn diagonalise since the leading coefficient is
diagonalised by conjugation with the orthogonal matrix Y , and we write Y Pn(x)Y t =
diag(p+

n (x), p−
n (x)). Then we can identify p±

n by any of the results given in this
section, and we do this using the three-term recurrence relation of Corollary 4.12.
After conjugation, the three-term recurrence relation for p+

n is given by

xp+
n (x) = 1

2q

(1 − q2n+6)

(1 − q2n+4)
p+
n+1(x) + q2n+1

2

(1 − q2)2

(1 − q2n+2)(1 − q2n+4)
p+
n (x)

+ q

2

(1 − q2n)

(1 − q2n+2)
p+
n−1(x),

and the three-term recurrence relation for p−
n is obtained by substituting x �→ −x into

the three-term recurrence relation for p+
n . The explicit expressions for p

+
n and p−

n are

given in terms of continuous q-Jacobi polynomials P(α,β)
n (x |q) for (α, β) = ( 12 ,

3
2 ),

see [4, §4], [26, §14.10]. From [15, Exercise 7.32(ii)] we have P
( 12 , 32 )
n (−x |q2) =

(−1)nq−n P
( 32 , 12 )
n (x |q2). So we obtain

p+
n (x) = (1 − q4)

(1 − q2n+4)

(q2,−q3,−q4; q2)n
(q2n+6; q2)n P

( 12 , 32 )
n (x |q2),

p−
n (x) = (−1)nq−n (1 − q4)

(1 − q2n+4)

(q2,−q3,−q4; q2)n
(q2n+6; q2)n P

( 32 , 12 )
n (x |q2),

which is a q-analogue of [24, §8.2]. Moreover, writing down the conjugation of the
q-difference operator D1 + D2 of Theorem 4.13 for the case � = 1

2 for the conjugated
polynomials gives back the Askey–Wilson q-difference for the continuous q-Jacobi
polynomials P(α,β)

n (x |q) for (α, β) = ( 12 ,
3
2 ) and ( 32 ,

1
2 ). Working out the eigenvalue

equation for D1 − D2 gives a simple q-analogue of the contiguous relations of [24,
p. 5708].

4.1.2 Example: � = 1

For � = 1wework with 3×3matrices. By Proposition 4.10, we can block-diagonalise
the matrix-valued weight:

YW (x)Y t =
√
1 − x2

(
W+(x) 0

0 W−(x)

)
,

Y = 1

2

√
2

⎛
⎝ 1 0 1

0
√
2 0

−1 0 1

⎞
⎠ , x ∈ [−1, 1],
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whereW+ is a 2×2matrix-valuedweight andW− is a scalar-valuedweight. Explicitly,

W+(x) =

⎛
⎜⎜⎝

4x2 + (q2 + q−2) 2
√
2q−1 (1 + q2 + q4)

(1 + q2)
x

2
√
2q−1 (1 + q2 + q4)

(1 + q2)
x

4q2

(1 + q2)2
x2 + (q2 + q−2)

⎞
⎟⎟⎠ ,

W−(x) = −4x2 + (q2 + 2 + q−2).

The polynomials diagonalise by Y Pn(x)Y t = diag(P+
n (x), p−

n (x)), where P+
n is a

2 × 2 matrix-valued polynomial and p−
n is a scalar-valued polynomial. Conjugating

Corollary 4.12, the three-term recurrence relations for P+
n and p−

n are

x P+
n (x) = P+

n+1(x)An + P+
n (x)Bn + P+

n−1(x)Cn,

xp−
n (x) = 1

2q

(1 − q2n+8)

(1 − q2n+6)
p−
n+1(x) + q

2

(1 − q2n)

(1 − q2n+2)
p−
n−1(x),

where

An = 1

2q

⎛
⎜⎜⎝

(1 − q2n+8)

(1 − q2n+6)
0

0
(1 − q2n+8)(1 − q2n+2)

(1 − q2n+4)2

⎞
⎟⎟⎠ ,

Bn = 1

2

√
2

⎛
⎜⎜⎝

0 q2n+1 (1 − q2)(1 − q4)

(1 − q2n+4)2

q2n+1 (1 − q2)(1 − q4)

(1 − q2n+2)(1 − q2n+6)
0

⎞
⎟⎟⎠ ,

Cn = q

2

⎛
⎜⎜⎝

(1 − q2n)

(1 − q2n+2)
0

0
(1 − q2n)(1 − q2n+6)

(1 − q2n+4)2

⎞
⎟⎟⎠ .

The scalar-valued polynomial p−
n can be identified with the continuous q-ultra-

spherical polynomials:

p−
n (x) = qn

(1 − q2)(1 − q6)

(1 − q2n+2)(1 − q2n+6)
Cn(x; q4|q2).

The 2 × 2 matrix-valued polynomials P+
n are solutions to the matrix-valued q-

difference equation DP+
n,1 = P+

n Λn . Here D = M(z)ηq + M(z−1)ηq−1 is the
restriction of the conjugated D1 + D2 to the +1-eigenspace of J . The explicit expres-
sions for M(z) and Λn are
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M(z) = q−1

(1 − q2)(1 − z2)

⎛
⎜⎜⎝

(1 + q2)

(1 − q2)
(1 − q4z2) −√

2q2z

−√
2q(1 + q2)z 2q

(1 − q4z2)

(1 − q2)

⎞
⎟⎟⎠ ,

Λn =

⎛
⎜⎜⎝
q−n−1 (1 + q2)(1 + q2n+4)

(1 − q2)2
0

0 2q−n (1 + q2n+4)

(1 − q2)2

⎞
⎟⎟⎠ .

These results are q-analogues of some of the results given in [24, §8.3], see also
[39]. Note moreover that W−(0) is a multiple of the identity so that the commutant of
W− equals the commuting algebra of Tirao and Zurrián [42], see also [22]. Since the
commutant is trivial, the weightW− is irreducible, which can also be checked directly.

5 Quantum group-related properties of spherical functions

In this section, we start with the proofs of the statements of Sect. 4 which can be
obtained using the interpretation of matrix-valued spherical functions on Uq(g).

5.1 Matrix-valued spherical functions on the quantum group

In this subsection, we study some of the properties of the matrix-valued spherical
functions which follow from the quantum group theoretic interpretation. In particular,
we derive Theorem 4.3 from Remark 4.2. The precise identification with the literature
and the standard Clebsch–Gordan coefficients is made in Appendix 1, and we use the
intertwiner and the Clebsch–Gordan coefficients as presented there.

We also need the matrix elements of the type 1 irreducible finite dimensional rep-
resentations. Define

t�m,n : Uq(su(2)) → C, t�m,n(X) = 〈t�(X)e�
n, e

�
m〉, n,m ∈ {−�, . . . , �},

where we take the inner product in the representation space H� for which the basis
{e�

n}�n=−� is orthonormal. Denoting

⎛
⎝t1/2−1/2,−1/2 t1/2−1/2,1/2

t1/21/2,−1/2 t1/21/2,1/2

⎞
⎠ =

(
α β

γ δ

)
,

then α, β, γ , δ generate a Hopf algebra, where theHopf algebra structure is determined
by duality of Hopf algebras. Moreover, it is a Hopf ∗-algebra with ∗-structure defined
by α∗ = δ, β∗ = −qγ , which we denote by Aq(SU (2)). Then the Hopf ∗-algebra
Aq(SU (2)) is in duality as Hopf ∗-algebras with Uq(su(2)). In particular, the matrix
elements t�m,n ∈ Aq(SU (2)) can be expressed in terms of the generators and span
Aq(SU (2)). Moreover, the matrix elements t�m,n ∈ Aq(SU (2)) form a basis for the
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underlying vector space of Aq(SU (2)). The left action of Uq(g) on Aq(SU (2)) is
given by (X · ξ)(Y ) = ξ(Y X) for X,Y ∈ Uq(g) and ξ ∈ Aq(SU (2)). Similarly, the
right action is given by (ξ · X)(Y ) = ξ(XY ) for X,Y ∈ Uq(g) and ξ ∈ Aq(SU (2)).
A calculation gives k1/2 · t�m,n = q−nt�m,n and t

�
m,n · k1/2 = q−mt�m,n so that α · k1/2 =

q1/2α, β · k1/2 = q−1/2β, γ · k1/2 = q1/2γ , δ · k1/2 = q−1/2δ.
Since k1/2 and its powers are group-like elements of Uq(g), it follows that the

left and right action of k1/2 and its powers are algebra homomorphisms. See e.g.
[9,11,20,21], and references given there.

In the same way, we view

t�1m1,n1 ⊗ t�2m2,n2 : Uq(g) → C

where the functions are taken with respect to the Hopf algebra tensor product Uq(g) =
Uq(su(2)) ⊗ Uq(su(2)). In particular, for λ,μ ∈ 1

2Z we find the expression t�1m1,n1 ⊗
t�2m2,n2(K

λ
1 K

μ
2 ) = δm1,n1δm2,n2q

−λm1−μm2 . Similarly, the Hopf ∗-algebra spanned by

all the matrix elements t�1m1,n1 ⊗ t�2m2,n2 is isomorphic toAq(SU (2))⊗Aq(SU (2)). We
set Aq(G) = Aq(SU (2)) ⊗ Aq(SU (2)) for G = SU (2) × SU (2).

Define A = K 1/2
1 K 1/2

2 and letA be the commutative subalgebra ofUq(g) generated
by A and A−1. Recall the spherical function Φ�

�1,�2
from Definition 4.4, and recall the

transformation property (4.5).

Definition 5.1 The linear map Φ : Uq(g) → End(H�) is a spherical function of type
� if

Φ(X ZY ) = t�(X)Φ(Z)t�(Y ), ∀ X,Y ∈ B, ∀ Z ∈ Uq(g).

So the spherical function Φ�
�1,�2

is a spherical function of type � by (4.5).

Proposition 5.2 Fix � ∈ 1
2N, and assume (�1, �2) satisfies (4.3).

(i) Write Φ�
�1,�2

= ∑�
m,n=−�(Φ

�
�1,�2

)m,n ⊗ E�
m,n, where E�

m,n are the elementary
matrices, then

(
Φ�

�1,�2

)
m,n

=
�1∑

m1,n1=−�1

�2∑
m2,n2=−�2

C�1,�2,�
m1,m2,mC

�1,�2,�
n1,n2,n t

�1
m1,n1⊗t�2m2,n2 .

(ii) A spherical function Φ of type � restricted to A is diagonal with respect to the
basis {e�

p}�p=−�. Moreover, for each λ ∈ Z,

(
Φ�

�1,�2
(Aλ)

)
m,n

= δm,n

�1∑
i=−�1

�2∑
j=−�2

(
C�1,�2,�
i, j,n

)2
q−λ(i+ j),

so that Φ�
�1,�2

(1) is the identity.
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(iii) Assume that Φ is a spherical function of type � and that

Φ =
�∑

m,n=−�

Φm,n ⊗ E�
m,n : Uq(g) → End(H�),

with all linear maps Φm,n on Uq(g) in the linear span of the matrix elements

t�1i1, j1 ⊗ t�2i2, j2 , −�1 ≤ i1, j1 ≤ �1, −�2 ≤ i2, j2 ≤ �2, then Φ is a multiple of

Φ�
�1,�2

.

Proof Note (Φ�
�1,�2

(X))m,n = 〈Φ�
�1,�2

(X)e�
n, e

�
m〉 for X ∈ Uq(g), therefore we first

compute Φ�
�1,�2

(X)e�
n . For X ∈ Uq(g), we have

Φ�
�1,�2

(X)e�
n = (β�

�1,�2
)∗ ◦ t�1,�2(X)

⎛
⎝ �1∑

n1=−�1

�2∑
n2=−�2

C�1,�2,�
n1,n2,ne

�1
n1⊗e�2

n2

⎞
⎠

= (β�
�1,�2

)∗
⎛
⎝ �1∑

m1,n1=−�1

�2∑
m2,n2=−�2

C�1,�2,�
n1,n2,n

× 〈t�1,�2(X)e�1
n1⊗e�2

n2 , e
�1
m1

⊗e�2
m2

〉e�1
m1

⊗e�2
m2

⎞
⎠

=
�∑

m=−�

�1∑
m1,n1=−�1

�2∑
m2,n2=−�2

C�1,�2,�
m1,m2,mC

�1,�2,�
n1,n2,n × (t�1m1,n1⊗t�2m2,n2)(X)e�

m .

This proves (i).
To obtain (ii), write Φ = ∑�

m,n=−� Φm,n ⊗ E�
m,n , and observe

t�(Kμ)Φ(Aλ) = Φ(KμAλ) = Φ(AλKμ) = Φ(Aλ)t�(Kμ),

for all λ ∈ Z, μ ∈ 1
2Z that implies q−mμΦm,n(Aλ) = q−nμΦm,n(Aλ) since t�(Kμ)

is diagonal. This gives Φm,n(Aλ) = 0 for m = n. Next pair Φ�
�1,�2

with Aλ using (i)

and the observation made before Proposition 5.2 and the fact C�1,�2,�
m1,m2,m = 0 unless

m1 − m2 = m. Next take λ = 0, and use (8.4).
Finally, for (iii) note that for X ∈ B we have Φ(X) = t�(X)Φ(1) = Φ(1)t�(X).

Since t� : B → End(H�) is an irreducible unitary representation, Schur’s Lemma
implies that Φ(1) = cI is a multiple of the identity. Theorem 4.3 implies that for
X ∈ B

t�(X)m,n =
�1∑

m1,n1=−�1

�2∑
m2,n2=−�2

C�1,�2,�
m1,m2,mC

�1,�2,�
n1,n2,n

(
t�1m1,n1 ⊗ t�2m2,n2

)
(X)
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and, by themultiplicity free statement in Theorem 4.3, this is the only (up to a constant)
possible linear combination of the matrix elements t�1m1,n1 ⊗ t�2m2,n2 for fixed (�1, �2)

which has this property. Hence, (iii) follows. ��
The special case Φ0

1/2,1/2 : Uq(g) → C can now be calculated explicitly using the

Clebsch–Gordan coefficients C1/2,1/2,0
m,−m,0 from (8.5). Explicitly,

ϕ = 1

2
(q−1 + q)Φ0

1/2,1/2

= 1

2
qt

1
2

− 1
2 ,− 1

2
⊗ t

1
2

− 1
2 ,− 1

2
− 1

2
t
1
2

− 1
2 , 12

⊗ t
1
2

− 1
2 , 12

−1

2
t
1
2
1
2 ,− 1

2
⊗ t

1
2
1
2 ,− 1

2
+ 1

2
q−1t

1
2
1
2 , 12

⊗ t
1
2
1
2 , 12

= 1

2
qα ⊗ α − 1

2
β ⊗ β − γ ⊗ γ + 1

2
q−1δ ⊗ δ. (5.1)

This element is not self-adjoint inAq(SU (2))⊗Aq(SU (2)). Recall the right action of
Uq(g) on the map Φ : Uq(g) → End(H�), including the case � = 0, by (Φ · X)(Y ) =
Φ(XY ) for all X,Y ∈ Uq(g). This is analogous to the construction discussed at the
beginning of this subsection. Then

ψ = ϕ · A−1 = 1

2
α ⊗ α − 1

2
q−1β ⊗ β − 1

2
qγ ⊗ γ + 1

2
δ ⊗ δ = ψ∗ (5.2)

is self-adjoint for the ∗-structure ofAq(SU (2)) ⊗Aq(SU (2)). Then by construction

ψ
((

AX A−1
)
Y Z

)
= ε(X)ψ(Y )ε(Z), ∀ X, Z ∈ B, Y ∈ Uq(g). (5.3)

5.2 The recurrence relation for spherical functions of type �

The proof of Theorem 4.6 in the group case can be found in [24, Proposition 3.1],
where the constants Ai, j are explicitly given in terms of Clebsch–Gordan coefficients.
This proof can also be applied in this case, giving the coefficients Ai, j explicitly in
terms of Clebsch–Gordan coefficients. A more general set-up can be found in [44,
Proposition 3.3.17]. The approach given here is related [24, Proposition 3.1], except
that it differs in its way of establishing A1/2,1/2 = 0.

Proof of Theorem 4.6 As Uq(g)-representations, the tensor product decomposition

t1/2,1/2 ⊗ t�1,�2 ∼=
∑

i, j=±1/2

t�1+i,�2+ j

follows from the standard tensor product decomposition for Uq(su(2)), see (8.1). It
follows that
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ϕΦ�
�1,�2

=
∑

i, j=±1/2

Ψ i, j , Ψ i, j =
�∑

m,n=−�

Ψ
i, j
m,n ⊗ E�

m,n,

where Ψ
i, j
m,n is in the span of the matrix elements t�1+i

r1,s1 ⊗ t�1+ j
r2,s2 . Note that (4.7), and

a similar calculation for multiplication by an element from B from the other side,
shows that ϕΦ�

�1,�2
has the required transformation behaviour (4.5) for the action of

B from the left and the right. Since the matrix elements t�1r1,s1 ⊗ t�1r2,s2 form a basis
for Aq(G), it follows that each Ψ i, j satisfies (4.5) so that by Proposition 5.2(iii)
Ψ i, j = Ai, j Φ

�
�1+i,�2+ j . Here Ψ i, j = 0 in case (�1 + i, �2 + j) does not satisfy the

conditions (4.3).
It remains to show that A1/2,1/2 = 0. In order to do so, we evaluate the identity

of Theorem 4.6 at a suitable element of Uq(g). For the Uq(su(2))-representations in
(3.3), it is immediate that t�(ek) = 0 for k > 2� and that t�r,s(e

2�) = 0 except for
the case (r, s) = (−�, �) and then t�−�,�(e

2�) = 0. Extending to Uq(g), we find that

Φ�
�1,�2

(Ek1
1 Ek2

2 ) = 0 if k1 > 2�1 or k2 > 2�2, and

(
Φ�

�1,�2

)
m,n(E

2�1
1 E2�2

2 ) = δm,−�1+�2δn,�1−�2C
�1,�2,�−�1,−�2,m

C�1,�2,�
�1,�2,n

× t�1−�1,�1
(E2�1

1 )t�2−�2,�2
(E2�2

2 ), (5.4)

where the right-hand side is non-zero in case m = −�1 + �2, n = �1 − �2.
So if we evaluate the identity of Theorem 4.6 at E2�1+1

1 E2�2+1
2 , it follows that

only the term with (i, j) = (1/2, 1/2) on the right- hand side of Theorem 4.6 is
non-zero, and the specific matrix element is given by (5.4) with (�1, �2) replaced by
(�1+ 1

2 , �2 + 1
2 ). It suffices to check that the left-hand side of Theorem 4.6 is non-zero

when evaluated at E2�1+1
1 E2�2+1

2 . By (4.6)we need to calculate the comultiplication on

E2�1+1
1 E2�2+1

2 . Using the non-commutative q-binomial theorem [15, Exercise 1.35]
twice, we get

�(E2�1+1
1 E2�2+1

2 ) = �(E1)
2�1+1�(E2)

2�2+1

=
2�1+1∑
k1=0

2�2+1∑
k2=0

[
2�1 + 1

k1

]
q2

[
2�2 + 1

k2

]
q2

× Ek1
1 Ek2

2 K 2�1+1−k1
1 K 2�2+1−k2

2 ⊗ E2�1+1−k1
1 E2�2+1−k2

2 .

From (5.1), we find that ϕ(Ek1
1 Ek2

2 K 2�1+1−k1
1 K 2�2+1−k2

2 ) = 0 unless k1 = k2 = 1,
and in that case the term β ⊗ β of (5.1) gives a non-zero contribution, and the other
terms give zero. So we find

(
ϕΦ�

�1,�2

)
(E2�1+1

1 E2�2+1
2 ) =

[
2�1 + 1

1

]
q2

[
2�2 + 1

1

]
q2

×ϕ
(
E1E2K

2�1
1 K 2�2

2

) (
Φ�

�1,�2

) (
E2�1
1 E2�2

2

)
,
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and this is non-zero for the same matrix element (m, n) = (−�1 + �2, �1 − �2) by
(5.4). ��

Note that we can derive the explicit value of A1/2,1/2 from the proof of Theorem
4.6 by keeping track of the constants involved. However, we do not need the explicit
value except in the case � = 0.

In the special case � = 0, the recurrence of Theorem 4.6 has two terms and we
obtain

ϕΦ0
�1,�1

= A1/2,1/2 Φ0
�1+1/2,�1+1/2 + A−1/2,−1/2 Φ0

�1−1/2,�1−1/2,

A1/2,1/2 = 1

2
q−1 1 − q4�1+4

1 − q4�1+2 , A−1/2,−1/2 = 1

2
q

1 − q4�1

1 − q4�1+2 .
(5.5)

The value of A1/2,1/2 can be obtained by evaluating at the group-like element Aλ,
using Proposition 5.2(ii) and 2ϕ(Aλ) = qλ+1 + q−1−λ and comparing leading
coefficients of the Laurent polynomials in qλ. This gives 1

2q
−1(C�1,�1,0−�1,−�1,0

)2 =
A1/2,1/2(C

�1+1/2,�1+1/2,0
−�1−1/2,−�1−1/2,0)

2, and the value for A1/2,1/2 follows from (8.6). Having
A1/2,1/2, we evaluate at 1, i.e. the case λ = 0, which gives A1/2,1/2 + A−1/2,−1/2 =
1
2 (q + q−1) by Proposition 5.2(ii), from which A−1/2,−1/2 follows.

Proposition 5.3 For n ∈ N, we have Φ0
1
2 n, 12 n

= qn
1 − q2

1 − q2n+2Un(ϕ).

Recall that the Chebyshev polynomials of the second kind are orthogonal polyno-
mials:

Un(cos θ) = sin((n + 1)θ)

sin θ
,

∫ 1

−1
Un(x)Um(x)

√
1 − x2 dx = δm,n

1

2
π,

x Un(x) = 1

2
Un+1(x) + 1

2
Un−1(x), U−1(x) = 0, U0(x) = 1, (5.6)

see e.g. [15,19,26].

Proof From (5.5), it follows that Φ0
1
2 n, 12 n

= pn(ϕ) for a polynomial pn of degree n

satisfying

x pn(x) = 1

2
q−1 1 − q2n+4

1 − q2n+2 pn+1(x) + 1

2
q

1 − q2n

1 − q2n+2 pn−1(x),

with initial conditions p0(x) = 1, p1(x) = 2
q+q−1 x . Set

pn(x) = qn
1 − q2

1 − q2n+2 rn(x),

then r0(x) = 1, r1(x) = 2x and 2x rn(x) = rn+1(x) + rn−1(x). So rn(x) = Un(x). ��
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5.3 Orthogonality relations

In this subsection, we prove Theorem 4.8 from the quantum group theoretic inter-
pretation up to the calculation of certain explicit coefficients in the expansion of the
entries of the weight.

Recall the Haar functional on Aq(SU (2)). It is the unique left and right invariant
positive functional h0 : Aq(SU (2)) → C normalised by h0(1) = 1, see e.g. [9], [20,
§4.3.2], [21,48]. The Schur orthogonality relations state

h0
(
t�1m,n(t

�2
r,s)

∗) = δ�1,�2δm,rδn,sq
2(�1+n) (1 − q2)

(1 − q4�1+2)
. (5.7)

We identifyAq(G) withAq(SU (2))⊗Aq(SU (2)). Then the functional h = h0 ⊗ h0
is the Haar functional on Aq(G). We can identify the analogue of the algebra of bi-
K -invariant polynomials on G as the algebra generated by the self-adjoint element ψ ,
and give the analogue of the restriction of the invariant integration in Lemma 5.4.

Lemma 5.4 A functional τ : Uq(g) → C that satisfies the transformation behaviour
τ((AX A−1)Y Z) = ε(X)ψ(Y )ε(Z) for all X, Z ∈ B and all Y ∈ Uq(g) is a polyno-
mial in ψ as in (5.2). Moreover, the Haar functional on the ∗-algebra C[ψ] ⊂ Aq(G)

is given by

h(p(ψ)) = 2

π

∫ 1

−1
p(x)

√
1 − x2 dx .

Proof From Proposition 5.2(iii) and (5.3), we see that any functional on Uq(g) sat-
isfying the invariance property is a polynomial in ψ , since this space is spanned by
Φ0

1
2 n, 12 n

· A−1 for n ∈ N. From Proposition 5.3, we have Φ0
1
2 n, 12 n

· A−1 is a multiple

of Un(ψ), since the right action of A−1 is an algebra homomorphism. The Schur
orthogonality relations give

h
((

Φ0
1
2 n, 12 n

· A−1
) (

Φ0
1
2m, 12m

· A−1
)∗) = 0, for m = n,

and since the argument of h is polynomial in ψ , we see that it has to correspond to the
orthogonality relations (5.6) for the Chebyshev polynomials. Sowe find the expression
for the Haar functional on the ∗-algebra generated by ψ . ��
Theorem 5.5 Assume Ψ,Φ : Uq(g) → End(H�) are spherical functions of type �,
see Definition 5.1. Then the map

τ : Uq(g) → C, X �→ tr
(
(Ψ · A−1)(Φ · A−1)∗

)
(X),

satisfies τ((AX A−1)Y Z) = ε(X)ψ(Y )ε(Z) for all X, Z ∈ B and all Y ∈ Uq(g).

In particular, any such trace is a polynomial in the generator ψ by Lemma 5.4.
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Corollary 5.6 Fix � ∈ 1
2N, then for k, p ∈ {0, 1, . . . , 2�},

W (ψ)k,p := tr
(
(Φ�

ξ(0,k) · A−1)(Φ�
ξ(0,p) · A−1)∗

) =
p∧k∑
r=0

αr (k, p)Uk+p−2r (ψ),

with
(
W (ψ)k,p

)∗ = W (ψ)p,k .

Proof of Theorem 5.5 Write Ψ = ∑�
m,n=−� Ψm,n ⊗ E�

m,n , Φ = ∑�
m,n=−� Φm,n ⊗

E�
m,n , with Ψm,n and Φm,n linear functionals on Uq(g) so that

tr
(
(Ψ · A−1)(Φ · A−1)∗

) = ∑�
m,n=−�(Ψm,n · A−1)(Φm,n · A−1)∗

�⇒ τ(Y ) = ∑�
m,n=−�

∑
(Y ) Ψm,n(A−1Y(1))Φm,n(A−1S(Y(2))∗),

(5.8)

using the standard notation �(Y ) = ∑
(Y ) Y(1) ⊗ Y(2) and ξ∗(X) = ξ(S(X)∗) for

ξ : Uq(g) → C and X ∈ Uq(g).
Let Z ∈ B and Y ∈ Uq(g), then we find

τ(Y Z) = ∑�
m,n=−�

∑
(Y ),(Z) Ψm,n(A−1Y(1)Z(1)) Φm,n(A−1S(Y(2))∗S(Z(2))∗).

Since B is a right coideal, we can assume that Z(1) ∈ B, so, by the transformation
property (4.5), Ψm,n(A−1Y(1)Z(1)) = ∑�

k=−� Ψm,k(A−1Y(1))t�k,n(Z(1)). Using this,

and t�k,n(Z(1)) = t�n,k(Z
∗
(1)) by the ∗-invariance of B and the unitarity of t�, and next

move this to the Φ-part, and summing over n and the transformation property (4.5)
for Φ, we obtain

τ(Y Z) =
�∑

m,k=−�

∑
(Y ),(Z)

Ψm,k(A
−1Y(1))

×
�∑

n=−�

Φm,n(A−1S(Y(2))∗S(Z(2))∗)t�n,k(Z
∗
(1))

=
�∑

n,k=−�

∑
(Y )

Ψk,n(A
−1Y(1)) Φk,n

(
A−1S(Y(2))∗

∑
(Z)

S(Z(2))∗Z∗
(1)

)

= ε(Z)

�∑
n,k=−�

∑
(Y )

Ψk,n(A
−1Y(1)) Φk,n(A−1S(Y(2))∗) = ε(Z)τ (Y ),

using
∑

(Z) S(Z(2))
∗Z∗

(1) = (∑
(Z) Z(1)S(Z(2))

)∗ = ε(Z) by the antipode axiom in a
Hopf algebra.

For the invariance property from the left, we proceed similarly using that A is a
group-like element. So for Y ∈ Uq(g) and X ∈ B we have
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τ(AX A−1Y ) =
�∑

m,n=−�

∑
(X),(Y )

Ψm,n(X(1)A
−1Y(1))

×Φm,n(A−1S(A)∗S(X(2))∗S(A−1)∗S(Y(2))∗).

Now S(A)∗ = A−1, S(A−1)∗ = A. Proceeding as in the previous paragraph using
X(1) ∈ B, we obtain

τ(AX A−1Y ) =
�∑

n,k=−�

∑
(X),(Y )

Ψk,n(A
−1Y(1))

×
�∑

m=−�

t�k,m(X∗
(1))Φm,n(A

−2S(X(2))
∗AS(Y(2))

∗)

=
�∑

n,k=−�

∑
(Y )

Ψk,n(A
−1Y(1))

∑
(X)

Φk,n(X∗
(1)A

−2S(X(2))∗AS(Y(2))∗).

The result follows if we prove
∑

(X) X
∗
(1)A

−2S(X(2))
∗A = A−1ε(X). In order to

prove this, we need the observation that S(X∗) = A−2S(X)∗A2 for all X ∈ Uq(g),
which can be verified on the generators and follows since the operators are antilinear
homomorphisms, see Remark 5.7. Now we obtain the required identity:

∑
(X)

X∗
(1)A

−2S(X(2))
∗A =

∑
(X)

X∗
(1)S(X∗

(2))A
−1 = ε(X∗)A−1 = ε(X)A−1.

��
Remark 5.7 The required identity S(X∗) = A−2S(X)∗A2 for all X ∈ Uq(g) can be
generalised to arbitrary semisimple g. Indeed, since the square of the antipode S is
given by conjugation with an explicit element of the Cartan subalgebra associated to
ρ = 1

2

∑
α>0 α, see e.g. [33, Exercise 4.1.1], and since in a Hopf ∗-algebra S ◦ ∗ is

an involution, we find that S(X∗) = K−ρS(X)∗Kρ if S2(X) = K−ρXKρ as in [33,
Exercise 4.1.1].

Proof of Corollary 5.6 By Theorem 5.5 and Lemma 5.4, the trace is a linear combi-
nation of Φ0

1
2 n, 12 n

· A−1, hence a polynomial in ψ . To obtain the expression, we need

to find those n’s for which Φ0
1
2 n, 12 n

· A−1 occurs inW (ψ)k,p by Proposition 5.3. Using

(4.4), (5.8) and Proposition 5.2, we find that in W (ψ)k,p matrix only matrix elements

of the form t
1
2 k
a1,b1

(t
1
2 p
c1,d1

)∗ ⊗ t
�− 1

2 k
a2,b2

(t
�− 1

2 p
c2,d2

)∗ occur. Using the Clebsch–Gordan decom-

position, we see that t
1
2 k
a1,b1

(t
1
2 p
c1,d1

)∗ and similarly t
�− 1

2 k
a2,b2

(t
�− 1

2 p
c2,d2

)∗ can bewritten as a sum
of matrix elements from t

1
2 (k+p)−r , r ∈ {0, 1, . . . , k∧ p}, and similarly t2�− 1

2 (k+p)−s ,
s ∈ {0, 1, . . . , (2� − k) ∧ (2� − p)}. By Proposition 5.3 and Proposition 5.2, the only
n’s that can occur are n = k + p − 2r , r ∈ {0, 1, . . . , k ∧ p}.
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The statement on the adjoint follows immediately from (5.8) and ψ being self-
adjoint, see (5.2). ��

We now can start the first part of the proof of Theorem 4.8, except for the fact that
we have to determine certain constants. This is contained in Lemma 5.8.

Lemma 5.8 We have

�∑
i=−�

�1∑
m1=−�1

�2∑
m2=−�2

(
C�1,�2,�
m1,m2,i

)2
q2(m1+m2) = q−2� (1 − q4�+2)

(1 − q2)
.

The proof of Lemma 5.8 is a calculation using Theorem 4.6, which we postpone to
Sect. 6.3.

First part of the proof of Theorem 4.8 Using the notation of Sect. 4, we find from
Corollary 4.7 and (4.8) that

tr
(
(Φ�

ξ(n,i) · A−1)(Φ�
ξ(m, j) · A−1)∗

)

=
2�∑
k=0

2�∑
p=0

r�,k
n,i (ψ)tr

(
(Φ�

ξ(0,k) · A−1)(Φ�
ξ(0,p) · A−1)∗

)
r�,p
m, j (ψ)

=
2�∑
k=0

2�∑
p=0

Pn(ψ)∗i,kW (ψ)k,p Pm(ψ)p, j =
(
(Pn(ψ))∗W (ψ), Pm(ψ)

)
i, j

where we use that the action by A−1 from the right is an algebra homomorphism,
since A−1 is group like, and thatψ is self-adjoint. By Proposition 5.2, Lemma 5.4 and
(5.7), we have

2

π

∫ 1

−1

(
(Pn(x))

∗W (x)Pm(x)
)
i, j

√
1 − x2 dx

= h
(
tr
(
(Φ�

ξ(n,i) · A−1)(Φ�
ξ(m, j) · A−1)∗

))

= δn,mδi, j
q2�+2n(1 − q2)2

(1 − q2n+2i+2)(1 − q4�+2n−2i+2)

×
⎛
⎜⎝

�∑
r=−�

1
2 (n+i)∑

a=− 1
2 (n+i)

�+ 1
2 (n−i)∑

b=−�− 1
2 (n−i)

|C
1
2 (n+i),�+ 1

2 (n−i),�
a,b,r |2q2(a+b)

⎞
⎟⎠

2

(5.9)

after a straightforward calculation. Plugging in Lemma 5.8 in (5.9) and rewriting prove
the result using Corollary 5.6. ��

Note that we have not yet determined the explicit values of αt (m, n) in Theorem
4.8 and we have not shown that W is a matrix-valued weight function in the sense of
Sect. 2. The values of the constants αt (m, n) will be determined in Sect. 6.1 and the
positivity of W (x) for x ∈ (−1, 1) will follow from Theorem 4.15.
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5.4 q-Difference equations

It is well known, see e.g. Koornwinder [30], Letzter [35], Noumi [37], that the
centre of the quantised enveloping algebra can be used to determine a commuting
family of q-difference operators to which the corresponding spherical functions are
eigenfunctions. In this subsection, we derive the matrix-valued q-difference operators
corresponding to central elements to which we find matrix-valued eigenfunctions.

The centre of Uq(g) is generated by two Casimir elements, see Sect. 3:

�1 = qK−1
1 + q−1K1 − 2

(q − q−1)2
+ E1F1, �2 = qK−1

2 + q−1K2 − 2

(q − q−1)2
+ E2F2.

Because of Proposition 5.2 and (3.4), we find

�i · Φ�
�1,�2

= Φ�
�1,�2

· �i =
(
q− 1

2−�i − q
1
2+�i

q−1 − q

)2

Φ�
�1,�2

, i = 1, 2. (5.10)

The goal is to compute the radial parts of the Casimir elements acting on arbitrary
spherical functions of type � in terms of an explicit q-difference operator. In order
to derive such a q-difference operator, we find a BAB-decomposition for suitable
elements in Uq(g) in Proposition 5.10. This special case of a BAB-decomposition is
the analogue of the K AK -decomposition, which has not a general quantum algebra
analogue. For this purpose, we first establish Lemma 5.9, which can be viewed as a
quantum analogue of [8, Lemma 2.2], and gives the BAB-decomposition of F2Aλ.

Lemma 5.9 Recall A = K 1/2
1 K 1/2

2 . For λ ∈ Z \ {0}, we have

F2A
λ = q−1

q1−λ − q1+λ

(
K 1/2AλB1 − qλK 1/2B1A

λ
)

.

Proof Recall Definition 4.1, so the result follows from

AλB1 = q−1AλK−1/2
1 K−1/2

2 E1 + q AλF2K
−1/2
1 K 1/2

2

= q(q1−λ − q1+λ)K−1/2
1 K 1/2

2 F2A
λ + qλB1A

λ,

and using K 1/2 = K 1/2
1 K−1/2

2 ∈ B. ��
Proposition 5.10 The BAB-decomposition for the Casimir elements �1 and �2 is
given by

�1A
λ = q(1 − q2λ+4)

(1 − q2)2(1 − q2λ+2)
K 1/2Aλ+1 − 2q2

(1 − q2)2
Aλ

+ q3(1 − q2λ)

(1 − q2)2(1 − q2λ+2)
K−1/2Aλ−1 − q2λ+1

(1 − q2λ+2)2
B1K

−1/2B2A
λ+1
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− q2λ+2

(1 − q2λ+2)2
Aλ+1K−1/2B2B1 + qλ

(1 − q2λ+2)2
B1K

−1/2Aλ+1B2

+ q3λ+3

(1 − q2λ+2)2
K−1/2B2A

λ+1B1,

and

�2A
λ = q(1 − q2λ+4)

(1 − q2)2(1 − q2λ+2)
K−1/2Aλ+1 − 2q2

(1 − q2)2
Aλ

+ q3(1 − q2λ)

(1 − q2)2(1 − q2λ+2)
K 1/2Aλ−1 − q2λ+1

(1 − q2λ+2)2
B2K

1/2B1A
λ+1

− q2λ+2

(1 − q2λ+2)2
Aλ+1K 1/2B1B2 + qλ

(1 − q2λ+2)2
B2K

1/2Aλ+1B1

+ q3λ+3

(1 − q2λ+2)2
K 1/2B1A

λ+1B2.

Proof We first concentrate on �2, and the statement for �1 follows by flipping the
order using σ as in Remark 4.2(iv). We need to rewrite E2F2Aλ, which we do in terms
of F2Aλ and next using Lemma 5.9. The details are as follows.

Using Definition 4.1 and the commutation relations, and pulling through F2 to the
left, we get

B2F2A
λ = q−1E2F2A

λ−1 + q2F1F2K
1/2Aλ. (5.11)

Similarly, and only slightly more involved, we obtain

F2A
λB2 = qλ−2E2F2A

λ−1 − qλ−2 K2 − K−1
2

q − q−1 Aλ−1 + q1−λF1F2K
1/2Aλ.

(5.12)

Using (5.11) and (5.12), we eliminate the term with F1F2, and shifting λ to λ + 1
gives

(q−1 − q2λ+1)E2F2A
λ = B2F2A

λ+1 − q2+λF2A
λ+1B2 − q2λ+1 K2 − K−1

2

q − q−1 Aλ.

(5.13)

Apply Lemma 5.9 on the first two terms on the right-hand side of (5.13) and note
that the remaining terms in (5.13) and in �2Aλ can be dealt with by observing that
K2 = K−1/2A = AK−1/2. Taking corresponding terms together proves the BAB-
decomposition for �2Aλ after a short calculation. ��

Our next task is to translate Proposition 5.10 into an operator for spherical functions
of type �, from which we derive eventually, see Theorem 4.13, an Askey–Wilson q-
difference type operator for the matrix-valued orthogonal polynomials Pn . Let Φ be
a spherical function of type �, then we immediately obtain from Proposition 5.10
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Φ(�1A
λ) = q(1 − q2λ+4)

(1 − q2)2(1 − q2λ+2)
t�(K 1/2)Φ(Aλ+1) − 2q2

(1 − q2)2
Φ(Aλ)

+ q3(1 − q2λ)

(1 − q2)2(1 − q2λ+2)
t�(K−1/2)Φ(Aλ−1)

− q2λ+1

(1 − q2λ+2)2
t�(B1K

−1/2B2)Φ(Aλ+1)

− q2λ+2

(1 − q2λ+2)2
Φ(Aλ+1)t�(K−1/2B2B1)

+ qλ

(1 − q2λ+2)2
t�(B1K

−1/2)Φ(Aλ+1)t�(B2)

+ q3λ+3

(1 − q2λ+2)2
t�(K−1/2B2)Φ(Aλ+1)t�(B1). (5.14)

The analogous expression forΦ(�2Aλ) of (5.14) can be obtained using the flip σ , see
Remark 4.2(iv). In particular, it suffices to replace all t�(X) in (5.14) by J �t�(X)J �,
see Remark 4.2(iv), to get the corresponding expression.

By Proposition 5.2(ii), we know that Φ(Aλ) is diagonal. Note that Φ · �1 : Uq →
End(H�) is also a spherical function of type � by the centrality of the Casimir operator
�1. Hence (Φ · �1)(Aλ) = Φ(�1Aλ) is diagonal, which can also be seen directly
from (5.14). We can calculate the matrix entries of Φ(�1Aλ) using the upper triangu-
lar matrices t�(B1K−1/2), t�(B1) having only non-zero entries on the superdiagonal,
the lower triangular matrices t�(K−1/2B2), t�(B2) having only non-zero entries on the
subdiagonal and the diagonal matrices t�(K±1/2), t�(B1K−1/2B2), t�(K−1/2B2B1),
see (4.2), (3.1).

For Φ a spherical function of type �, we view the diagonal restricted to A as a
vector-valued function Φ̂:

Φ̂ : A → H�, Aλ �→
�∑

m=−�

Φ(Aλ)m,m e�
m .

So we can regard the Casimir elements as acting on the vector-valued function Φ̂, and
the action of the Casimir is made explicit in Proposition 5.11.

Proposition 5.11 Let Φ be a spherical function of type �, with corresponding vector-
valued function Φ̂ : A → H� representing the diagonal when restricted to A. Then

(Φ̂ · �1) (Aλ) = M�
1(q

λ)Φ̂(Aλ+1) − 2q2

(1 − q2)2
Φ̂(Aλ) + N �

1 (q
λ)Φ̂(Aλ−1),

where M�
1(z) is a tridiagonal and N �

1 (z) is a diagonal matrix with respect to the basis
{e�

n}�n=−� of H� with coefficients
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(N �
1 (z))m,m = q3+m(1 − z2)

(1 − q2)2(1 − q2z2)
,

(M�
1(z))m,m+1 = zqm+1

(1 − q2z2)2
(b�(m + 1))2,

(M�
1(z))m,m = q1−m(1 − q4z2)

(1 − q2)2(1 − q2z2)

− z2q2+m

(1 − q2z2)2

(
(b�(m))2 + (b�(m + 1))2

)
,

(M1(z))m,m−1 = z3qm+3

(1 − q2z2)2
(b�(m))2.

Moreover, for �2 the action is

̂(Φ · �2)(A
λ) = M�

2(q
λ)Φ̂(Aλ+1) − 2q2

(1 − q2)2
Φ̂(Aλ) + N �

2 (q
λ)Φ̂(Aλ−1),

where M�
2(z) = J �M�

1(z)J
� is a tridiagonal, and M�

2(z) = J �M�
1(z)J

� is a diagonal
matrix.

Remark 5.12 The proof of Theorem 4.13 does not explain why the matrix coefficients
of ηq and ηq−1 in Theorem 4.13 are related by z ↔ z−1. In Proposition 5.11, there
is a lack of symmetry between the up and down shift in λ, and only after suitable
multiplication with Φ̂0 from the left and right the symmetry of Theorem 4.13 pops up.
It would be desirable to have an explanation of this symmetry from the quantum group
theoretic interpretation. Note that the symmetry can be translated to the requirement
Ψ (z)N1(q−2z−1) = M1(z)Ψ (qz) with Ψ (qλ) = Φ̂�

0(A
λ)Φ̂�

0(A
−1−λ)−1.

The remark following (5.14) on how to switch to the second Casimir operator gives
the conjugation between M�

1 and M�
2 , respectively N �

1 and N �
2 . Note that in case � = 0,

Φ and Φ̂ are equal, and we find that Proposition 5.11 gives the operator

Φ(�2A
λ) = Φ(�1A

λ) = q(1 − q2λ+4)

(1 − q2)2(1 − q2λ+2)
Φ(Aλ+1) − 2q2

(1 − q2)2
Φ(Aλ)

+ q3(1 − q2λ)

(1 − q2)2(1 − q2λ+2)
Φ(Aλ−1)

forΦ : Uq(g) → C a spherical function (of type 0), which should be compared to [30,
Lemma 5.1], see also [35,37].

Proof Consider (5.14) and calculate the (m,m)-entry. Using the explicit expressions
for the elements t�(X) for X ∈ B, see (4.2), (3.1), in (5.14), we find
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Φ(�1A
λ)m,m = q3+m(1 − q2λ)

(1 − q2)2(1 − q2λ+2)
Φ(Aλ−1)m,m − 2q2

(1 − q2)2
Φ(Aλ)m,m

+ q1−m(1 − q2λ+4)

(1 − q2)2(1 − q2λ+2)
Φ(Aλ+1)m,m

− q2λ+2+m(b�(m + 1))2

(1 − q2λ+2)2
Φ(Aλ+1)m,m

− q2λ+2+m(b�(m))2

(1 − q2λ+2)2
Φ(Aλ+1)m,m

+ qλ+m+1(b�(m + 1))2

(1 − q2λ+2)2
Φ(Aλ+1)m+1,m+1

+ q3λ+3+m(b�(m))2

(1 − q2λ+2)2
Φ(Aλ+1)m−1,m−1,

which we can rewrite as stated with the matrices M�
1(q

λ) and N �
1 (q

λ). The case
for �2 follows from the observed symmetry, or it can be obtained by an analogous
computation. ��

In particular, we can apply Proposition 5.11 to Φ�
ξ(n,m) using (5.10) to find an

eigenvalue equation. In order to find an eigenvalue equation for the matrix-valued
polynomials, we first introduce the full spherical functions Φ̂�

n : A → End(C2�+1)

defined by

Φ̂�
n =

2�∑
i, j=0

(Φ̂�
n)i, j ⊗ Ei, j , (Φ̂�

n)i, j (A
λ) = (Φ�

ξ(n, j)(A
λ))i−�,i−� (5.15)

for n ∈ N. So we put the vectors (Φ̂�
ξ(n,0), . . . , Φ̂

�
ξ(n,2�)) as columns in a matrix,

and we relabel in order to have the matrix entries labelled by i, j ∈ {0, . . . , 2�}. We
reformulate Proposition 5.11 and (5.10) as the eigenvalue equations

Φ̂n(A
λ)Λn(i) = Mi (q

λ)Φ̂�
n(A

λ+1) + Ni (q
λ)Φ̂�

n(A
λ−1), (5.16)

Λn(1) =
2�∑
j=0

q1−n− j + q3+n+ j

(1 − q2)2
E j, j , Λn(2) = JΛn(1)J,

where
(
Mi (z)

)
m,n = (

M�
i (z)

)
m−�,n−�

for m, n ∈ {0, 1, . . . , 2�}, and similarly for
Ni , are the matrices of Proposition 5.11 shifted to the standard matrix with respect to
the standard basis {en}2�n=0 of C

2�+1. Note that the symmetry of Proposition 5.11 then
rewrites as M2(z) = JM1(z)J , N2(z) = J N1(z)J , with J : en �→ e2�−n .

Now we rewrite Corollary 4.7 after pairing with Aλ as

Φ̂�
n(A

λ) = Φ̂�
0(A

λ)Pn
(
μ(qλ+1)

) ∈ End(C2�+1), (5.17)
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where μ(x) = 1
2 (x + x−1), using that pairing with the group-like elements Aλ is

a homomorphism and ϕ(Aλ) = μ(qλ+1) by (5.1). Using (5.17) in (5.16) proves
Corollary 5.13.

Corollary 5.13 Assuming Φ̂�
0(A

λ) is invertible, the matrix-valued polynomials Pn
satisfy the eigenvalue equations

Pn(μ(qλ))Λn(i) = M̃i (qλ) Pn(μ(qλ+1)) + Ñi (qλ) Pn(μ(qλ−1)), i = 1, 2,

where

M̃i (q
λ) = (

Φ̂�
0(A

λ−1)
)−1

Mi (qλ−1)Φ̂�
0(A

λ),

Ñi (q
λ) = (

Φ̂�
0(A

λ−1)
)−1

Ni (qλ−1)Φ̂�
0(A

λ−2),

and Λn(i) are defined in (5.16) and μ(x) = 1
2 (x + x−1).

It remains to prove the assumption in Corollary 5.13 for sufficiently many λ, and to
calculate the coefficients in the eigenvalue equations explicitly. This is done in Sect. 7.

Having established (5.17), we can prove Corollary 4.9 by considering coefficients
in the Laurent expansion.

Proof of Corollary 4.9 The left-hand side of (5.17) can be expanded as a Laurent
series in qλ by Proposition 5.2(ii) and (5.15). The leading coefficient of degree � + n
is an antidiagonal matrix

(
Φ̂�

n(A
λ)

)
i, j = qλ(�+n)

(
C

1
2 (n+ j),�+ 1

2 (n− j),�

− 1
2 (n+ j),−�− 1

2 (n− j),i−�

)2

+ lower order terms,

since the Clebsch–Gordan coefficient is zero unless i + j = 2�. With a sim-
ilar expression for Φ̂�

0(A
λ) on the right-hand side, expanding Pn

(
μ(qλ+1)

) =
lc(Pn)qn(λ+1)2−n + lower order terms gives

lc(Pn)i, j = δi, j q
n2−n

(
C

1
2 (n+ j),�+ 1

2 (n− j),�

− 1
2 (n+ j),−�− 1

2 (n− j),�− j

)2 (
C

1
2 j,�− 1

2 j,�

− 1
2 j,−�+ 1

2 j,�− j

)−2

,

and (8.7) gives the result. ��
Corollary 4.9 gives P0(x) = I , so Corollary 5.13 gives

Λ0(i) = M̃i (q
λ) + Ñi (q

λ), ∀ λ ∈ Z. (5.18)

5.5 Symmetries

Even thoughwecanuse the explicit expression of theweightW to establishProposition
4.10, we show the occurrence of J in the commutant from Remark 4.5(ii).
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Observe that (�1, �2) = ξ(n, k) gives (�2, �1) = ξ(n, 2� − k) and that σ(A) = A,
so Remark 4.5(ii) yields

(
Φ�

ξ(n,i) · A−1
)
(σ (Z)) = J �

(
Φ�

ξ(n,2�−i) · A−1
)
(Z)J � for any

Z ∈ Uq(g). Similarly, using moreover that σ is a ∗-isomorphism and that S and σ

commute, see (3.5) we obtain
(
Φ�

ξ(n, j) · A−1
)∗

(σ (Z)) = J �
(
Φ�

ξ(n,2�−i) · A−1
)∗

(Z)J �.

Since (σ ⊗ σ) ◦ � = � ◦ σ and (J �)2 = 1, we find for Z ∈ Uq(g) from these
observations, cf. (5.8),

tr
(
(Φ�

ξ(n,i) · A−1)(Φ�
ξ(m, j) · A−1)∗

)
(σ (Z))

= tr
(
(Φ�

ξ(n,2�−i) · A−1)(Φ�
ξ(m,2�− j) · A−1)∗

)
(Z).

By the first part of the proof of Theorem 4.8

(
(Pn(ψ))∗W (ψ)Pm(ψ)

)
i, j

(σ (Z)) =
(
(Pn(ψ))∗W (ψ)Pm(ψ)

)
2�−i,2�− j

(Z).

Note that ψ(σ(Z)) = ψ(Z) by the symmetric expression of (5.2). Again using (σ ⊗
σ) ◦ � = � ◦ σ , we have p(ψ)(σ (Z)) = p(ψ)(Z) for any polynomial p. It follows
that

(
(Pn(ψ))∗W (ψ)Pm(ψ)

)
i, j

=
(
(Pn(ψ))∗W (ψ)Pm(ψ)

)
2�−i,2�− j

. (5.19)

For n = m = 0, (5.19) proves that J is in the commutant algebra for W as stated in
Proposition 4.10.

Note that (5.19), after applying the Haar functional on the ∗-algebra generated by
ψ as in Lemma 5.4, also gives JGn J = Gn as is immediately clear from the explicit
expression for the squared norm matrix Gn in Theorem 4.8 derived in Sect. 5.3. It
moreover shows that (J Pn J )n∈N is a family of matrix-valued orthogonal polynomials
with respect to the weight W . It is a consequence of Corollary 4.9, see Sect. 2, that
J Pn J = Pn , since J lc(Pn)J = lc(Pn) by Corollary 4.9.

Note that we have now proved Proposition 4.10 except for the ⊃-inclusion in the
first line. This is done after the proof of Theorem 4.8 is completed at the end of
Sect. 6.1.

As a consequence of the discussion on symmetries, we can formulate the symmetry
for Φ̂�

n in Lemma 5.14.

Lemma 5.14 With J : en �→ e2�−n, we have J Φ̂�
n(A

λ)J = Φ̂�
n(A

λ) for all λ ∈ Z.

Proof This is a consequence of initial observations in Sect. 5.5. For i, j ∈ {0, . . . , 2�},
using (5.15) and σ(Aλ) = Aλ we obtain

(
J Φ̂�

n(A
λ)J

)
i, j = (

Φ̂�
n(A

λ)
)
2�−i,2�− j = (

Φ�
ξ(n,2�− j)(A

λ)
)
�−i,�−i

= (
J �Φ�

ξ(n, j)(A
λ)J �

)
�−i,�−i = (

Φ�
ξ(n, j)(A

λ)
)
i−�,i−�

= (
Φ̂�

n(A
λ)

)
i, j .

��
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6 The weight and orthogonality relations for the matrix-valued
polynomials

In this section, we complement the quantum group theoretic proofs of Sect. 5 of some
of the statements of Sect. 4 using mainly analytic techniques. In Sect. 6.1, we prove
the statement on the expansion of the entries of the weight function in terms of Cheby-
shev polynomials of Theorem 4.8. In Sect. 6.2, we prove the LDU-decomposition of
Theorem 4.15. In Sect. 6.3, we prove Lemma 5.8 using a special case and induction
using Theorem 4.6 in the induction step.

6.1 Explicit expressions of the weight

In order to prove the explicit expansion of the matrix entries of the weightW in terms
of Chebyshev polynomials, we start with the expression of Corollary 5.6 for thematrix
entries of the weight W . After pairing with Aλ, we expand as a Laurent polynomial
in qλ in Proposition 6.1. Then we can use Lemma 6.2, whose proof is presented in
Appendix 2.1.

Proposition 6.1 For 0 ≤ k, p ≤ 2�, λ ∈ Z, we have

W (ψ)k,p(A
λ) =

1
2 (k+p)∑

s=− 1
2 (k+p)

d�
s (k, p)q

2sλ, d�
s (k, p) = d�−s(k, p),

d�
s (k, p) =

1
2 k∑

i=− 1
2 k

1
2 p∑

j=− 1
2 p

s= j−i

�∑
n=−�

q2(i+ j−n)+2(i+ 1
2 k)(i−n+�− 1

2 k)+2( j+ 1
2 p)( j−n+�− 1

2 p)

×

[
k

1
2 k−i

]
q2

[
2�−k

�− 1
2 k+n−i

]
q2

[
p

1
2 p− j

]
q2

[
2�−p

�− 1
2 p+n− j

]
q2[

2�
�−n

]2
q2

.

Proof We obtain from Corollary 5.6

W (ψ)k,p(A
λ) =

�∑
m,n=−�

(
Φ�

ξ(0,k) · A−1)
m,n(A

λ)
(
Φ�

ξ(0,p) · A−1
)
m,n(A

−λ)

=
�∑

m,n=−�

(
Φ�

ξ(0,k)

)
m,n(A

λ−1)
(
Φ�

ξ(0,p)

)
m,n(A

−1−λ), (6.1)

using that Aλ is a group-like element and S(Aλ)∗ = A−λ. By Proposition 5.2(ii)
W (ψ)k,p(Aλ) is
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�∑
n=−�

1
2 k∑

i=− 1
2 k

1
2 p∑

j=− 1
2 p

(
C

1
2 k,�− 1

2 k,�
i,i−n,n

)2 (
C

1
2 p,�− 1

2 p,�
j, j−n,n

)2

q2λ( j−i)q2(i+ j−n),

where the Clebsch–Gordan coefficients are to be taken as zero in case |i−n| > �− 1
2k,

respectively | j − n| > � − 1
2 p. Now put s = j − i , then s runs from − 1

2 (k + p) up
to 1

2 (k + p), and we have the Laurent expansion

W (ψ)k,p(A
λ) =

1
2 (k+p)∑

s=− 1
2 (k+p)

d�
s (k, p)q

2sλ,

with

d�
s (k, p) =

1
2 k∑

i=− 1
2 k

1
2 p∑

j=− 1
2 p

s= j−i

�∑
n=−�

(
C

1
2 k,�− 1

2 k,�
i,i−n,n

)2 (
C

1
2 p,�− 1

2 p,�
j, j−n,n

)2

q2(i+ j−n).

Plugging in (8.3) gives the explicit expression for d�
s (k, p).

In order to show that d�
s (p, k) = d�−s(p, k), we note that p(ψ)(Aλ) = p(μ(qλ))

is symmetric in λ ↔ −λ for any polynomial p and so Corollary 5.6 implies the
symmetry. ��

Note that for a matrix element of Pn(ψ)∗W (ψ)Pm(ψ) a similar expression can
be given, cf. the first part of the proof of Theorem 4.8, but this is not required. The
symmetry in the Laurent expansion ofW (ψ)k,p(Aλ) does not seem to follow directly
from known symmetries for the Clebsch–Gordan coefficients, see e.g. [20, Chap. 3].

Now we can proceed with the proof of Theorem 4.8, for which we need Lemma
6.2.

Lemma 6.2 For � ∈ 1
2N and for k, p ∈ {0, . . . , 2�} subject to k ≤ p and k + p ≤ 2�

we have with the notation of Proposition 6.1 and Theorem 4.8,

k∑
r=0

k+p−2r∑
a=0

2s=k+p−2(r+a)

αr (k, p) = d�
s (k, p).

Lemma 6.2 contains the essential equality for the proof of the explicit expression of
the coefficients of thematrix entries of theweight of Theorem4.8. The proof of Lemma
6.2 can be found in Appendix 2.1, and it is based on a q-analogue of the corresponding
statement for the classical case [24, Theorem 5.4]. Previously in 2011, Mizan Rahman
(private correspondence) has informed one of us that he has obtained a q-analogue
of the underlying summation formula for [24, Theorem 5.4]. It is remarkable that
Rahman’s q-analogue is different from the one needed here in Lemma 6.2.
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Second part of the proof of Theorem 4.8 We prove the statement on the explicit
expression of the matrix entries of the weight in terms of Chebyshev polynomials.
By Corollary 5.6, we have

W (ψ)k,p(A
λ) =

k∧p∑
r=0

αr (k, p)Uk+p−2r (μ(qλ))

=
k∧p∑
r=0

k+p−2r∑
a=0

αr (k, p)q
(k+p−2r−2a)λ

=
1
2 (k+p)∑

s=− 1
2 (k+p)

⎛
⎜⎜⎝

k∧p∑
r=0

k+p−2r∑
a=0

2s=k+p−2(r+a)

αr (k, p)

⎞
⎟⎟⎠ q2sλ

for all λ ∈ Z. Since the coefficients αr (k, p) are completely determined by W (ψ)k,p

and since W (ψ)k,p = W (ψ)2�−k,2�−k = (
W (ψ)p,k

)∗, we can restrict to the case
k ≤ p, k + p ≤ 2�. For this case, the result follows from Lemma 6.2, and hence the
explicit expression for αr (k, p) in Theorem 4.8 is obtained. ��

Note that proof of Theorem 4.8 is not yet complete, since we have to show that
the weight is strictly positive definite for almost all x ∈ [−1, 1], see Sect. 2. This will
follow from the LDU-decomposition for the weight as observed in Corollary 4.16,
but in order to prove the LDU-decomposition of Theorem 4.15 we need the explicit
expression for the coefficients αt (m, n) of Theorem 4.8.

In Sect. 5.5, we observed that J commutes with W (x) for all x . In order to prove
Proposition 4.10, we need to show that the commutant is not larger, and for this we
need the explicit expression of αt (m, n) of Theorem 4.8.

Proof of Proposition 4.10 Let Y be in the commutant, and write W (x) = ∑2�
n=0 Wk

Un(x) for Wk ∈ Mat2�+1(C) using Theorem 4.8. Then [Y,Wk] = 0 for all k. The
proof follows closely the proofs of [24, Proposition 5.5] and [25, Proposition 2.6].
Note that W2� and W2�−1 are symmetric and persymmetric (i.e. commute with J ).
Moreover, (W2�)m,n is non-zero only for m + n = 2� and (W2�−1)m,n is non-zero
only for |m+n−2�| = 1. From the explicit expression of the coefficients αt (m, n), we
find that all non-zero entries of W2� and W2�−1 are different apart from the symmetry
and persymmetry. The proof of Proposition 4.10 can then be finished following [24,
Proposition 5.5]. ��

6.2 LDU-decomposition

In order to prove the LDU-decomposition of Theorem 4.15 for the weight, we need
to prove the matrix identity termwise. So we are required to show that

W (x)m,n =
m∧n∑
k=0

L(x)m,kT (x)k,k L(x)n,k (6.2)
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for the expression of W (x) in Theorem 4.8 and for the expressions of L(x) and T (x)
in Theorem 4.15. Because of symmetry, we can assume without loss of generality
that m ≥ n. Then (6.2) is equivalent to Proposition 6.3 after taking into account the
coefficients in the LDU-decomposition, so it suffices to prove Proposition 6.3 in order
to obtain Theorem 4.15.

Proposition 6.3 For 0 ≤ n ≤ m ≤ 2�, � ∈ 1
2N and with αt (m, n) defined in Theorem

4.8, we have
n∑

t=0

αt (m, n)Um+n−2t (x) =
n∑

k=0

βk(m, n)
w(x; q2k+2|q2)

1 − x2
Cm−k(x; q2k+2|q2)

× Cn−k(x; q2k+2|q2),

βk(m, n) = (q2; q2)m
(q2; q2)m+k+1

(q2; q2)n
(q2; q2)n+k+1

(q2; q2)2k(1 − q4k+2)

× (q2; q2)2�+k+1(q2; q2)2�+k

q2�(q2; q2)22�
.

Before embarking on the proof of Proposition 6.3, note that each summand on
the right-hand side of the expression of Proposition 6.3 is an even, respectively odd,
polynomial for m + n even, respectively odd, since the continuous q-ultraspherical
polynomials are symmetric and since

w(x; q2k+2|q2) = 4(1 − x2)
k∏
j=1

(
1 − 2(2x2 − 1)q2 j + q4 j

)
,

see (4.12), is an even polynomial with a factor (1 − x2). In the proof of Proposition
6.3 we use Lemma 6.4.

Lemma 6.4 Let 0 ≤ k ≤ m ≤ n and t ∈ N. Then the integral

1

2π

∫ 1

−1

w(x; q2k+2|q2)√
1 − x2

Cm−k(x; q2k+2|q2)Cn−k(x; q2k+2|q2)Un+m−2t (x)dx

is equal to zero for t > m, and for 0 ≤ t ≤ m, the integral above is equal to
Ck(m, n)Rk(μ(t); 1, 1, q−2m−2, q−2n−2; q2) with

Ck(m, n) = q−2(k2)

1 − q2k+2

(q2k+2; q2)m+n−2k

(q4k+4; q2)m+n−2k

(q2k+2; q2)m−k

(q2; q2)m−k

(q2k+2; q2)n−k

(q2; q2)n−k

× (−1)k(q4k+4; q2)m+n−2k(q2; q2)k+1

(q2; q2)m+n+1
.

In Lemma 6.4, we use the notation (4.13) for the q-Racah polynomials. Lemma
6.4 shows that the expansion as in Proposition 6.3 is indeed valid, and it remains to
determine the coefficients βk(m, n).
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The proof of Lemma 6.4 follows the lines of the proof of [23, Lemma 2.7], see
Appendix 2.2. The main ingredients are, cf. the proof in [23], the connection and
linearisation coefficients for the continuous q-ultraspherical polynomials dating back
to the work of L.J. Rogers (1894-5), see e.g. [2, §10.11], [19, §13.3], [15, (7.6.14),
(8.5.1)]. Write the product Cm−k(x; q2k+2|q2)Cn−k(x; q2k+2|q2) as a sum over r
of continuous q-ultraspherical polynomials Cr (x; q2k+2|q2) using the linearisation
formula and write Un+m−2t , which is a continuous q-ultraspherical polynomial for
β = q, in terms of Cs(x; q2k+2|q2) using the connection formula. The orthogonality
relations for the continuous q-ultraspherical polynomials then give the integral in
terms of a single series. The details are in Appendix 2.2. From this sketch of proof, it
is immediately clear that Lemma 6.4 can be generalised to a more general statement.
This is the content of Remark 6.5, whose proof is left to the reader.

Remark 6.5 For integers 0 ≤ t , k ≤ m ≤ n and parameters α, β, we have

1

2π

∫ 1

−1

w(x; qk+1α|q)√
1 − x2

Cm−k(x; qk+1α|q)Cn−k(x; qk+1α|q)Cm+n−2t (x;β|q)dx

= Ck(m, n, α, β)4ϕ3

(
α−1q−k, q−m−n+t−1, αqk+1, βα−1q−t−1

α−1q−m, α−1q−n, β
; q, q

)
,

where Ck(m, n, α, β) is

(αqk+1, αqk+2, α−1q−m−n+k, α−2q−t , αβ−1qk+2, α−1β−1qt−m−n; q)∞
(α2q2k+2, q, qk−t+1, α−2q−m−n−1, β−1qk−m−n+t , β−1q; q)∞

× (αqk+1; q)m−k

(q; q)m−k

(αqk+1; q)n−k

(q; q)n−k

(α2q2k+2; q)m+n−2k

(αqk+2; q)m+n−2k

× (α−1βq−k−1; q)k−t

(q; q)k−t

(β; q)m+n−t−k

(αqk+2; q)m+n−t−k
(qk+1α)k−t .

Note that the 4ϕ3-series in Remark 6.5 is balanced, but in general is not a q-Racah
polynomial.

In the proof of Proposition 6.3, and hence of Theorem 4.15, we need the summation
formula involving q-Racah polynomials stated in Lemma 6.6. Its proof is also given
in Appendix 2.2.

Lemma 6.6 For � ∈ 1
2N and m, n, k ∈ N with 0 ≤ k ≤ n ≤ m, we have

m∑
t=0

(−1)t
(q2m−4�; q2)n−t

(q2m+4; q2)n−t

(q4�+4−2t ; q2)t
(q2; q2)t (1 − q2m+2n+2−4t )q2(

t
2)−4�t

× Rk(μ(t); 1, 1, q−2m−2, q−2n−2; q2)
= qn(n−1)−k(k+1)−4n�(−1)n+k (q2; q2)2�+k+1(q2; q2)2�−k

(q2; q2)2�+1

× (1 − q2m+2)

(q2; q2)n(q2; q2)2�−n
.
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With these preparations, we can prove Proposition 6.3, and hence the LDU-
decomposition of Theorem 4.15.

Proof of Proposition 6.3 Since we have the existence of the expression in Proposition
6.3, it suffices to calculate βk(m, n) having the explicit value of the αt (m, n)’s from
Theorem 4.8. Multiply both sides by 1

2π

√
1 − x2Um+n−2t (x) and integrate using the

orthogonality for the Chebyshev polynomials so that Lemma 6.4 gives

1

4
αt (m, n) =

n∑
k=0

βk(m, n)Ck(m, n)Rk(μ(t); 1, 1, q−2m−2, q−2n−2; q2).

The q-Racah polynomials Rk(μ(t); 1, 1, q−m−1, q−n−1; q2) satisfy the orthogonality
relations

n∑
t=0

q2t (1 − q2m+2n+2−4t )Ri (μ(t); 1, 1, q−2m−2, q−2n−2; q2)

× R j (μ(t); 1, 1, q−2m−2, q−2n−2; q2)
= δi, j q

−2k(m+n+1) (1 − q2m+2)(1 − q2n+2

(1 − q4k+2)

(q2m+4, q2n+4; q2)k
(q−2m, q−2n; q2)k .

Using the orthogonality relations, we find the explicit expression of βk(m, n) in terms
of αt (m, n), and using the explicit expression of αt (m, n) of Theorem 4.8 gives

βk(m, n) = 1

4

q2k(m+n+1)

Ck(m, n)

(1 − q4k+2)

(1 − q2m+2)(1 − q2n+2)

(q−2m, q−2n; q2)k
(q2m+4, q2n+4; q2)k

×
n∑

t=0

q2t (1 − q2m+2n+2−4t )Rk(μ(t); 1, 1, q−2m−2, q−2n−2; q2)

×αt (m, n).

This expression is summable by Lemma 6.6. Collecting the coefficients proves the
proposition. ��
Last part of the proof of Theorem 4.8 Now that we have proved Theorem4.15, Corol-
lary 4.16 is immediate, since the coefficients of the diagonal matrix T (x) are positive
on (−1, 1). So the weight is strictly positive definite on (−1, 1), which is the last step
to be taken in the proof of Theorem 4.8. ��

6.3 Summation formula for Clebsch–Gordan coefficients

In this subsection, we prove Lemma5.8, which has been used in the first part of the
proof of Theorem 4.8, see Sect. 5.3. The proof of Lemma 5.8 is somewhat involved,
since we employ an indirect way using induction and Theorem 4.6.
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Proof of Lemma 5.8 Assume for the moment that

�∑
i=−�

∣∣∣C�1,�2,�
m,m−i,i

∣∣∣2 q−2i = q2�1−2�−2m (1 − q4�+2)

(1 − q4�1+2)
. (6.3)

Assuming (6.3) the lemma follows, using C�1,�2,�
m1,m2,i

= 0 if m1 − m2 = i ,

�∑
i=−�

�1∑
m1=−�1

�2∑
m2=−�2

|C�1,�2,�
m1,m2,i

|2q2(m1+m2) =
�1∑

m1=−�1

q4m1

�∑
i=−�

∣∣∣C�1,�2,�
m1,m1−i,i

∣∣∣2 q−2i

=
�1∑

m1=−�1

q2�1−2�+2m1
(1 − q4�+2)

(1 − q4�1+2)

= q−2� (1 − q4�+2)

(1 − q2)
.

It remains to prove (6.3). We do this in case �1 + �2 = �. Put (�1, �2) = (k/2, � −
k/2) = ξ(0, k) for k ∈ N and k ≤ 2�. Using the explicit expression for the Clebsch–
Gordan coefficients (8.3), we find that in this special case the left-hand side of (6.3)
equals

∑ (q2; q2)k(q2; q2)2�−k(q2; q2)�−i (q2; q2)�+i

(q2; q2)k/2−m(q2; q2)k/2+m(q2; q2)�−k/2−m+i (q2; q2)�−k/2+m−i (q2; q2)2�
× q−2i+2(m−k/2)(m−i+�−k/2),

where the sum runs over i for −� + k/2 + m ≤ i ≤ � − k/2 + m. Substitute
i �→ p − � + k/2 + m to see that this equals

�−k/2+m∑
i=−�+k/2+m

(q2; q2)�−i (q2; q2)�+i

(q2; q2)�−k/2+m−i (q2; q2)�−k/2−m+i
q−2i(1+m+k/2)

=
�−k∑
p=0

(q2; q2)2�−p−k/2−m(q2; q2)p+k/2+m

(q2; q2)p(q2; q2)2�−p−k
q−2(1+m+k/2)(p−�+k/2+m).

Simplifying the expression, we find that

q−2(1+m+k/2)(−�+k/2+m) (q
2; q2)2�−k/2−m(q2; q2)k/2+m

(q2; q2)2�−k

× 2ϕ1

(
q−4�+2k, q2m+k+2

q−4�+k+2m ; q2, q−2k−2
)
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is equal to

q−2(1+m+k/2)(−�+k/2+m) (q
2; q2)2�−k/2−m(q2; q2)k/2+m(q−4�−2; q2)2�−k

(q2; q2)2�−k(q−4�+k+2m; q2)2�−k
,

since the 2ϕ1 can be summed by the reversed q-Chu-Vandermonde sum [15, (II.7)].
Putting everything together proves (6.3), and hence for the case where (�1, �2) =
ξ(0, k) Lemma 5.8 , i.e. �1 + �2 = �.

To prove Lemma 5.8 in general, we set

f �
�1,�2

(λ) := tr(Φ�
�1,�2

(Aλ)) =
�∑

i=−�

�1∑
m1=−�1

�2∑
m2=−�2

∣∣∣C�1,�2,�
m1,m2,i

∣∣∣2 q−λ(m1+m2),

hence it is sufficient to calculate f �
�1,�2

(−2). We will show by induction on n that

f �
ξ(n,k)(−2) is independent of (n, k), or equivalently that f �

�1,�2
(−2) is independent of

(�1, �2). Since we have established the case n = 0, Lemma 5.8 then follows.
In order to perform the induction step, we consider the recursion of Theorem 4.6.

Using ϕ(Aλ) = 1
2 (q

1+λ +q−1−λ), we see that ϕ(1) = ϕ(A−2) = 1
2 (q+q−1). Taking

the trace of Theorem 4.6 at A0 = 1 and using Proposition 5.2(ii), we find, after taking
traces,

1

2
(q + q−1)(2� + 1) = (A1/2,1/2 + A−1/2,−1/2 + A−1/2,1/2 + A1/2,−1/2)(2� + 1).

(6.4)

Next we evaluate Theorem 4.6 at A−2 and we take traces, so, using ϕ(A−2) = ϕ(1),

1

2
(q + q−1) f �

�1,�2
(−2) =

∑
i, j=±1/2

Ai, j f
�
�1+i,�2+ j (−2),

which we rewrite, assuming f �
�1,�2

(−2) = F� is independent of (�1, �2) for �1 + �2 ≤
� + n, so that f �

�1+ 1
2 ,�2+ 1

2
(−2) is

1

A1/2,1/2

(
1

2
(q + q−1) − A1/2,−1/2 − A−1/2,1/2 − A−1/2,−1/2

)
F� = F�,

by (6.4) for the last equality. So the statement also follows for �1 + �2 = � + n + 1,
and the lemma follows. ��

7 q-Difference operators for the matrix-valued polynomials

We continue the study of q-difference operator for the matrix-valued orthogonal poly-
nomials started in Corollary 5.13. In particular, we show that the assumption on
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the invertibility of Φ̂0 follows from the LDU-decomposition in Theorem 4.15. Then
we make the coefficients in the matrix-valued second-order q-difference operator of
Corollary 5.13 explicit in Sect. 7.1. Comparing to the scalar-valued Askey–Wilson
q-difference operators, see e.g. [2,15,19,26], we view the q-difference operator as a
matrix-valued analogue of the Askey–Wilson q-difference operator. Next, having the
matrix-valued orthogonal polynomials as eigenfunctions to the matrix-valued Askey–
Wilson q-difference operator, we use this to obtain an explicit expression of the matrix
entries of thematrix-valued orthogonal polynomials in terms of scalar-valued orthogo-
nal polynomials from the q-Askey scheme by decoupling of the q-difference operator
using the matrix-valued polynomial L in the LDU-decomposition of Theorem 4.15.
From this expression, we can obtain an explicit expression for the coefficients in the
matrix-valued three-term recurrence relation for the matrix-valued orthogonal poly-
nomials, hence proving Theorem 4.11 and Corollary 4.12.

7.1 Explicit expressions of the q-difference operators

In order tomake Corollary5.13 explicit, we need to study the invertibility of thematrix
Φ̂�

0(A
λ). For this, we first use Theorem5.5 and its Corollary 5.6, and in particular (6.1).

Because of Proposition 5.2(ii), this is only a single sum. In the notation of (5.15), we
find

W (ψ)k,p(A
λ) =

�∑
n=−�

(Φ̂�
0)n,k(A

λ−1)(Φ̂�
0)n,p(A−λ−1)

=
((

Φ̂�
0(A

−λ−1)
)∗

Φ̂�
0(A

λ−1)
)
p,k

.

Taking the determinant gives, recalling μ(z) = 1
2 (z + z−1),

det
(
Φ̂�

0(A
−λ−1)

)
det

(
Φ̂�

0(A
λ−1)

)
= det

(
W (μ(qλ))

) = det
(
T (μ(qλ))

)

=
2�∏
k=0

T (μ(qλ))k,k =
2�∏
k=0

4ck(�)(q
2+2λ, q2−2λ; q2)k

using the LDU-decomposition for the weight of Theorem 4.15 and (4.12). The right-
hand side is non-zero for λ ∈ Z unless 1 ≤ |λ| ≤ 2�. So Φ̂�

0(A
λ) is invertible for

λ ≥ 2� or λ < −2� − 1 or λ = −1, i.e. for an infinite number of λ ∈ Z and it is
meaningful to consider Corollary 5.13.

Proof of Theorem 4.13 Corollary 5.13 gives a second-order q-difference equation for
the matrix-valued orthogonal polynomials for an infinite set of λ. So it suffices to
check that for i = 1, 2 the matrix-valued functions M̃i , Ñi of Corollary 5.13 coincide
withMi , Ni , where Ni (z) = Mi (z−1), of Theorem 4.13, or
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Φ̂�
0(A

λ−1)Mi (q
λ) = Mi (qλ−1)Φ̂�

0(A
λ),

Φ̂�
0(A

λ−1)Ni (q
λ) = Ni (qλ−1)Φ̂�

0(A
λ−2),

(7.1)

where Mi , Ni as in (5.16), see Proposition 5.11, and Mi , Ni as in Theorem 4.13,
where Ni (z) = Mi (z−1).

By (5.18), we need

Λ0(i) = Mi (z) + Ni (z) = Mi (z) + Mi (z
−1), (7.2)

which is an easy check using the explicit expressions of Theorem 4.13. Now (7.2) and
(5.16) for n = 0 show that any equation of (7.1) implies the other equation of (7.1).
Indeed, assuming the second equation of (7.1) holds, then

Φ̂�
0(A

λ)Mi (q
λ+1) + Φ̂�

0(A
λ)Ni (q

λ+1) = Φ̂�
0(A

λ)Λ0(i)

= Mi (qλ)Φ̂�
0(A

λ+1) + Ni (qλ)Φ̂�
0(A

λ−1)

= Mi (qλ)Φ̂�
0(A

λ+1) + Φ̂�
0(A

λ)Ni (q
λ+1)

implying the first equation of (7.1).
By Proposition 5.2(ii) and (5.15), the matrix entries of Φ̂�

0(A
λ) are Laurent series

in qλ. Setting z = qλ, we see that in order to verify (7.1) entry-wise, we need to check
equalities for Laurent series in z.

We first consider the second equality of (7.1) for i = 1. In this case, the matrices
N1 andN1 are band-limited. Hence, the (m, n)th entry of both sides of (7.1) involves
either two or one terms, so we need to check

Φ�
ξ(0,n−1)(A

λ−1)m−�,m−�

∣∣∣
z=qλ

N1(z)n−1,n + Φ�
ξ(0,n)(A

λ−1)m−�,m−�

∣∣∣
z=qλ

N1(z)n,n

= N1(
z

q
)m,mΦ�

ξ(0,n)(A
λ−2)m−�,m−�

∣∣∣
z=qλ

. (7.3)

The proof of (7.3) involves the explicit expression of the spherical functions in terms
of Clebsch–Gordan coefficients using Proposition 5.2(ii). It is given in Appendix 2.3.

The statements for the second q-difference equation with i = 2 follows from the
symmetries of Proposition 5.11 and Lemma 5.14. ��

The explicit expressions have been obtained initially by computer algebra, and then
later the proof as presented here and in Appendix 2.3 has been obtained.

7.2 Explicit expressions for the matrix entries of the matrix-valued orthogonal
polynomials

Having established the q-difference equations for the matrix-valued orthogonal poly-
nomials of Theorem 4.13 and having the diagonal part of the LDU-decomposition of
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the weight in terms of weight functions for the continuous q-ultraspherical polyno-
mials in Theorem 4.15, it is natural to look at the q-difference operators conjugated
by the polynomial function Lt . It turns out that this completely decouples one of
the second-order q-difference operators of Theorem 4.13. This gives the opportunity
to link the matrix entries of the matrix-valued orthogonal polynomials to continu-
ous q-ultraspherical polynomials. In order to determine the coefficients, we use the
other q-difference operator and the orthogonality relations. Having such an explicit
expression, we can determine the three-term recurrence relation for the monic matrix-
valued orthogonal polynomials straightforwardly, and hence also for thematrix-valued
orthogonal polynomials Pn , since we already have determined the leading coefficient
in Corollary 4.9.

The first step is to conjugate the second-order q-difference operator D1 of Theorem
4.13 with the matrix Lt of the LDU-decomposition of Theorem 4.15 into a diagonal
q-difference operator. This conjugation is inspired by the result of [23, Theorem 6.1].
This conjugation takes D2 in a three-diagonal q-difference operator. For any n ∈ N, let
Rn(x) = Lt (x)Qn(x), where Qn(x) = Pn(x)

(
lc(Pn)

)−1 denote the corresponding
monic polynomial. Note that we have determined the leading coefficient lc(Pn) in
Corollary 4.9. Then (Rn)n≥0 forms a family of matrix-valued polynomials, but note
that the degree ofRn is larger than n, and that the leading coefficient ofRn is singular.
Note that Rn satisfy the orthogonality relations

∫ 1

−1

(Rn(x)
)∗
T (x)Rm(x)

√
1 − x2dx =

∫ 1

−1

(
Qn(x)

)∗
W (x)Qm(x)

√
1 − x2dx

= δm,n
π

2

(
lc(Pm)∗

)−1
Gm

(
lc(Pm)

)−1
. (7.4)

Theorem 7.1 The polynomials (Rn)n≥0 are eigenfunctions of the q-difference oper-
ators

Di = Ki (z)ηq + Ki (z
−1)ηq−1,

with eigenvalues Λn(i), where

K1(z) =
2�∑
i=0

q1−i

(1 − q2)2
(1 − q2i+2z2)

(1 − z2)
Ei,i ,

K2(z) = −
2�∑
i=1

qi−2�+1 (1 − q4�−2i+2)

(1 − q2)2
z

(1 − z2)
Ei,i−1

+
2�∑
i=0

2qi−2�+1 1

(1 − q2)2
(1 + q4�+2)

(1 + q2i )(1 + q2i+2)

(1 − q2i+2z2)

(1 − z2)
Ei,i
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−
2�−1∑
i=0

qi−2�+1 1

(1 − q2)2
(1 − q4�+2i+4)(1 − q2i+2)2

(1 − q4i+6)(1 − q4i+2)(1 + q2i+2)2

× (1 − q2i+2z2)(1 − q2i+4z2)

z(1 − z2)
Ei,i+1.

Proof We start by observing that the monic matrix-valued orthogonal polynomials
Qn are eigenfunctions of the second-order q-difference operators Di of Theorem 4.13
for the eigenvalue lc(Pn)Λn(i)lc(Pn)−1 = Λn(i), since the matrices are diagonal and
thus commute. By conjugation, we find that Rn satisfy

Ki (z)R̆n(qz) + Ki (z
−1)R̆n(

z

q
) = Rn(x)Λn(i), Ki (z) = L̆ t (z)Mi (z)

(
L̆ t (qz)

)−1

using the notation L̆ t (z) = Lt (μ(z)), etc., with x = μ(z) = 1
2 (z + z−1) as before. It

remains to calculate Ki (z) explicitly. We show in Appendix 2.4 that the expressions
for Ki are correct by verifying

Ki (z)L̆
t (qz) = L̆ t (z)Mi (z), (7.5)

for i = 1, 2. ��
Lemma 7.2 For n ∈ N and 0 ≤ i, j ≤ 2�, we have

Rn(x)i j = βn(i, j)Cn+ j−i (x; q2i+2|q2),

where Cn(x;β|q) are the continuous q-ultraspherical polynomials (4.10) and βn(i, j)
is a constant depending on i, j and n.

Proof Evaluate D1Rn(x) = Rn(x)Λn(1) in entry (i, j). Since D1 is decoupled, we
get a q-difference equation for the polynomial

(Rn
)
i, j , which, after simplifying, is

(1 − q2i+2z2)

(1 − z2)
R̆n(qz)i j + (1 − q2i+2z−2)

(1 − z−2)
R̆n(q

−1z)i j

= q1+i (q− j−n−1 + q j+n+1)R̆n(z)i j .

All polynomial solutions of this q-difference are given by a multiple of the Askey–
Wilson polynomials, pn+ j−i (x; qi+1,−qi+1, q1/2,−q1/2|q), see [15, §7.5], [19,
§16.3], [26, §14.1]. Apply the quadratic transformation, see [4, (4.20)], to see that
the polynomial solutions are pn+ j−i (x; qi+1,−qi+1, qi+2,−qi+2|q2). These polyno-
mials are multiples of continuous q-ultraspherical polynomials Cn+ j−i (x; q2i+2|q2),
[19, §13.2], [15, §7.4–5], [26, §14.10.1]. Hence, the polynomialmatrix entriesRn(x)i j
are a multiple of Cn+ j−i (x; q2i+2|q2). ��

Our next objective is to determine the coefficients βn(i, j) of Lemma 7.2. Having
exploited that the matrix-valued polynomialsRn are eigenfunctions for the decoupled
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operator D1 of Theorem 7.1, we can use Lemma 7.2 in (7.4) to calculate the (i, j)th
coefficient of (7.4):

2

π

2�∑
k=0

βn(k, i)βm(k, j)ck(�)
∫ 1

−1
Cn+i−k(x; q2k+2|q2)

×Cm+ j−k(x; q2k+2|q2)w(x; q2k+2|q2)√
1 − x2

dx

= δm,nδi, j (Gm)i,i (lc(Pm))−2
i,i , (7.6)

using that lc(Pm) and the squared normmatrixGm are diagonalmatrices, seeCorollary
4.9 and Theorem 4.8. The integral in (7.6) can be evaluated by (4.11). In particular,
the case m + j = n + i of (7.6) gives the explicit orthogonality relations

2�∑
k=0

βm+ j−i (k, i)βm(k, j)ck(�)
(q2k+4; q2)k

(q2; q2)k
(q4k+4; q2)m+ j−k

(q2; q2)m+ j−k

(1 − q2k+2)

(1 − q2m+2 j+2)

= δi, j4
1−mq−2� (1 − q4�+2)2

(1 − q2m+2i+2)(1 − q4�−2i+2m+2)
× (q2, q4�+4; q2)2m

(q2i+2, q4�−2i+2; q2)2m
.

(7.7)

Theorem 7.3 We have

Rn(x)i, j = (−1)i 2−n (q2, q4�+4; q2)n
(q2 j+2, q4�−2 j+2; q2)n

(q−4�, q−2 j−2n; q2)i
(q2, q4�+4; q2)i

× (q2; q2)n+ j−i

(q4i+4; q2)n+ j−i
q j (2i+1)+2i(2�+n+1)−i2

× Ri (μ( j); 1, 1, q−2n−2 j−2, q−4�−2; q2)Cn+ j−i (x; q2i+2|q2).

Proof From Theorem 7.1, we have

K2(z)R̆n(qz) + K2(z
−1)R̆n(q

−1z) = R̆n(z)Λn(2). (7.8)

Evaluate (7.8) in entry (i, j) and use Lemma7.2 to find a three-term recurrence relation
in i of βn(i, j),

(q− j−n−1 + q j+n+1)

(q−1 − q)2
βn(i, j)C̆n+ j−i (z; q2i+2|q2)

= βn(i + 1, j)
(
K2(z)i,i+1C̆n+ j−i−1(qz; q2i+4|q2)

+ K2(z
−1)i,i+1C̆n+ j−i−1(q

−1z; q2i+4|q2)
)
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+ βn(i, j)
(
K2(z)i i C̆n+ j−i−1(qz; q2i+2|q2)

+ K2(z
−1)i i C̆n+ j−i (q

−1z; q2i+2|q2)
)

+ βn(i − 1, j)
(
K2(z)i,i−1C̆n+ j−i+1(qz; q2i |q2)

+ K2(z
−1)i,i−1C̆n+ j−i+1(q

−1z; q2i |q2)
)
.

Multiply by (1 − z2)(1 − q2)2 and evaluate the Laurent expansion at the leading
coefficient in z of degree n + j − i + 3. The leading coefficient in z of the con-
tinuous q-ultraspherical polynomial C̆n(αz;β|q) is (β;q)n

(q;q)n
αn . After a straightforward

computation, this leads to the three-term recurrence relation

(1 + q4�−2 j+2n+2)βn(i, j)

= q2i+3 (1 − q4�+2i+4)(1 − q2i+2)2(1 − q2n+2i+2 j+4)

(1 − qn+i+ j+2)(1 − q4i+6)(1 − q4i+2)(1 − q2i+2)2
βn(i + 1, j)

− 2q2i+2 (1 + q4�+2)(1 − q2n+2 j+2)

(1 + q2i )(1 + q2i+2)
βn(i, j)

+ q2i+1(1 − qn+i+ j+1)(1 − q4�−2i+2)(1 − q2n+2 j−2i+2)βn(i − 1, j).

This recursion relation can be rewritten as the three-term recurrence relation for the
q-Racah polynomials after rescaling, see [15, Chap. 7], [19, §15.6] [26, §14.2]. We
identify (α, β, γ, δ) as in (4.13) with (1, 1, q−2n−2 j−2, q−4�−2) in base q2. This gives

βn(i, j) = γn( j)(−1)i
(q−4�, q−2 j−2n; q2)i

(q2, q4�+4; q2)i
(q2; q2)n+ j−i

(q4i+4; q2)n+ j−i
q2 j i+2i(2�+n+1)−i2

× Ri (μ( j); 1, 1, q−2n−2 j−2, q−4�−2; q2)

for some constant γn( j) independent of i . Plugging this expression in (7.7) for i = j
gives |γn( j)|2 by comparing with the explicit orthogonality relations for the q-Racah
polynomials, see [15, Chap. 7], [19, §15.6] [26, §14.2].

For j ≥ i ,wehaveRi, j (x) = L j,i (x)(xnId+l.o.t), and since the explicit expression
of L j,i shows that the leading coefficient (of degree j − i) is positive, we see that the
leading coefficient (of degree n + j − i) ofRi, j in case j ≥ i is positive. Since γn( j)
is independent of i , we take i = 0, which shows that γn( j) is positive. ��

Proof of Theorem 4.17 Using Theorem 7.3 with the explicit inverse of L(x) as given
in Theorem 4.15 gives an explicit expression for the matrix entries of Qn(x) =
(L(x)−1)tRn(x). Then we obtain the matrix entries of Pn(x) = Qn(x)lc(Pn) from
this expression and Corollary 4.9, stating that the leading coefficient is a diagonal
matrix. ��
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7.3 Three-term recursion relation

The matrix-valued orthogonal polynomials satisfy a three-term recurrence relation,
see Sect. 2. Moreover, Theorem 4.6 shows that the three-term recurrence relation can
in principle be obtained from the tensor product decomposition. However, in that case
we obtain the coefficients of the matrices in the three-term recurrence relation in terms
of sums of squares of Clebsch–Gordan coefficients, and this leads to a cumbersome
result. In order to obtain an explicit expression for the three-term recurrence relation
as in Theorem 4.11 and Corollary 4.12, we use the explicit expression obtained in
Theorem 4.17 and Lemma 7.4, which is [23, Lemma 5.1]. Lemma 7.4 is only used to
determine Xn .

Lemma 7.4 Let (Qn)n≥0 be a sequence of monic (matrix-valued) orthogonal polyno-
mials and write Qn(x) = ∑n

k=0 Q
n
k x

k , where Qn
k ∈ MatN (C). The sequence (Qn)n≥0

satisfies the three-term recurrence relation

xQn(x) = Qn+1(x) + Qn(x)Xn + Qn−1(x)Yn,

where Y−1 = 0, Q0(x) = I and

Xn = Qn
n−1 − Qn+1

n , Yn = Qn
n−2 − Qn+1

n−1 − Qn
n−1Xn .

So we start by calculating the one-but-leading term in the monic matrix-valued
orthogonal polynomials.

Lemma 7.5 For the monic matrix-valued orthogonal polynomials (Qn)n≥0, we have

Qn
n−1 = −

2�−1∑
j=0

q

2

(1 − q2n)(1 − q2 j+2)

(1 − q2)(1 − q2n+2 j+2)
E j, j+1

−
2�∑
j=1

q

2

(1 − q2n)(1 − q4�−2 j+2)

(1 − q2)(1 − q4�−2 j+2n+2)
E j, j−1.

Proof By Theorem 7.3, we have (Rn(x))i, j = βn(i, j)Cn+ j−i (x; q2i+2|q2) and
Qn(x) = Lt (x)−1Rn(x), see Sect. 7.2, we have

Qn(x)i, j =
2�∑
k=i

q(2k+1)(k−i) (q
2; q2)k(q2; q2)k+i

(q2; q2)2k(q2; q2)i βn(i, j)

×Ck−i (x; q−2k |q2)Cn+ j−k(x; q2k+2|q2), (7.9)

and this expression shows that deg(Qn(x)i, j ) = n + j − i . So in case j − i ≤ 0, we
can only have a contribution to Qn

n−1 in case i − j = 0 or i − j = 1. The first case
does not give a contribution, since (7.9) is even or odd for n + j − i even or odd.
So we only have to calculate the leading coefficient in (7.9) for i − j = 1. With the

123



N. Aldenhoven et al.

explicit value of βn(i, j) as in Sect. 7.2 or Theorem 4.17 and Corollary 4.19, we see
that Qn

n−1 in case i − j = 1 gives the required expression for
(
Qn

n−1

)
j, j−1.

On the other hand, by Proposition 4.10 and since J lc(Pn)J = lc(Pn) by Corollary
4.9, it follows that J Qn(x)J = Qn(x). Therefore, we find the symmetry of the entries
of the monic matrix-valued polynomials

(
Qn(x)

)
i, j = (

Qn(x)
)
2�−i,2�− j so that the

case j − i ≥ 0 can be reduced to the previous case, and we get
(
Qn

n−1

)
j, j+1 =(

Qn
n−1

)
2�− j,2�− j−1. ��

Proof of Theorem 4.11 The explicit expression for Xn follows from Lemma 7.4 and
Lemma 7.5.

By Theorem 4.8 and Corollary 4.9, we have the orthogonality relations

2

π

∫ 1

−1

(
Qm(x)

)∗
W (x)Qn(x)

√
1 − x2dx = δm,n

(
lc(Pm)∗

)−1
Gm

(
lc(Pm)

)−1

= δm,nGm
(
lc(Pm)

)−2
,

since the matrices involved are diagonal and self-adjoint, hence pairwise commute.
By the discussion in Sect. 2, we have

Yn = G−1
n−1

(
lc(Pn−1)

)2
Gn

(
lc(Pn)

)−2
,

and a straightforward calculation gives the required expression. ��
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Appendix 1: Branching rules and Clebsch–Gordan coefficients

Proof of Theorem 4.3 TheClebsch–Gordan decomposition forUq(su(2)) and the cor-
responding intertwiner involving Clebsch–Gordan coefficients is well known, see e.g.
[20, §3.4]. With the convention of the standard orthonormal bases as in Sect. 3, the
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Clebsch–Gordan coefficients give the unitary intertwiner

γ�1,�2 =
�1+�2⊕

�=|�1−�2|
γ �
�1,�2

:
�1+�2⊕

�=|�1−�2|
H� → H�1 ⊗ H�2 ,

γ �
�1,�2

: H� → H�1 ⊗ H�2 , e�
n �→

�1∑
n1=−�1

�2∑
n2=−�2

C�1,�2,�
n1,n2,n e

�1
n1 ⊗ e�2

n2 ,

(
t�1 ⊗ t�2

)(
�(X)

) ◦ γ�1,�2 = γ�1,�2 ◦
�1+�2∑

�=|�1−�2|
t�(X), ∀ X ∈ Uq(su(2)).

(8.1)

Identifying the generators (K 1/2, K−1/2, E, F) of the Hopf algebra as in [20, §3.1.1–
2] with the generators (k−1/2, k1/2, f, e) as in Sect. 3, we see that the Hopf algebra
structures are the same. Moreover, in this case the representations t� as in Sect. 3
correspond precisely with the representations T1� of [20, §3.2.1] including the choice
of orthonormal basis. This gives C�1,�2,�

n1,n2,n = Cq(�1, �2, �; n1, n2, n), where the right-
hand side is the notation of the Clebsch–Gordan coefficient as in [20, §3.4.2, (41)].
The Clebsch–Gordan coefficients are explicitly known in terms of terminating basic
hypergeometric orthogonal polynomials, the so-called q-Hahn polynomials [26], see
[20, §3.4].

In order to obtain Theorem 4.3 from (8.1), we use Remark 4.2(ii). With the ∗-
algebra isomorphism Ψ as in Remark 4.2, we have t�(Ψ (X)) = J �t�(X)J � for all
X ∈ Uq(su(2)), where the intertwiner J � : H� → H�, J � : e�

p �→ e�−p is a unitary
involution. Note that the representations of Uq(su(2)) in (3.3) and of B in (4.2) are
not related via the map of Remark 4.2(ii), but they are related by the same operator
J �. Theorem 4.3 now follows after setting β�

�1,�2
= (J �1 ⊗ Id) ◦ γ �

�1,�2
◦ J � so that in

particular C�1,�2,�
n1,n2,n = C�1,�2,�−n1,n2,−n = Cq(�1, �2, �;−n1, n2,−n). ��

The Clebsch–Gordan coefficients satisfy several symmetry relations, and we
require, see [20, §3.4.4(70)],

C�1,�2,�
n1,n2,n = C�2,�1,�

n2,n1,−n . (8.2)

We need explicit expressions of the Clebsch–Gordan coefficients for the case �1 +
�2 = �, which follow from the explicit expressions in [20, §3.4.2, p. 80]. For fixed
� ∈ 1

2N, let−� ≤ m ≤ �, andwe consider the case �1 = (�+m)/2 and �2 = (�−m)/2.
The Clebsch–Gordan coefficients in this case are given by

(
C

1
2 (�+m), 12 (�−m),�

i, j,k

)2

= q2(i+
1
2 (�+m))( j+ 1

2 (�−m))

[
�+m

1
2 (�+m)−i

]
q2

[
�−m

1
2 (�−m)− j

]
q2[

2�
�−k

]
q2

,

(8.3)

assuming i − j = k and i ∈ {− 1
2 (� + m), 1

2 (� + m) + 1, . . . , 1
2 (� + m)}, j ∈

{− 1
2 (� − m), 1

2 (� − m) + 1, . . . , 1
2 (� − m)}, k ∈ {−�,−� + 1, . . . , �}.
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Observe that the unitarity gives

δm,n = 〈e�
m, e�

n〉

=
�1∑

n1,m1=−�1

�2∑
n2,m2=−�2

C�1,�2,�
m1,m2,mC

�1,�2,�
n1,n2,n〈e�1

m1
⊗ e�2

m2
, e�1

n1 ⊗ e�2
n2〉

=
�1∑

n1=−�1

�2∑
n2=−�2

C�1,�2,�
n1,n2,mC

�1,�2,�
n1,n2,n (8.4)

using the fact that the Clebsch–Gordan coefficients are real, see [20, §3.2.4].
We also need some of the simplest cases of Clebsch–Gordan coefficients, see [20,

§3.2.4, p. 75],

C1/2,1/2,0
1/2,1/2,0 = −1√

1 + q2
, C1/2,1/2,0

−1/2,−1/2,0 = q√
1 + q2

, (8.5)

and the other Clebsch–Gordan coefficients C1/2,1/2,0
m,n,0 being zero. Another case

required is a generalisation of a case of (8.5), see [20, §3.2.4, p. 80]

C�,�,0
−�,−�,0 = q2�

√
1 − q2

1 − q4�+2 (8.6)

and more generally

C�1,�2,�−�1,−�2,�2−�1
= q�1+�2−�

(
(q2; q2)2�1(q2; q2)2�2

(q2; q2)�1+�2+�+1(q2; q2)�1+�2−�

(1 − q4�+2)

) 1
2

.

(8.7)

Appendix 2: Proofs involving only basic hypergeometric series

In Appendix 2, we collect the proofs of various intermediate results only involving
basic hypergeometric series. For these proofs,we use the results ofGasper andRahman
[15]. In particular, we follow the standard notation of [15], and recall 0 < q < 1.

Proofs of lemmas for Theorem 4.8

Here we present the details of the proof of Lemma 6.2, which is used in order to
prove the explicit expression of the matrix entries of the weight in terms of Chebyshev
polynomials inTheorem4.8.We startwith two intermediate results needed in the proof.
Lemma 7.6 can be viewed as a q-analogue of Sheppard’s result [2, Corollary 3.3.4].
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Lemma 7.6 For b, c, d, e ∈ C
×, we have

n∑
k=0

(dqk; q)n−k(eq
k; q)n−k

(q−n, b, c; q)k

(q; q)k

(
de

bc
qn

)k

= cn
n∑

k=0

q2k(n−1)−2(k2)
(
de

bc2

)k

(d/c, e/c; q)n−k
(q−n, c, bcq1−n/(de); q)k

(q; q)k
qk .

Proof Applying first [15, (III.13)] and next [15, (III.12)] gives

3ϕ2

(
q−n, b, c

d, e
; q,

de

bc
qn

)
= (e/c; q)n

(e; q)n
3ϕ2

(
q−n, c, d/b

d, cq1−n/e
; q, q

)

= cn
(d/c, e/c; q)n

(d, e; q)n
3ϕ2

(
q−n, c, bcq1−n/de

cq1−n/d, cq1−n/e
; q,

q

b

)
.

Multiplying with (d, e; q)n and expanding gives

n∑
k=0

(dqk, eqk; q)n−k
(q−n, b, c; q)k

(q; q)k

(
de

bc
qn

)k

= cn
n∑

k=0

(d/c, e/c; q)n

(q1−nc/d, q1−nc/e; q)k

(q−n, c, bcq1−n/de; q)k

(q; q)k

(q
b

)k

= cn
n∑

k=0

q2k(n−1)−2(k2)
(
de

bc2

)k

(d/c, e/c; q)n−k
(q−n, c, bcq1−n/(de); q)k

(q; q)k
qk .

��
Lemma 7.7 gives a simple q-analogue of a Taylor expansion.

Lemma 7.7 (a q-Taylor formula) Let B(q−M ) = ∑N
t=0 At (−1)t (q−M ; q)t be a poly-

nomial in q−M, then

�n
q B(q−M )

q(n+1
2 )(q−n; q)n

∣∣∣∣∣
M=0

= An,

where �q is the q-shift operator �q B(q−M ) = qM (B(q−M ) − B(q−M−1)).

Proof Define ft (x) = (x; q)t , then

�q ft (q
−M ) = qM ( ft (q

−M ) − ft (q
−M−1))

= q(1 − qt )(q−M ; q)t−1 = q(1 − qt ) ft−1(q
−M ).

Repeated application of �q on ft (q−M ) then gives

�n
q ft (q

−M ) = qn(qt ; q−1)n ft−n(q
−M ) = qn+tn−(n2)(−1)n(q−t ; q)n ft−n(q

−M ).

(9.1)
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Putting M = 0 in (9.1), the expression is zero if n > t and n < t . Therefore

�n
q ft (q

−M )
∣∣
M=0 = δn,t (−1)nq(n+1

2 )(q−n; q)n .

This gives the result. ��
Proposition 7.8 Let � ∈ 1

2Z and k, p ∈ N such that k, p ≤ 2�, k − p ≤ 0 and
k + p ≤ 2�. Take s ∈ N such that s ≤ p and define

e�
s (k, p) = q2ks+k+p−2�

p−s∑
i=0

q−2i(s+1)
[
k

i

]
q2

[
p

i + s

]
q2

×
k−s∑
n=0

q2n(−2i+k+p−s+1)

[
2�−k
n+s

]
q2

[
2�−p
n

]
q2[

2�
i+n+s

]2
q2

.

Then we have

e�
s (k, p) = q2p(2�+1)−p2−2�+k (1 − q4�+2)

(1 − q2k+2)

(q2; q2)2�−p(q2; q2)p
(q2; q2)2�

×
p−s∑
T=0

qT
2−(4�+3)T (−1)p−T (q2k−4�; q2)p−T

(q2k+4; q2)p−T

(q4�−2T+4; q2)T
(q2; q2)T .

Proof The proof proceeds along the lines of the proof of [24, Proposition A.1], and we
only give a sketch.We start by reversing the inner summation, usingM = 2�−k−s−m
in e�

s (k, p) to get

e�
s (k, p) = q2ks+k+p−2�+2(k+p−s+1)(2�−k−s)

p−s∑
i=0

q2i(2k+s−1)
[
k

i

]
q2

[
p

i + s

]
q2

×
k−s∑
M=0

q2M(2i−k−p+s−1)

[
2�−k
M

]
q2

[
2�−p

2�−k−s−M

]
q2[

2�
2�−p−M+i

]2
q2

. (9.2)

We rewrite the inner summation over M

k−s∑
M=0

q2M(2i−k−p+s−1)

[
2�−k
M

]
q2

[
2�−p

2�−k−s−M

]
q2[

2�
2�−p−M+i

]2
q2

= (q2; q2)2�−k(q2; q2)2�−p(q2; q2)2�−k+i (q2; q2)k−i

(q2; q2)22�(q2; q2)2�−k−s
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×
k−s∑
M=0

q−2M(k+s) (q
2k−4�+2s; q2)M (q2k−2i+2; q2)M
(q2; q2)M (q−4�+2k−2i ; q2)M B(q−2M ), (9.3)

where B(q−2M ) = q2M(s+i−p)(q4�−2k−2M+2; q2)i (q2k−2p+2s+2M+2; q2)p−i−s is a
polynomial in q−2M of degree p − s that depends on �, k, p, i and s. The poly-
nomial B(q−2M ) has an expansion in (−1)t (q−2M ; q2)t such that B(q−2M ) =∑p−s

t=0 At (−1)t (q−2M ; q2)t . By Lemma 7.7, the coefficients At are obtained by
repeated application of the q-shift operator:

�t
q2
B(q−2M )

q2(
t+1
2 )(q−2t ; q2)t

∣∣∣∣∣
M=0

= At . (9.4)

We substitute B(q−2M ) = ∑p−s
t=0 At (−1)t (q−2M ; q2)t into (9.3) and we interchange

the summations over M and t . Then the sum over M can be rewritten as a summable
2ϕ1. Using the reversed q-Chu–Vandermonde summation [15, (II.7)], we can rewrite
(9.3) as

(q2; q2)2�−k(q2; q2)2�−p

(q2; q2)22�
(q2; q2)2�−k+i (q2; q2)k−i

(q2; q2)2�−k−s

×
p−s∑
t=0

q−2t (k+s+t+1)+2(t2)At
(q2k−4�+2s, q2k−2i+2; q2)t (q−4�−2; q2)2�−k−s−t

(q−4�+2k−2i ; q2)2�−k−s
.

(9.5)

Substituting (9.4) and (9.5) into (9.2) and interchanging the sums over i and t , we find
that e�

s(k,p) is

q2ks+k+p−2�+2(2�−k−s)(k+p−s+1) (q2; q2)k(q2; q2)p(q2; q2)22�−k(q
2; q2)2�−p

(q2; q2)22�(q2; q2)2�−k−s(q2; q2)s(q2; q2)p−s

×
p−s∑
t=0

q−2t (k+s+t+1)−2(t2)(q2k−4�+2s; q2)t (q−4�−2; q2)2�−k−s−t (q
2k+2; q2)t

×
�t

q2

q2(
t+1
2 )(q−2t ; q2)t

∣∣∣∣∣
M=0

q2M(s−p)(q2k−2p+2s+2M+2; q2)p−s

×
p−s∑
i=0

q2i(−2�+p−s−t−1) (q
2s−2p, q−2k, q4�−2k−2M+2; q2)i
(q2, q−2k−2M , q−2k−2t ; q2)i .
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The inner sum over i is a 3ϕ2-series, and after some rewriting, it can be transformed
using Lemma 7.6. The sum over i becomes

p−s∑
i=0

q2i(−2�+p−s−t−1)(q−2k−2M+2i , q−2k−2t+2i ; q2)p−s−i

× (q4�−2k−2M+2, q−2k, q2s−2p; q2)i
(q2; q2)i

= q−2k(p−s)
p−s∑
i=0

q2i(2p−2s+k−t−2�−2)−4(i2)(q−2t , q−2M ; q2)p−s−i

× (q−2p+2s, q−2k, q4�+2t−2p+2s+4; q2)i
(q2; q2)i .

We observe that the evaluation of the t-order q-difference operator yields only one
non-zero term in the sum over i , namely the one corresponding to i = p− s− t . After
simplifications, we have

e�
s (k, p) = q(4�−2p+3)s+s2+k−2�−p (1 − q4�+2)

(1 − q2k+2)

(q2; q2)2�−p(q2; q2)p
(q2; q2)2�

×
p−s∑
t=0

(−1)s+t qt
2+t (4�−2p+2s+3) (q

2k−4�; q2)s+t (q4�−2p+2s+2t+4; q2)p−s−t

(q2k+4; q2)s+t (q2; q2)p−s−t
.

Reversing the order of summation using T = p − s − t proves the proposition. ��
Proof of Lemma 6.2 Recall from Proposition 6.1 that we have

W (ψ)k,p(A
λ) =

1
2 (k+p)∑

s=− 1
2 (k+p)

d�
s (k, p)q

2sλ.

Therefore, the coefficients of d�
s (k, p) and α�

i (k, p) are related by

d�
s (k, p) =

p−(s+ 1
2 (p−k))∑

t=0

α�
t (k, p).

Suppose that p − k ≤ 0, k + p ≤ 2� and s ≥ 1
2 (k − p). Using Proposition 6.1, we

find the expression

d�

s+ 1
2 (k−p)

(k, p) = q2ks+k+p−2�
p−s∑
i=0

q−2i(s+1)
[
k

i

]
q2

[
p

i + s

]
q2
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×
2�−k−s∑
n=0

q2n(−2i+k+p−s+1)

[
2�−k
n+s

]
q2

[
2�−p
n

]
q2[

2�
i+n+s

]2
q2

.

By taking e�
s (k, p) = d�

s+ 1
2 (k−p)

, Proposition 7.8 shows that d�

s+ 1
2 (k−p)

(k, p) is equal

to

q2p(2�+1)−p2−2�+k (1 − q4�+2)

(1 − q2k+2)

(q2; q2)2�−p(q2; q2)p
(q2; q2)p (9.6)

×
p−s∑
t=0

qt
2−(4�+3)t (−1)k−t (q

2k−4�; q2)p−t

(q2k+4; q2)p−t

(q4�−2t+4; q2)t
(q2; q2)t .

Comparing (9.6) with the explicit expression of α�
i (k, p) yields the statement of the

lemma. ��

Proofs of Lemmas for Theorem 4.15

Here we present the proof of the technical lemmas needed in the proof of Theorem
4.15, in which the LDU-decomposition of the weight matrix is presented.

For completeness, we start by recalling the linearisation and connection relations
for the continuous q-ultraspherical polynomials, see [2, §10.11], [15, (7.6.14), (8.5.1)],
[19, §13.3]. The connection coefficient formula is

Cn(x; γ |q) =
#n/2$∑
k=0

1 − βqn−2k

1 − β
βk (γ /β; q)k(γ ; q)n−k

(q; q)k(βq; q)n−k
Cn−2k(x;β|q), (9.7)

and the linearisation formula is

Cn(x;β|q)Cm(x;β|q) =
m∧n∑
k=0

1 − βqm+n−2k

1 − β

(q; q)m+n−2k(β; q)m−k

(β2; q)m+n−2k(q; q)m−k
(9.8)

× (β; q)n−k(β; q)k(β
2; q)m+n−k

(q; q)n−k(q; q)k(qβ; q)m+n−k
Cm+n−2k(x;β|q).

The proof of Lemma 6.4 follows the lines of the proof of [23, Lemma 2.7] closely.

Proof of Lemma 6.4 In order to evaluate the integral of Lemma 6.4, we observe
that the weight function in the integral is the weight function (4.11) for the con-
tinuous q-ultraspherical (in base q2) with β = q2k+2. Rewrite the product of the
two continuous q-ultraspherical (in base q2) with β = q2k+2 as a sum over i
of Cm+n−2k−2i (x; q2k+2|q2) using (9.8). Since the Chebyshev polynomials can be
viewed as continuous q-ultraspherical polynomials, which in base q2 isUm+n−2t (x) =
Cm+n−2t (x; q2|q2), we can use (9.7) to write the Chebyshev polynomial as a sum of
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continuous q-ultraspherical polynomials with β = q2k+2. Plugging in the two sum-
mations and next using the orthogonality relations (4.11) show that we can evaluate
the integral of Lemma 6.4 as a single sum:

q(2k+2)(k−t) (q
2k+2, q2k+4; q2)∞
(q2, q4k+4; q2)∞

t∧m−k∑
r=0∨t−k

(1 − q2m+2n−2k+2−4r )

(1 − q2m+2n−2k+2−2r )

× (q2k+2; q2)r
(q2; q2)r

(q2k+2; q2)m−k−r

(q2; q2)m−k−r

(q2k+2; q2)n−k−r

(q2; q2)n−k−r

(q4k+4; q2)m+n−2k−r

(q2k+2; q2)m+n−2k−r

× (q−2k; q2)k+r−t

(q2; q2)k+r−t

(q2; q2)m+n−t−k−r

(q2k+4; q2)m+n−t−k−r
q(2k+2)r . (9.9)

We consider two cases: k ≥ t and k ≤ t . If k ≥ t , note that

1 − q2m+2n−2k+2−4r

1 − q2m+2n−2k+2−2r = q−2r (qk−m−n+1,−qk−m−n+1, q2k−2m−2n−2; q2)r
(qk−m−n−1,−qk−m−n−1, q2k−2m−2n; q2)r ,

so that we can rewrite (9.9) as a terminating very-well-poised 8ϕ7-series. Explicitly,

(q2k+2, q2k+4; q2)∞
(q2, q4k+4; q2)∞

(q2k+2; q2)m−k

(q2; q2)m−k

(q2k+2; q2)n−k

(q2; q2)n−k

× (q4k+4; q2)m+n−2k

(q2k+2; q2)m+n−2k

(q−2k; q2)k−t

(q2; q2)k−t

(q2; q2)m+n−t−k

(q2k+4; q2)m+n−t−k
q(2k+2)(k−t)

× 8W7(q
2k−2m−2n−2; q2k−2m, q2k−2n, q2t−2m−2n−2, q2k+2, q−2t ; q2, q−2k).

Here we use the notation of [15, §2.1]. Using Watson’s transformation formula [15,
(III.18)] and recalling the definition (4.13) of the q-Racah polynomials, we can rewrite
the 8W7 as a balanced 4�3:

(q2k−2m−2n, q−2t ; q2)t
(q2k−2t+2, q−2m−2n−2; q2)t 4ϕ3

(
q−2k, q2t−2m−2n−2, q2k+2, q−2t

q−2m, q−2n, q2
; q2, q2

)

= (q2k−2m−2n, q−2t ; q2)t
(q2k−2t+2, q−2m−2n−2; q2)t Rk(μ(t); 1, 1, q−2m−2, q−2n−2; q2).

Simplifying the q-shifted factorials gives the required expression.
For the second case k ≤ t , we proceed similarly. After applying Watson’s transfor-

mation, we also employ Sears’ transformation for a terminating balanced 4ϕ3 series
[15, (III.15)] in order to recognise the expression for the q-Racah polynomial. ��

We leave the proof of the generalisation of Lemma 6.4 in Remark 6.5 along the
same lines to the reader.

In the proof of the LDU-decomposition of Theorem 4.15, we have also used Lemma
6.6, whose proof is presented next.
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Proof of Lemma 6.6 We first write the q-Racah polynomial in the left-hand side of
Lemma 6.6 as a 4ϕ3-series and interchange the sums to get

k∑
j=0

(q−2k, q2k+2; q2) j
(q2, q2, q−2m, q−2n; q2) j q

2 j
n∑

t= j

(−1)t
(q2m−4�; q2)n−t

(q2m+4; q2)n−t

(q4�+4−t ; q2)t
(q2; q2)t

×(q−2t , q−2m−2n+2t−2; q2) j (1 − q2m+2n+2−4t )q2(
t
2)−(4�+4)t , (9.10)

which has a well-poised structure. Relabeling t = j + p gives that the inner sum is
equal to

(q−2m−2n−2) j

(q4�−2m−2n+2; q2) j
(q−4�−2; q2) j

(q2; q2) j
× (q−2 j ; q2) j (q−2m−2n−2+2 j ; q2) j (1 − q2m+2n+2−4 j )q(4�+6) j

×
n− j∑
p=0

(q−4�−2+2 j , q2 j−m−n+1,−q2 j−m−n+1, q−2m−2n−2+4 j ; q2)p
(q2, q4�−2m−2n+2+2 j , q2 j−m−n−1,−q2 j−m−n−1; q2)p q(4�−2 j+2)p.

Multiplying the inner sum with (q2 j−2m ,q2 j−2n;q2)p
(q2 j−2n ,q2 j−2n;q2)p , we can rewrite the sum as a very-

well-poised 6ϕ5-series

6W5(q
4 j−2m−2n−2; q−2−4�+2 j , q2 j−2n, q2 j−2m; q2, q4�−2 j+2).

This very-well-poised 6ϕ5 series can be evaluated by using [15, (II.21)] as

(q4 j−2m−2n, q4�−2n+2; q2)n− j

(q4�−2m−2n+2 j+2, q2 j−2n; q2)n− j
.

Straightforward calculations show that (9.10) is given by

(q2m−4�; q2)n
(q2m+4; q2)n (1 − q2m+2n+2)

(q−2m−2n; q2)n
(q4�−2m−2n+2; q2)n

(q4�+2−2n; q2)n
(q−2n; q2)n

×
k∑
j=0

(q−2k, q2k+2, q−2�−2; q2) j
(q2, q2, q−2�; q2) j q2 j .

The inner sum can be rewritten as a balanced 3ϕ2. Using the q-Saalschütz transfor-
mation [15, (II.12)], we find that (9.10) reduces to

(q2m−4�; q2)n
(q2m+4; q2)n (1 − q2m+2n+2)

(q−2m−2n; q2)n
(q4�−2m−2n+2; q2)n

(q4�+2−2n; q2)n
(q−2n; q2)n

× (q−2k, q4�+4; q2)k
(q2, q4�−2k+2; q2)k . (9.11)
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Finally, simplifying the q-Pochhammer symbols we prove that (9.11) is equal to the
right-hand side of Lemma 6.6. ��

Proof of (7.3)

Here we verify that (7.3) is valid entry-wise. It follows from Theorem 4.13, Proposi-
tions 5.2 and 5.11 and the fact that Ni (z) = Mi (z−1) that the (m, n)th entry of the
left-hand side of (7.3) is given by

n−1∑
k=0

q�−m−2n+2k+3(1 − q2n)

(
C

n−1
2 ,�− n−1

2 ,�

− n−1
2 +k,�−m− n−1

2 +k,m−�

)2 z−�+m+n−2k

(1 − q2)2(1 − z2)

−
n∑

k=0

q�−m−2n+2k+1
(
C

n
2 ,�− n

2 ,�

− n
2+k,�−m− n

2+k,m−�

)2 (z2 − q2n+2)z−�+m+n−2k

(1 − q2)2(1 − z2)
.

(9.12)

On the other hand, the (m, n)th entry of the right-hand side of (7.3) is given by

n∑
k=0

q2�−m−2n+4k+1
(
C

n
2 ,�− n

2 ,�

− n
2+k,�−m− n

2+k,m−�

)2 (1 − q−2z2)z−�+m+n−2k

(1 − q2)2(1 − z2)
. (9.13)

If we multiply (9.12) and (9.13) by (1 − q2)2(1 − z2), they become Laurent series
in zs . By equating the coefficients of zs , the proof of (7.3) boils down to prove the
following equality:

q�−m−2n+2k+3(1 − q2n)

(
C

n−1
2 ,�− n−1

2 ,�

− n−1
2 +k,�−m− n−1

2 +k,m−�

)2

− q�−m−2n+2k+3
(
C

n
2 ,�− n

2 ,�

− n
2+k+1,�−m− n

2+k+1,m−�

)2

+ q�−m+2k+3
(
C

n
2 ,�− n

2 ,�

− n
2+k,�−m− n

2+k,m−�

)2

= q�−m−2n+4k+3
(
C

n
2 ,�− n

2 ,�

− n
2+k+1,�−m− n

2+k+1,m−�

)2

− q�−m−2n+4k+5
(
C

n
2 ,�− n

2 ,�

− n
2+k,�−m− n

2+k,m−�

)2
.

The last equation is proven using (8.3) and performing some simple manipulation of
the q-binomial coefficients.

Proof of 7.5

The expressions forK1 andK2 can be obtained using the inverse of L given in Theorem
4.15, so that K1 and K2 are uniquely determined. So it suffices to check (7.5).
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In order to prove (7.5), we need to distinguish between the cases i = 1 and i = 2,
since there is no symmetry between the two cases.

The case i = 1 of (7.5) is L̆ t (z)M1(z) = K1(z)L̆ t (qz). Consider the (m, n)-entry
of K1(z)L̆ t (qz) − L̆ t (z)M1(z):

K1(z)m,m L̆(qz)n,m − M1(z)n−1,n L̆(z)n−1,m(z) − M1(z)n,n L̆(z)n,m(z). (9.14)

The convention is that matrices with negative labels are zero. In case m > n, (9.14) is
zero, since L is lower triangular. In case m = n, we see that K1(z)m,m = M1(z)m,m

implies that (9.14) is zero as well. Note that this also covers the case n = 0. Assume
0 ≤ m < n, and multiplying (9.14) by (1 − q2)2(1 − z2), and using the explicit
expressions from Theorems 4.15 and 7.1 and cancelling common factors, we need to
show that the following expression equals zero:

q−m(1 − q2+2mz2) C̆n−m(qz; q2m+2|q2) + q−nz (1 − q2n+2m+2)

× C̆n−m−1(z; q2m+2|q2) − q−n(1 − q2+2nz2) C̆n−m(z; q2m+2|q2).

Now we can use the Laurent expansion of (4.10) to rewrite the expression as

q−m(1 − q2+2mz2)
n−m∑
k=0

(q2m+2; q2)k(q2m+2; q2)n−m−k

(q2; q2)k(q2; q2)n−m−k
(qz)n−m−2k

+ q−n (1 − q2n+2m+2)

n−m−1∑
k=0

(q2m+2; q2)k(q2m+2; q2)n−m−1−k

(q2; q2)k(q2; q2)n−m−1−k
zn−m−2k

− q−n(1 − q2+2nz2)
n−m∑
k=0

(q2m+2; q2)k(q2m+2; q2)n−m−k

(q2; q2)k(q2; q2)n−m−k
zn−m−2k .

It is a straightforward calculation to show that the coefficient of zn−m−2k , where
k ∈ {−1, 0, . . . , n − m}, equals zero. This proves the case i = 1 of (7.5).

To prove the case i = 2 of (7.5), we evaluate K2(z)L̆ t (qz) − L̆ t (z)M2(z) in
the (m, n)-entry, which is slightly more complicated than the corresponding case for
i = 1:

K2(z)m,m−1 L̆(qz)n,m−1 + K2(z)m,m L̆(qz)n,m + K2(z)m,m+1 L̆(qz)n,m+1

−L̆(z)n+1,mM2(z)n+1,n − L̆(z)n,mM2(z)n,n . (9.15)

If m > n + 1 all terms vanish in (9.15), because of the lower triangularity of L .
In case m = n + 1, (9.15) reduces to K2(z)n+1,n − M2(z)n+1,n , which is indeed
zero. Suppose m ≤ n, we expand (9.15) under the convention that continuous q-
ultraspherical polynomials with negative degree are zero. Expand the continuous q-
ultraspherical polynomials in z in (9.15) and take out the term

1

(1 − z2)

1

(1 − q2)2
(q2; q2)n(q2; q2)2m+1

(q2; q2)m+n+1(q2; q2)m .
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By a long but straightforward calculation, we can show that the coefficient of zn−m−2k ,
k ∈ {−1, 0, . . . , n − m + 1} equals zero. This proves the case i = 2.
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