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1Instituto de Matemáticas y Fı́sica Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain
2Departamento de Quı́mica Fı́sica, Universidad de Salamanca, 37008 Salamanca, Spain
3Departamento de Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Ciudad Universitaria, 1428 Buenos Aires, Argentina

Received 18 September 2007; accepted 30 October 2007
Published online 10 January 2008 in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/qua.21576

ABSTRACT: Through the use of an important property of a fourth-order
correlation matrix previously reported (Valdemoro, C.; Tel, L. M.; Alcoba, D. R.; Perez-
Romero, E.; Casquero, F. J. Int J Quantum Chem 2002, 90, 1555; Alcoba, D. R.;
Valdemoro, C. Phys Rev A 2001, 64, 062105) four new equivalent forms of the second-
order contracted Schrödinger equation (2-CSE) are obtained. The role played by the
energy terms involving these correlation matrices is crucial in the solution of these
equations. The relations linking the Hermitian (Yasuda, K. Phys Rev A 1999, 59, 4133)
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1. Introduction

T he second-order reduced density matrix (2-
RDM) is the matrix obtained by contracting

the N-electron density matrix (N-DM) into the two-
electron space. In first quantization it is obtained by
integrating the N-DM over N � 2 electron variables.
The interest in the RDMs starts with Dirac [1],
Husimi [2], Mayer [3], Löwdin [4] and McWeeny
[5]. These authors realized that knowledge of the
2-RDM should be sufficient in the study of elec-
tronic systems. In 1963, Coleman pointed out the
need for what he denominated the N-representability
conditions, which should be imposed upon the
2-RDM in any variational calculation [6]. The paper
by Garrod and Percus [7] in 1964 also constituted an
important milestone in the determination of the
properties of an N-representable 2-RDM. After
these seminal works, the search to obtain directly
the 2-RDM, without a previous knowledge of the
wave function, has constituted an ample field of
research [8–12].

In 1976, Cohen and Frishberg [13, 14] and Na-
katsuji [15] reported an integro-differential hierar-
chy equation for the 2-RDM that depends not only
on the 2-RDM but also on the 3- and 4-RDMs. In his
paper, Nakatsuji demonstrated that when the
2-CSE is satisfied, and the RDMs involved in this
equation are N-representable, there is a one-to-one
correspondence between the solution of the Schrö-
dinger equation and that of this density equation.
In 1983, Valdemoro reported a matrix contracting
mapping [16] which, when applied to the matrix
representation of the Schrödinger equation, leads to
the compact form of the 2-CSE [17], which is equiv-
alent to the integro-differential density equation. To
remove the indeterminacy of the 2-CSE, the high-
order RDMs were approximated in terms of the
lower-order ones [18, 19] by extending a method
proposed in 1992 by Valdemoro [20]. This approach
permitted Colmenero and Valdemoro [21] to solve
iteratively the 2-CSE in 1994. Since then, this meth-
odology has been significantly improved by the
groups of Nakatsuji [22–25], Mazziotti [26–30], Her-
bert and Harriman [31, 32], Yasuda [33], and Val-
demoro [34–42]. A recent revision of the achieve-
ments on the contracted Schrödinger equation
(CSE) theory has been carried out [43, 44].

In this article, a new analysis of the 2-CSE struc-
ture and the conditions determining its solution are
reported. This analysis, based on an important cor-
relation matrix property, reported in 2001 by our

group [34, 35, 41, 42, 45], sheds light upon the
determinant role played by the pure fourth-order
correlation energy effects in the solution of the
2-CSE. Also, four new equivalent forms of the
2-CSE are derived. Although two of these forms
depend on the 2-, 3-RDMs and on a term involving
the fourth-order correlation matrix (4-CM),[37] the
two other forms, directly related to the Hermitian
part of the Contracted Schrödinger Equation
(HCSE),[33, 46] only depend on a fourth-order cor-
relation energy term, which vanishes when the
2-CSE is satisfied [45]. When this term vanishes, not
only the HCSE but also the antiHermitian part of
the 2-CSE (ACSE) is satisfied.

Recently, Mazziotti [46–48] has proposed a new
variational method for solving the ACSE whose
application to the ground state of several molecules
has yielded excellent results. This method has also
been successfully applied by our group in the cal-
culation of the ground state of the isoelectronic
series of the Beryllium atom and the linear form of
the BeH2 and Li2 molecules [49].

It should be stressed that the ACSE is a particular
case of the hypervirial condition first deduced by
Hirschfelder [50] in the early 1960s. The sufficiency
of this condition in variational procedures for de-
ducing optimized wave functions has largely been
discussed among others by Epstein [51], Aslangul
et al.[52], Harriman [53], Kutzelnigg [54], and Fer-
nández and Castro [55]. It is here shown that, while
satisfying the second order hypervirial condition
implies that the two types of pure fourth-order
correlation energy terms involved must be equal,
this condition seems not to be sufficient to guaran-
tee their individual vanishment.

2. Theoretical Background

2.1. THE REDUCED DENSITY MATRICES
AND THEIR DECOMPOSITIONS

The p-order reduced density matrix (p-RDM) is
the matrix obtained when contracting the N-elec-
tron density matrix into the p-electron space. In
second quantization, the p-RDM elements are de-
fined as:

���ai1
†ai2

† . . . aip
†ajp . . . aj2aj1��� � p!pDi1i2 . . . ip; j1j2 . . . jp (1)

The operators aip
† and ajp are the creators/annihila-

tors of electrons on the spin-orbitals ip/jp, respec-
tively. These spin-orbitals are elements of the one-
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electron finite basis set built from K orthogonal
orbitals and the two spin-functions �, �. The matrix
pD is normalized as tr�pD� � �N

p�.

The expression (1) can be transformed by using
the fermion algebra to decompose the high-order
matrix into a sum of products of lower-order RDM
elements and some CM elements [37]. This type of
RDM decomposition involves, besides the usual
fermion algebra operations, a partition of the unit
operator into a projector on the state from which
the RDM being decomposed derives and another
projector upon its complementary space. Thus:

Î � ������ � �
����

�������� (2)

As a result of these operations, the 4-RDM, which
plays an important role in the CSE theory, can be
expressed as follows:

4! 4Dpqij;rskl � � 2! 2Dpq;kl��is�jr � �ir�js� � 3! 3Dpqi;rkl �js

� 3! 3Dpqj;rkl �is � 3! 3Dpqi;skl �jr � 3! 3Dpqj;skl �ir

� 2! 2Dij;kl 2! 2Dpq;rs � �4;2,2�Cpqij;rskl (3)

where (4;2,2)C is one of the four different but inter-
related 4-CMs [39], which can be expressed as:

�4;2,2�Cpqij;rskl � �
����

���ap
†aq

†asar��������ai
†aj

†alak��� (4)

This expression of the (4;2,2)C describes how the
virtual excitations of the electrons described by a
given state � accounts for the correlation effects
within the RDM theory. This type of correlation
matrices, which carry information about the system
spectrum, is at the basis of the analysis, which is
presented in the following section.

A different type of correlation effects is hidden in
the Krönecker �s present in Eq. (3). This other type
of correlation effects can be factorized in terms of
elements of particle and hole lower-order RDMs
corresponding to the state being considered [37].

It should be stressed that the decomposition just
reported, although not unique, is exact, provided
the 4-RDM is N-representable; i.e. there exists an
N-electron wave-function from which the 4-RDM
can be derived by integration over N � 4 electron
variables [6].

It is evident that the notion of N-representability
can be extended to the 4-CM in the sense that these
matrices must derive from the decomposition of an

N-representable 4-RDM. Moreover, one may also
decompose the 4-CM matrix into a Hermitian and
an antiHermitian matrix, which would respectively
have the following elements:

Herm
�4;2,2�Cpqij;rskl �

1
2 ��4;2,2�Cpqij;rskl � �4;2,2�Cijpq;klrs� (5)

and

antiHerm
�4;2,2� Cpqij;rskl �

1
2 ��4;2,2�Cpqij;rskl � �4;2,2�Cijpq;klrs� (6)

And again the concept of N-representability can be
extended to these matrices.

2.2. THE SECOND-ORDER CONTRACTED
SCHRÖDINGER EQUATION

The generic form of the p-CSE can be expressed as:

���Ĥai1
† ai2

† . . . aip

† ajp . . . aj2aj1���

� p! E pDi1i2 . . . ip; j1j2 . . . jp (7)

where Ĥ is the N-body Hamiltonian operator, E is
the energy, and � the corresponding Hamiltonian
eigenstate. The general form of this equation for p 	
2, the 2-CSE, can be expressed in matrix form as

���Ĥ 2
̂��� � 2! E 2D (8)

or, equivalently

��� 2
̂Ĥ��� � 2! E 2D (9)

where 2
̂ denotes an arbitrary second-order density
operator. In what follows, the quantities derived
from the action of the Hamiltonian operator on the
left/right of the second-order density operator will
be labeled by the letters l/r respectively.

Let us now replace in Eq. (8) the Hamiltonian by
its second quantization expression

Ĥ �
1
2 �

i, j,k,l

0Hij;klai
†aj

†alak (10)

where

0Hij;kl � ��ik �jl � �jl �ik

N � 1 � �ij�kl�� (11)
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and � and �ik�pq� are the usual one- and two-elec-
tron integrals, respectively (this latter in the Con-
don and Shortley notation). The generic form Eq.
(8) of the 2-CSE becomes:

1
2 �

i, j;k,l

0Hij;kl ���ai
†aj

†alakap
†aq

†asar��� � E 2! 2Dpq;rs (12)

When transforming the string of fermion operators
into its normal form one obtains:

2! E 2Dpq;rs � 2! �0H 2D�pq;rs � 3! �
i, j,k

�0Hij;pk
3Dijq;rsk

� 0Hij;kq
3Dijp;rsk� �

1
2 4! �

i, j,k,l

0Hij;kl
4Dijpq;rskl (13)

which may be expressed schematically as

2! E 2Dpq;rs � lFpq;rs �
1
2 4! �

i, j,k,l

0Hij;kl
4Dijpq;rskl (14)

When the Hamiltonian operator appears to the
right of the 2-density operator in Eq. (9) instead of
to its left, one has:

2! E 2Dpq;rs � rFpq;rs �
1
2 4! �

i, j,k,l

0Hij;kl
4Dpqij;klrs (15)

When subtracting Eqs. (14) and (15) one obtains

0 � lF � rF � ����Ĥ,2
̂����� (16)

which is the second-order Hypervirial (2-HV) con-
dition [50] or, equivalently, Mazziotti’s ACSE. That
is, the fourth-order term appearing in the 2-CSE
cancels out, as well as the l.h.s. of the 2-CSE.

The remaining part of the 2-CSE is given by the
HCSE, whose operatorial form in Mazziotti’s nota-
tion is:

1
2���Ĥ,2
̂����� � 2! E 2D (17)

The structure of this equation will be analyzed in
detail in the following section.

3. Four New 2-CSE Forms: The Role
Played by the Vanishing Correlation
Energy Terms

3.1 FOUR NEW 2-CSE FORMS

Let us now reconsider the fourth-order term of
Eq. (13), which, due to the fermion-operators’ anti-
commuting properties, can be written in the two
following equivalent forms:

4! �
i, j,k,l

0Hij;kl
4Dijpq;klrs � 4! �

i, j,k,l

0Hij;kl
4Dpqij;rskl (18)

and let us decompose both forms of this fourth-
order term. The resulting expressions can be sche-
matically written as:

1
24! �

i, j,k,l

0Hij;kl
4Dpqij;rskl � � rFpq;rs � �4;2,2�

r�pq;rs

� 2! tr(0H 2D)Dpq;rs (19)

and

1
2 4! �

i, j,k,l

0Hij;kl
4Dijpq;klrs � � lFpq;rs � �4;2,2�

l�pq;rs

� 2! tr(0H 2D)Dpq;rs (20)

respectively. In these equations the (4;2,2)� terms
have the following structures:

�4;2,2�
r�pq;rs � �

����

���ap
†aq

†asar��������Ĥ���

�
1
2 �

i, j,k,l

�4;2,2�Cpqij;rskl
0Hij;kl (21)

and

�4;2,2�
l�pq;rs � �

����

���Ĥ��������ap
†aq

†asar���

�
1
2 �

i, j,k,l

0Hij;kl
�4;2,2�Cijpq;klrs (22)

These (4;2,2)� terms are elements of an important
family studied in 2001 by Tel et al. [42]. When the
state considered ��� is an eigenstate of the Hamil-
tonian, then either form of (4;2,2)�rs;pq vanishes for
any values of p, q, r, s. Alcoba [45] demonstrated
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that when the 4-CM derives from an N-representable
4-RDM then (4;2,2)� 	 0 iff the density matrix, pre-
image of the 4-RDM, satisfies the Schrödinger equation.

As has been shown, there are two different forms
of the 2-CSE given by Eqs. (14) and (15) and also
two different forms of expanding the fourth-order
energy term. This implies that there are four ways
to combine them.

1. Replacing Eq. (19) into Eq. (14), the following
new form of the 2-CSE is obtained:

2! E2Dpq;rs � 2! tr�0H2D�2Dpq;rs � lFpq;rs � rFpq;rs

� �4;2,2�
r�pq;rs (23)

Because of Alcoba’s theorem, when the 2-CSE is
satisfied, �4;2,2�

r�rs;pq � 0, and then the ACSE—and
equivalently the hypervirial condition—according
to Eq. (16), is also satisfied.

2. Following a parallel reasoning, by replacing
Eq. (20) in Eq. (15), one obtains

2! E 2Dpq;rs � 2! tr�0H 2D� 2Dpq;rs � rFpq;rs � lFpq;rs

� �4;2,2�
l�pq;rs (24)

Both the two 2-CSE forms, Eqs. (23) and (24), in-
clude the antiHermitian contribution.

3. On the other hand, by combining Eqs. (20)
and (14) one obtains

2! E 2Dpq;rs � 2! tr�0H 2D� 2Dpq;rs � �4;2,2�
l�pq;rs (25)

4. And, replacing Eq. (19) in Eq. (15) yields

2! E 2Dpq;rs � 2! tr�0H 2D� 2Dpq;rs � �4;2,2�
r�pq;rs (26)

The antiHermitian part has disappeared from both
these two 2-CSE forms, Eqs. (25) and (26).

Note that, Eqs. (25) and (26) become identities
when the (4;2,2)� term vanishes, i.e. when all the
correlation effects of an order higher than two cancel out,
the 2-CSE is satisfied.

3.2. THE ROLE PLAYED BY THE
VANISHING CORRELATION ENERGY TERMS

The structure of the four 2-CSE forms just re-
ported sheds light upon the conditions governing
the solution of the 2-CSE. Thus, as will be shown
here, several consequences and theorems can be
drawn from the relationships that can be estab-

lished among these equations and the HCSE and
the ACSE.

3.2.1. The Structure of the HCSE

When taking the average of Eqs. (23) and (24), or
equivalently of Eqs. (25) and (26), one obtains the
HCSE as a function of the vanishing correlation
energy terms:

2! E 2Dpq;rs � 2! tr�0H 2D� 2Dpq;rs

�
1
2 � �4;2,2�

r�pq;rs � �4;2,2�
l�pq;rs� (27)

The last term represents the Hermitian part of the
vanishing (4;2,2)� matrix, which derives from the
Hermitian part of the 4-CM, Eq. (5).

Obviously, this equation is satisfied when the
sum of the two (4;2,2)� terms deriving from the
decomposition of N-representable 4-RDM vanishes,
because then the 2-RDM corresponds to an eigen-
state of the Hamiltonian. Moreover, each of the Eqs.
(25) and (26), which are equivalent to the 2-CSE, can
also be identified with the Hermitian part of the
2-CSE as described by Eqs. (23) and (24), because
the ACSE is given by Eq. (16). Therefore:

2! E 2Dpq;rs � 2! tr�0H 2D� 2Dpq;rs �
1
2� �4;2,2�

r�pq;rs

� �4;2,2�
l�pq;rs� � 2! tr�0H 2D� 2Dpq;rs � �4;2,2�

r�pq;rs

� 2! tr�0H 2D� 2Dpq;rs � �4;2,2�
l�pq;rs

Because we know that there is a one-to-one corre-
spondence between the 2-CSE solution and the van-
ishing value of the (4;2,2)� terms, one has:

▪ The HCSE is satisfied iff either �4;2,2�
l� � 0 or

�4;2,2�
r� � 0.

▪ As Yasuda showed in 1999 [33], the solution
of the HCSE is equivalent to the solution of
the 2-CSE.

▪ The Hermitian part of (4;2,2)�, deriving from
N-representable Hermitian 4-CM, vanishes iff
the HCSE is satisfied.

These theoretical results emphasize the impor-
tance of the fourth-order vanishing correlation en-
ergy terms and stress the importance of looking
directly for accurate approximations of the 4-CM in
terms of the lower order CMs. Because the approx-
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imation of the fourth-order cumulant proposed by
Nakatsuji and by Mazziotti has given satisfactory
results, this can be a possible way to approach this
practical problem; which, at present, is being con-
sidered.

3.2.2. The Structure of the ACSE

We will now focus our attention upon the ACSE.
By construction, the ACSE can be identified with
the contraction of the matrix representation of the
N-order Liouville equation, as reported by Valde-
moro in Ref. [17], when both the bra and ket wave-
functions are the same. Now, Esnault and cowork-
ers [52, 56] showed that, when the density matrix
corresponds to a pure state, the solution of the
Liouville equation is equivalent to the solution of
the Schrödinger equation. We also know that an
N-representable RDM has as pre-image the idem-
potent N-electron density matrix corresponding to
a pure state. In view of this, it would seem reason-
able to expect that when the ACSE is satisfied by a
set of N-representable RDMs, these matrices would
correspond to an eigenstate of the Hamiltonian.
However, Mazziotti [47] reported that he had
found RDMs which, although satisfying the ACSE,
they did not correspond to eigenstates of the Ham-
iltonian. It seemed therefore appropriate to try to
clarify this question by considering the relations
reported above. Let us therefore compare Eq. (20)
and Eq. (19); it follows that for N-representable
RDMs one has

lF � rF � �4;2,2�
l� � �4;2,2�

r� (28)

where the r.h.s. represents the antiHermitian part of
the vanishing (4;2,2)� matrix, which derives from the
antiHermitian part of the fourth-order correlation
matrix, Eq. (6). As a consequence, when the ACSE is
satisfied

�4;2,2�
r� � �4;2,2�

l� (29)

This condition does not imply that the correlation
energy terms vanish; and therefore, unless it could
be demonstrated that �4;2,2�

r� � �4;2,2�
l� iff

�4;2,2�
r�pq;rs � 0

�4;2,2�
l�pq;rs � 0,

the solution of the ACSE does not imply that the
2-CSE is also satisfied. Indeed, accidental vanish-
ings of the expectation value of the commutator
might therefore happen.

In Mazziotti’s method for solving the ACSE, the
lack of sufficiency in the second-order hypervirial
condition could be compensated by combining the
solution of the equation with a minimization pro-
cedure. This variational approach, although exclud-
ing the possibility of applying the method to the
study of excited states, brings in the extra condition
needed for getting solutions of the ACSE compara-
ble in accuracy to those obtained with an FCI treat-
ment for the lowest state of a given spin-symmetry.
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