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a b s t r a c t

The aim of this work is to study the electronic properties of graphene under random
impurities which are distributed in the energy line following the Cantor set box distri-
bution. This implies that for each iteration k, the possible energy values of the random
impurities lie in the line segment of the Cantor set in the interval (�a/2,a/2). By applying
the full T-matrix approximation, the electronic density of states is obtained for each iter-
ation k and the limit k / ∞ limit is taken. A metal-insulator transition is obtained for
critical values of a, where a resonance peak in the DOS at the Fermi level is split in two
bands that shift towards the band edges when the width a increases. In turn, the electronic
density of states for k � 2 only enhance the van Hove singularities, resonant and anti-
resonant states for k ¼ 2. In the other side, the Cantor set signatures are shown through a
spectrum rearrangement for different values of a, where resonant states split in two
narrow peaks for k ¼ ∞. These results are important to study the transport properties in
graphene with doped-based fractal superlattices, magnetic or electric barriers or multi-
layers with triadic patterns.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Graphene is a two dimensional hexagonal lattice of carbon atoms, a newly discovered 2-D allotrope of carbon that has
been proved to bemuchmore interesting than any othermaterial known, exhibiting some remarkable properties such as high
electric conductivity, high thermal conductivity and extraordinary mechanical strength ([1e5]). The band structure shows
that the conduction and valence band touch at the Dirac point and the dispersion relation is approximately linear and
isotropic [6]. Due to its linear dispersion relation at low energies, the electrons are turned into effective Dirac fermions [4].
This leads to a number of fascinating phenomena such as the half-quantized Hall effect ([7,8]) and minimum quantum
conductivity in the limit of vanishing concentration of charge carriers ([9,1,10]).

Tuning graphene electronic properties to achieve desired functionalities by various adsorbed atoms, molecules and
chemically active groups has been a prime research area in modern material science. Through ion bombardment of graphene
[11] or deposition of atomic adsorbates ([12,13]) on it, makes it possible to open a quasigap in the nearest vicinity of the Dirac
point in the graphene spectrum because the defects induce the impurity resonance states. In turn, graphene samples
fabricated are not pristine, therefore is important to understand the effects of disorder on the electronic properties ([14e16]).
This disorder manifests itself in the finite lifetime of electronic eigenstates of the pure system. In turn, this may initiate a
nghi).
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metaleinsulator transitionwithmassive carriers. These effects can alter the electronic density of states, which is an important
property of the system because affects directlymanymeasurable quantities such as the electrical conductivity, thermoelectric
effects and differential conductivity in tunneling experiments and modify the electron screening. In the other side, in the last
decades, fractal structures has attracted broad attention [17]. Fractals are mathematical sets that that are self-similar across
different scales and can be used to describe different physical phenomena or statistical processes. In particular, has attracting
much interest in topics related to insulator transitions in condensedmatter and systems of cold atoms ([18e20]), Kondo effect
in strongly disordered metals [21], renormalization group [22], L�evy flights and quantum critical diffusion [23] and in
quantum field theory [24]. Recently, numerous results about electronic transport and modulation properties in fractal
structures has been reported, for example the reflection and transmission properties in fractal superlattices [25] or the
spectral properties of self-similar optical Fabry-Perot resonator ([26,27]). Non periodic media has been used to study wave
propagation ([28,29]). The Cantor set has been applied to quantum scattering in a fractal potential and self-similar structures
([30e34]). In turn, fractal Cantor distributions has been applied to the study of the transmission properties with left-handed
materials, showing that these devices can be used as narrow band optical filters with applications in super dense wavelength
division multiplexing for optical communications and precise optical measurement [35]. Recently, due to increasing interest
in graphene, transport properties in graphene-based fractal structures has been studied, for example in a single layer gra-
phene system under the influence of nanoscale magnetic barriers and wells, which are arranged Cantor pre-fractally or
periodically, showing that the angular threshold and angular asymmetry of the transmission spectra are closely related to the
ratio between themagnitude of the vector potential and the incident energy [36]. Standard T-matrix method has been used to
study the tunneling of Dirac electrons through graphene multilayers, particularly triadic Cantor multilayers, showing that
self-similarity and scaling properties appears in the transmittance in graphene deposited on top of slabs of SiO2 and SiC
substrates, where the Cantor series are applied [37].

In this work, we study the electronic properties of Dirac electrons, in particular the electronic density of states, subject to a
random distribution of impurities, where the on-site local impurity potentials are given by the Cantor probability distribution.
This probability energy distribution of the on-site impurity energies is a generalization of the box distribution of width a. This
generalization consists in a distribution which are defined through the sequence of subsets of the Cantor set. That is, for each
iteration k of the Cantor set, therewill be a probability density distribution for the impurity energies which is not zero in those
points defined by the subsets of the k-iteration. This distribution is called the Cantor distribution and whose cumulative
distribution function is the Cantor function [38]. In this work, the support of the Cantor set is not the interval [0,1] but the
interval

h
� a

2;
a
2

i
, been a an arbitrary energy value. The full-iterated Cantor distribution can be consider as a transition dis-

tribution from the n-component random alloy with respective probabilities c1,…, cnwith n/∞ and the infinite-component
alloy given by the box distribution of width a. In the case that the box distribution is split in several small boxes, the n�
component Dirac delta distribution will be obtained in the limit n / ∞. From this viewpoint, the Cantor distribution is a
particular choice in which the transition from the box distribution to the infinite-component Dirac delta distribution is
obtained. The density of states is computed in terms of the iteration parameter k, using the full T-matrix approximation
([39e41]). For the random Cantor distribution of the on-site impurity energies, how to evaluate the Green's function
expansion is not a trivial problem, because the moments of the probability distribution do not yield a tractable closed form
and are representable only through computational formulas [29]. In this sense, themain purpose of this work is to track in the
density of states the self-similarity of the Cantor set through the iteration parameter k.

This work will be organized as follow: In Section 2, the impurity averaged Green function will be computed for graphene.
Although this procedure has been extensively studied and published elsewhere, for a self-contained work it is reproduced. In
Section 3 the random Cantor distribution is introduced and the full T-matrix approximation for the self-energy is computed.
The electronic density of states are computed for each k and the limit k/∞ is taken.Within the results, discussions are given
and the principal findings of this paper are highlighted in the conclusion.

2. Impurity averaged Green function

The tight-binding clean Hamiltonian of graphene for nearest neighbors reads

H0 ¼ �t
XN
ri

X
dj

½jri;A〉〈ri þ dj;Bj þ jri;B〉〈ri þ dj;Aj� (1)

where a sum on the spin s is understood and t is the nearest neighbor hopping energy. The vectors connecting nearest

neighbors are d1 ¼ a

2 ð1;
ffiffiffi
3

p
;0Þ, d2 ¼ a

2 ð1;�
ffiffiffi
3

p
;0Þ and d3 ¼ a(1,0,0), where a ¼ 0.142 nm is the lattice constant. Impurities can

be included in the tight-binding description by the addition of a local energy term

Himp ¼
XNi

ri ;s
fVijri;A〉〈ri;Aj þ Vijri þ d3; B〉〈ri þ d3;Bjg (2)

where Vi are the on-site impurity potentials and Ni the number of impurities. The local energies Vi are random, characterized
by a probability distribution P(Vi). Introducing the Fourier transform
����ri〉 ¼ 1ffiffiffi

N
p P

k;s
eik,ri jk〉 [42] and then a change of basis



J.S. Ardenghi et al. / Superlattices and Microstructures 89 (2016) 398e408400
����jl¼1〉 ¼ 1ffiffiffi
2

p ðjA〉�
ffiffiffiffiffiffiffiffiffi
f�ðkÞ
fðkÞ

q
jB〉Þ and

����jl¼�1〉 ¼ 1ffiffiffi
2

p ðjA〉þ
ffiffiffiffiffiffiffiffiffi
f�ðkÞ
fðkÞ

q
jB〉Þ, which is a rotation in the sublattice space, where

fðkÞ ¼P
dj

eik,dj , Eqs. (1) and (2) reads.1

H0 ¼
X
l¼±1

X
k;s

lεðkÞjk;jl〉〈k;jlj (3)

and
Himp ¼
X
l¼±1

XN
k;q;s

Vqjkþ q;jl〉〈k;jlj (4)

where ε(k) ¼ tjf(k)j and Vq ¼PNi
R ;s

Vi
Ne

iqRi is the Fourier transform of the on-site impurity energies Vi. The new basis jk,jl〉

i

with l¼þ1 for the conduction band and l¼�1 for the valence band diagonalize the Hamiltonian H0 and the eigenvalues are
ε(k) for the conduction band and �ε(k) for the valence band. In this basis, the clean Green function G0 ¼ ðz� H0Þ�1 reads

GðlÞ
0 ¼

X
l¼±1

X
k

1
z� lεðkÞjk;jl〉〈k;jlj (5)

ðlÞ ðlÞ ðlÞ �1 2
The full Green function is G ¼ G0 ½I � HimpG0 � and the configurational averaging over the full Green function reads.

G lð Þ ¼ G lð Þ
0 þ G lð Þ

0 〈Himp〉kG
lð Þ
0 þ G lð Þ

0 〈HimpG0Himp〉kG
lð Þ
0 þ… ¼ G lð Þ

0 I � S l;kð ÞG lð Þ
0

h i�1

¼
X
l¼±1

X
k

1

z� lε kð Þ � S l;kð Þ kð Þ

�����k;Jl〉〈k;Jl

����� (6)

where S(l,k) is the self-energy of Bloch electrons in the conduction-valence basis and the superscript k indicates the number of
iterations k in the Cantor random distribution which will be explained in the next section. At this point the configurational
averaging over the local energy of the impurities can be taken. Using the T-matrix approximation (see Ref. [39]), the self-
energy can be written as3

x l;kð Þ ¼ 1
2

Xþ∞

n¼0

〈vnþ1〉kh
n
l εð Þ (7)

where x(l,k) ¼ S(l,k)/EC is the dimensionless self-energy, v ¼ V/D is the dimensionless on-site impurity energy and where

hðlÞðε;gÞ ¼
Z1
0

qdq
εþ ig� lq

(8)

which in the g / 0 limit reads

hðlÞðε;gÞ ¼ �lþ εln
�

ε

ε� l

�
� i

p

2

�����ε
����� ε

jε� lj
ε� l

�
(9)

where ε¼ E/EC is a dimensionless energy valid up to jεj < 1 and ε(k)¼ ZvFk/EC. The energy cutoff is defined as EC ¼ ZvFkCwhere
pk2C ¼ ð2pÞ2=Awhere A¼ 33a2/2 is the area of the hexagonal unit cell (see Ref. [44]) andwhereD ¼ Ak2C

2pEC
¼ 2

EC
is a constant with

1/E units. The green function of last equation for l¼ 1 gives the linear spectrum for ε> 0 and for l¼�1 the linear spectrum for
ε < 0. The factors 〈vnþ1〉k are the nþ1 moments of the Cantor probability distributionwith k-iteration. In the following section
this probability will be defined.

3. Random Cantor distribution and full T-matrix approximation

The nþ1 moments of the probability distribution P(v) are defined as
1 The same change of basis is introduced in Ref. [43] before Eq. (6).
2 The new basis jjl¼�1〉 and jjl¼1〉 do not depends on Vi, then the configurational averaging can be taken over the matrix elements.
3 In this approximation we are not taking into account nested diagrams.
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〈vn〉k ¼
Z

vnPkðvÞdv (10)

n
In general, for binary, Gaussian or rectangular distribution, Eq. (7) can be analytically solved, where 〈v 〉k has a simple
functional form in term of the moment of the distribution. In this work we want to explore a modification of the rectangular
distribution which consist in an probability distribution given by the Cantor set in the energy line. That is, the probability
distribution is not zero-valued in those points which are the Cantor set that can be defined in the [0,1] interval of the real line
(see Ref. [45]), which is the Cantor distributionwhose cumulative distribution function is the Cantor function [38]. The subset
of each iteration k can be written as

Ck ¼ ∪
3

j¼0
∪
1

i1¼0
… ∪

1

ik�1¼0

�
jþ 2bk

3k

	
(11)

where k is the kth� step of the iteration and bk ¼Pk�1
s¼13

sis.4 Using the last equation, the possible energy values of the im-
purities are random variables with a probability distribution of width a in the interval (�a/2,a/2) (see Fig. 1).5

Then, the moments 〈vn〉k are defined as follows

〈vn〉k ¼
1
Nk

X1
i1¼0

…

X1
ik�1¼0

X1
l¼0

Z a

"
2lð1�dk;0Þþ1þ2bkð1�dk;0Þð1�dk;1Þ

3k
�1

2

#

a

"
2lð1�dk;0Þþ2bkð1�dk;0Þð1�dk;1Þ

3k
�1

2

# vndv (12)

where Nk is the normalization factor and reads
Nk ¼
X1
i1¼0

…

X1
ik�1¼0

X1
l¼0

Z a

"
2lð1�dk;0Þþ1þ2bkð1�dk;0Þð1�dk;1Þ

3k
�1

2

#

a

"
2lð1�dk;0Þþ2bkð1�dk;0Þð1�dk;1Þ

3k
�1

2

# dv ¼ a

�
2
3

�k

(13)

which is the total length of the Cantor set
�
2
3

�k

multiplied by the energy width a as it is expected. Eq. (12) can be written in a

more useful form as follows

〈vn〉k ¼
1
Nk

anþ1

nþ 1
c
ðkÞ
n (14)

where the coefficients cðkÞn reads
c
ðkÞ
n ¼

X
i1¼0

1
…

X
ik�1¼0

1 X
l¼0

1
2
4 2l
1� dk;0

�þ 1þ 2bk


1� dk;0

�

1� dk;1

�
3k

� 1
2

!nþ1

�
 
2l


1� dk;0

�þ 2bk


1� dk;0

�

1� dk;1

�
3k

� 1
2

!nþ1
3
5 (15)

ðkÞ
In this work we have computed up to c12 . The odd terms are zero due to the symmetry of the probability distribution. In
Appendix Awe show how to obtain c

ðkÞ
2 and the procedure for the remaining factors cðkÞj is straightforward. The values found

for cðkÞ2 reads

c
ð0Þ
2 ¼ 1

4
c
ð1Þ
2 ¼ 13

54
c
ðk> 1Þ
2 ¼ 2k�23�3k

�
2$32þk þ 16$32kþ1 � 41

�
(16)
In Fig. 2, cðkÞ2 and c
ðkÞ
4 are plotted as a function of the iteration parameter k. A maximum is obtained for k ¼ 2, although

when the function c
ðkÞ
2 is multiplied by (3/2)k, 〈v2〉k tends to a finite value for k / ∞, 〈v2〉∞ ¼ 4a2. In typical cases such as

binary random alloy or box distribution, Eq. (7) can be solved analytically and the result is suitable to obtain the self-
consistent equation for the self-energy which takes into account nested diagrams [46]. In the case of the Cantor random
4 For k¼0 and k¼1, and b1¼0.
5 As v is a dimensionless constant, then so is a.



Fig. 1. The Cantor set box distribution for the first three iterations.
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distribution, it is not possible to obtain a closed formula for Eq. (7), then the validity of the approximation in this section is
guaranteed for a < 1. Finally, using Eq. (6), the dimensionless density of states rðkÞ ¼ �1

p

P
l¼±1

JTrðGlÞ (see Refs. [47,48]) reads

rðkÞ ¼ �1
p

X
l¼±1

2
642�xðl;kÞR � ε

�0@arctan

 
x
ðl;kÞ
R � ε

x
ðl;kÞ
I

!
� arctan

0
@
�
x
ðl;kÞ
R � εþ l

�
x
ðl;kÞ
I

1
A
1
A

þ x
ðl;kÞ
I ln

0
B@
�
x
ðl;kÞ
I

�2 þ �xðl;kÞR � εþ l
�2

�
x
ðl;kÞ
I
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3
75
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In Fig. 3, the DOS for different values of a and for k ¼ 0, k ¼ 1 and k ¼ 2 values is shown as a function of ε. For a ¼ 0.1 to
a ¼ 0.3 and for the k ¼ 0 and k ¼ 1, the DOS retain the linear dispersion relation, but for k ¼ 2 there is a spectrum rear-
rangement between a¼ 0.1 and a¼ 0.4. The behavior obtained for k > 2, for different values of the width a, only enhance the
electronic properties that appear for k¼ 2, then these results are not shown in Fig. 3. For a¼ 0.3, a large peak at ε¼ 0 is found
and two symmetric peaks for ε ¼ ±0.3 are obtained. At this point, doped graphene shows a metallic phase. In turn, for k ¼ 0
and k ¼ 1 there is no band splitting, unlike the DOS curve for k¼ 2, which shows a splitting for a > 0.4. The behavior for k¼ 0
and k ¼ 1 is the behavior expected for a box distribution and where the unique effect of neglecting the middle part of the
Fig. 2. Curves c
ðkÞ
2 and c

ðkÞ
4 as a function of the iteration parameter k.



Fig. 3. Density of states for different values of a and k ¼ 0 (black), k ¼ 1 (blue) and k ¼ 2 (red). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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uniform distribution is to enhance the DOS at the Fermi level and to reduce it at the band edges. In the other side, for k� 2 the
DOS presents two van Hove singularities that are shifted towards the band edges for larger a. The resonant peak at the Fermi
level for a¼ 0.3 and k¼ 2 is similar to those found in Ref. [49] which reflects the formation of new states located at the Fermi
level, which is understood as the formation of a new band. In Fig. 4, the DOS is shown only for k¼ 2 and larger values of a. As it
can be seen, there are two symmetric set of resonant peaks that decreasewhen a increases and three symmetric points where
the DOS vanishes, which implies a transition of a semi-metallic to metallic behavior when the Fermi level crosses the
maximum andminimum of the DOS curve. The qualitative change obtained between k� 1 and k� 2 can be traced in the ratio
c
ðkÞ
n�
2
3

�k=
c
ðkþ1Þ
n�
2
3

�kþ1≪1 for k � 1, which implies a larger contribution to the self-energy from the coefficients cðkÞn =Nk. The resonant

peak at the Fermi level can be understood by noting that rðkÞ ¼ �1
p

P
l¼±1

hIðε� x
ðl;kÞ
R ; x

ðl;kÞ
I Þ, then for ε~0, xðl;kÞI ¼ 0 and the DOS

can be written

rðkÞð0Þ ¼ �1
p

X
l¼±1

Z1
0

d
�
� lq� x

ðl;kÞ
R ð0Þ

�
qdq ¼ 〈v2〉k

�
1�

��〈v2〉k � 1
��

〈v2〉k � 1


(18)



Fig. 4. Density of states for a ¼ 0.7 (red), a ¼ 0.8 (blue), a ¼ 0.9 (black) and a ¼ 1(green) for k ¼ 2 in the interval near the Fermi level. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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where we have used that xlRð0Þ ¼ �l〈v2〉k at low order in a. The density of states at the Fermi level is zero when 〈v2〉k >1 and
rðkÞð0Þ � 2〈v2〉k when 〈v2〉k <1, then the critical point at which the system behaves as a metal is given by 〈v2〉k ¼ 1, since the
electrical conductivity is directly proportional to the density of states at the Fermi level [50]. For k¼ 0 and k¼ 1, this equation
has no solution for jaj < 1 and for k ¼ 2, aC ¼

ffiffiffiffiffiffiffiffiffi
972
4009

q
� 0:492. From Fig. 3, the metallic phase is obtained for a~0.3 which is

below the critical value aC, which implies that the next order in x(l,k) must be taken into account. The energy values where the
wavefunction is localized are found by using the dispersion relation lq ¼ ε�x(l,k)(ε) which enables to obtain the mean free
path l as the inverse of the imaginary part of the wave vector (see Ref. [51], page 155)

lðkÞ ¼ 1

2jqðkÞ
I j

� 1
pε〈v2〉k

(19)

which means that states at the band center are extended. For k ¼ 0, lð0Þ ¼ 12
pεa2, for k ¼ 1, lð0Þ ¼ 108

13pεa2 and for general lim
k/∞

lðkÞ ¼
1

4pεa2 which implies that the Cantor distribution decreases the mean free path lð∞Þ � 1
48l

ð0Þ.
To obtain an approximate behavior of the electronic properties of graphene in the full-iterated Cantor distribution, we can

proceed as follows: the coefficients c
ðkÞ
n =Nk have a finite limit for k / ∞, which correspond to the case in which the total

energy length from�a/2 to a/2 has been removed, although it is well known that an infinite number of energy values remains
which are available for the random impurities. Because we have computed c

ðkÞ
n up to n ¼ 12, the limits obtained are

FðnÞ ¼ lim
k/∞

ac
ðkÞ
2n

Nk
¼
�
12;

3037
32

;
2220241
3328

;
24805792449

5457920
;
178732981355897

5859622912
;
24264081186973132831

119770692321280
;…

	
(20)
Because it is not possible to obtain an explicit formula for cðkÞn , neither for the sequence of numbers of the limit ac
ðkÞ
n

Nk
for

k/∞, then a different approach must be taken. It is possible to obtain the best-fitting curve for the set of points obtained in
last equation, in particular the following function has been chosen

FðnÞ ¼ lim
k/∞

ac
ðkÞ
n

Nk
�
�
aþ bnþ cn2

�
edn þ f þ hnþ pn2 þ tn3 (21)

where f ¼ 1.01011, h ¼ 1.02286, p ¼ 1.04611, t ¼ 1.06653, d ¼ 1.61276, a ¼ 1.0444, b ¼ 0.68461 and c ¼ 0.203203.
Using the fitting function of the last equation, the self-energy can be computed using Eq. (7) as follows (see Fig. 5)

xðl;∞Þ¼a
Xþ∞

n¼1



ahðlÞ

�2n�1

2nþ1
FðnÞ

¼ 1
24ah2

"
8a3h3t4F3

�
3
2
;2;2;2;1;1;

5
2
;a2h2

�
þ6e�d=2ð4a�2bþcÞtanh�1

�
ahed=2

�
þ6tanh�1ðahÞð4f�2hþpÞ

þ6ah

 
�4a�a2h2edð2b�3cÞ�2bþc


a2h2ed�1
�2 �4fþa2h2ð3p�2hÞþ2h�p


a2h2�1
�2

!#
(22)

where pFqða1;…; ap; b1;…bq; zÞ is the generalized hypergeometric function of p parameters of type 1 and q parameters of type
2. Finally, using Eq. (17) and Eq. (22), the density of states for different values of a can be obtained as it is shown in Figs. 6e8.

In the limit k / ∞, the electronic density of states at the Fermi level increases between a ¼ 0 and a ¼ 3 (see Fig. 6) and a
band splitting occurs for a > 0.3 as it can be seen in Figs. 7 and 8. It can be seen that a van Hove singularity in the conduction
and valence band for a > 0.3 appears and its position gradually shifts away the band edge. In general, in normal 2D systems



Fig. 5. Left. Residuals of the fitting curve for the first points used to obtain the best approximation to F(n). Right. Fitting curve and points of F(n).

Fig. 6. Density of states for different values of a between 0 and 0.31 and for k / ∞.
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with disorder, a band tail appears above the band edge in the valence band and the conduction band. Then the density of
states in the presence of defects is reduced for lower energies than the Fermi energy because more states are available in the
band tail. In graphene, the valence and conduction band touches at the Dirac point, then the band tail cannot be formed,
which produces an enhancement of the density of states below and above the Fermi level when the parameter a increases. In
Fig. 7, the system approach a Mott transition. This transition from a metal to a band insulator is the precursor of a divergence
in the DOS at the Fermi level. The main difference is that after the driven Mott transition, the Cantor distribution signature
appears below and above the Fermi level as it can be seen in Fig. 8. For larger a, new resonances appear symmetrically to the
Fermi level that split again in two quasi-localized states. The fact is that the electronic density of states must reproduce in
some sense the purely singular spectrum of the impurities that has infinitely many holes. The modifications that the Cantor
impurity distribution introduces in the elementary excitation spectrum can lead to a spectrum rearrangement in the vicinity
of the Fermi level position due to the presence of the successive non-overlapping dispersion branches of the Cantor subset in
the spectrum, which can be separated by amobility gap. This overlap results in a radical alteration of the spectral properties of
graphene in a Cantor distribution after reaching theMott transition, which is especially pronounced near the Fermi level [52].

Before concluding we point out that our perturbative calculation of the electronic density of states assumes that the
system remains homogeneous in the presence of impurities. But it was shown that graphene carriers develop strong density
inhomogeneous at low enough carrier densities in the presence of impurities due to the breakdown of linear scattering
([53,54]). A rough approximation of the effects can be done if we consider the concentration of impurities c ¼ Ni/NA, the
effective decay radius of an impurity state is rimp � 〈v2〉k ([55,56]).

6 In turn, the average distance between impurities depends
6 In those papers, rimp~〈v〉k, but for the Cantor distribution, the first contribution is 〈v2〉k . If we consider the coherent potential approximation, the
effective medium will contain only one impurity and 〈v2〉k will play the role of the effective potential.



Fig. 7. Density of states for a between a ¼ 0.34 and a ¼ 075 for k / ∞.

Fig. 8. Density of states for different values of a between 0.75 and 0.95 for k / ∞. The signature of the Cantor distribution can be located around the Fermi level,
where a set of resonances are shown.
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on the impurity concentration as 〈r〉~1/c. Then, for 〈r〉~rimp an overlap of the impurity states will be possible, which will
activate the spectrum rearrangement. Using that 〈v2〉k ¼ a2

4 3
�2k�1ð2,32þk þ 16,32kþ1 � 41Þ, then critical concentration reads

cðkÞcr ¼ 16

a43�4k�2


2,32þk þ 16,32kþ1 � 41

�2 (23)

for k / ∞, the critical concentration of impurities reads
cð∞Þ
cr ¼ 16

a4
(24)
This critical concentration generates an impurity band which will manifest in the electronic density of states around the
Fermi level. The key signature of the random Cantor distribution can be found in the impurity band formed below the Fermi
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level, which shows small oscillations in the electronic density of states, which are given by the scale-periodic nature of the
Cantor set.

4. Conclusions

The study of the defects in graphene-based materials is a very important field, especially for the purpose of fabricating
devices, such as superlattices or multilayers. In turn, disorder plays a central role in all the observed electronic and magnetic
properties of the material, then it is important to focus the way in which structured disorder can enhance or decrease the
desired properties. In this work we have studied the electronic properties of Dirac electrons in graphene under a random
Cantor distribution for the on-site energies of the impurities located at random positions. We have used the full T-matrix
approximation to obtain the electronic density of states for different values of the iteration parameter k of the Cantor set. For
values of k � 2, the DOS present a transition from a metallic phase to an insulator phase when the width a is increased. This
metal-insulator transition appears as a Mott transition where a band splitting occurs after a divergence of the DOS at the
Fermi level. In turn, it was shown that in the k/∞ limit, this behavior is enhanced, but in the insulator phase, the signature
of the full-iterated Cantor distribution appears below and above the Fermi level as a sequence of resonances that splits in two
more resonances when a reaches the limiting value a ¼ 1. In turn, we have found the critical concentration of impurities at
which the random impurities overlap and forms the impurity band. This critical concentration depends on the width a as a�4

and has a minimum value of 16/a4 for k/∞. These results are important to obtain the most important signatures of fractal-
based structures in solid state physics.
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Appendix

In this Appendix, the first coefficient cðkÞ2 is computed. Using Eq. (15)

c
ðkÞ
2 ¼

X
i1¼0

1
…

X
ik�1¼0

1 X
l¼0

1
2
4 2l
1� dk;0

�þ 1þ 2bk
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�
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�
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� 1
2

!3

�
 
2l
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� 1
2

!3
3
5 (25)
The term inside the square bracket can be expanded in powers bk as follows

P
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1
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for k ¼ 0

¼ 13
54

for k ¼ 1

¼ 1
2
27�k

h
40þ 32kþ1 � 2,3kþ2

i
� 4,31�3k

�
3k � 3

�
bk þ 8,31�3kb2k for k>1

(26)

X1 X1 X1 h � � i

c
ðkÞ
2 ¼

i1¼0

…

ik�1¼0 l¼0

� 2$3�2k 3k � 3þ 2dk;0 þ 8$3�2kbk (27)

P P

By noting that 1

i1¼0…
1
ik�1¼01 ¼ 2k�1 and

X1
i1¼0

…

X1
ik�1¼0

bk ¼ 3$2k�2 3k � 1
� �

(28)

and
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X1
i1¼0

…

X1
ik�1¼0

b2k ¼ 9$2k�5 1� 4$3k þ 31þ2k
� �

(29)

then
c
0ð Þ
2 ¼ 1

4
; c

1ð Þ
2 ¼ 13

54
; c

k> 1ð Þ
2 ¼ 2k�23�3k 2$3kþ2 þ 16$31þ2k � 41

h i
(30)

ðkÞ
For the different values of cn , the main procedure is the same, the only complex algebraic manipulation is to computeP1
i1¼0…

P1
ik�1¼0b

n
k , which can be done with different computational software programs. In Section II we have computed up to

c
ðkÞ
12 to obtain reliable results.
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