10th International Symposium on Process Systems Engineering - PSE2009 Rita Maria de Brito Alves, Claudio Augusto Oller do Nascimento and Evaristo Chalbaud Biscaia Jr. (Editors) © 2009 Elsevier B.V. All rights reserved.

Multi objective optimization using Life Cycle Environmental Impact and Cost in the Operation of Utility plants

Pablo Martínez, Ana María Eliceche

Departamento de Ingeniería Química, Universidad Nacional del Sur, PLAPIQUI-CONICET, Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina.

Abstract

Environmental and economic objective functions are used simultaneously to select the operating conditions of a steam and power plant. Different methodologies to solve multi objective optimization problems were implemented successfully. The life cycle potential environmental impact and the operating cost of the power plant are minimized simultaneously. A methodology is presented to estimate the potential environmental impacts during the most important life cycle stages associated with imported fuel and electricity in the utility plant. Mixed Integer Non Linear multi objectives problems are formulated and different strategies are implemented and successfully solved in GAMS.

Keywords: multi objective optimization, life cycle environmental impact, utility plant.

1. Introduction

The reduction of environmental impact of process operations is one of the imperative challenges to achieve sustainable development in process industry for the current century; also economical and social objectives are imperative issues for sustainability. Economic objectives have been used in process system engineering. However, environmental and economical objectives do not follow comparable behaviours. While the economic implication of a process is minimized, the associated environmental impact rises and an environmental friendly process is often cost intensive. This fact evidences the need of solving problems with more than one objective, that is, to find solutions that satisfy environmental and economic objectives at the same time. This solutions could be found formulating Multi objective Optimization Problems in the decision making process. The multi objective optimization problem could, in theory, be solved using similar methods as those employed in single objective optimization problems, converting the multiple objectives into a single objective. Multi-objective optimization applied to environmental and economic objectives has been treated by authors like Ciric and Huchette (1993) minimizing the amount of waste and the net profit of an ethylene glycol production plant. Dantus and High (1999) proposed a method to convert a bi objective optimization problem into a single objective optimization problem; the method proposed is a variation of the utopia point distance minimization, including discrete variables to select the type of reactor to be used in the methyl chloride superstructure plant design. Pistikopoulos and Hugo (2005) have treated multi objective optimization with environmental and economic objectives applied to supply chain network design and planning using the e-constraint method.

In the present work the operating conditions of a steam and power plant are selected to minimize life cycle environmental impact and operating cost simultaneously solving a multi objective optimization problem. The environmental objective is the life cycle environmental impact associated with solid wastes, gaseous and liquid emissions of a steam and power plant. In the life cycle context, the battery limits of the steam and power plant need to be extended in order to include emissions of imported natural gas and electricity generated by nuclear, hydroelectric and thermoelectric plants. The operating cost includes costs of imported electricity, natural gas feed, makeup water and water treatment. A Mixed integer non linear multi objective optimization problem is formulated and solved in GAMS (Brooke et al, 2003).

2. Environmental and Economic Objective Functions

2.1. Potential Environmental Impact Evaluation

The Potential Environmental Impact (PEI) function considered is a multi objective function itself, since nine environmental impact categories are considered: global warming, acidification, ozone depletion, photo oxidant formation, eutrophication, fresh water ecotoxicity, human toxicity, source depletion and the impact due to ionizing radiation. The Potential Environmental Impact is calculated using the Guinée et al. (2002) methodology. The contribution of the emission of a pollutant **k** to a given environmental impact category **j** is evaluated multiplying the pollutant **k** flow rate $\mathbf{F}_{\mathbf{k}}$ emitted into the environment by a characterization factor $\gamma_{\mathbf{kj}}$ published by Guinée et al. (2002). This characterization factor represents the effect that chemical **k** has on the environmental impact category **j**. Hence, the Potential Environmental Impact, PEI, is calculated as follow:

$$\mathbf{PEI} = \sum_{\mathbf{j}} \sum_{\mathbf{k}} \boldsymbol{\alpha}_{\mathbf{j}} \times \mathbf{F}_{\mathbf{k}} \times \boldsymbol{\gamma}_{\mathbf{k},\mathbf{j}}$$
(1)

Where α_j represent the weighting factors for each environmental impact category **j**. More information can be found in Eliceche et al. (2007). Eq.1 transforms the pollutants emissions flow rates into potential environmental impacts.

2.1.1. Utility Plant Environmental Impact

The emissions of the steam and power plant are evaluated from the modelling of the main processes formulated in GAMS. The emissions come mainly from the combustion in the boilers of a mixture of natural gas, F_{ng} and residual gas, F_{rg} . Liquid emissions of purge streams, F_p , in the boilers and cooling system are also considered. The pollutants emissions from the utility plant (UP) are calculated as follow:

$$\mathbf{F}_{\mathbf{k}}^{\mathbf{UP}} = \mathbf{F}_{\mathbf{gn}} \times \mathbf{e}_{\mathbf{k},\mathbf{ng}} + \mathbf{F}_{\mathbf{rg}} \times \mathbf{e}_{\mathbf{k},\mathbf{rg}} + \mathbf{F}_{\mathbf{p}} \times \mathbf{e}_{\mathbf{k},\mathbf{p}}$$
(2)

Where $\mathbf{e}_{\mathbf{k},\mathbf{ng}}$ is the emission factor for pollutant \mathbf{k} due to the combustion of natural gas,

 $\mathbf{e}_{\mathbf{k},\mathbf{rg}}$ is the corresponding emission factor for residual gas combustion and $\mathbf{e}_{\mathbf{k},\mathbf{p}}$ is the

pollutant emission factor for liquid emissions. The emissions factors express the amount of pollutant **k** emitted by unit mass of natural gas, residual gas and liquid stream, respectively. The CO_2 emission due to natural gas and residual gas combustion are estimated stoichiometrically with the gas composition following the IPCC 2001

recommendations. Nearly 100 gaseous pollutants emissions are estimated from AP-42 report (EPA, 1998). Emissions from liquid discharges were estimated from the Electrical Power Research Institute report (2000).

2.1.2. Life Cycle Environmental Impact

Life cycle approach considers emissions during the entire life cycle of a product or service accounting by emissions from raw material extraction to waste disposal. In the case study presented in this work, the life cycle emissions are considered for the natural gas feedstock and the imported electricity needed to move some electrical motors in the superstructure of the steam and power plant. Pollutant flow rate for natural gas (NG) life cycle $\mathbf{F}_{\mathbf{k}}^{\mathbf{NG}}$ is calculated in the following equation:

$$\mathbf{F}_{\mathbf{k}}^{\mathbf{NG}} = \mathbf{F}_{\mathbf{ng}} \times \sum_{\mathbf{l}} \mathbf{e}_{\mathbf{k}}^{\mathbf{l}} \qquad \mathbf{l} = 1, \dots, \mathbf{l}_{\mathbf{ng}}$$
(3)

Where e_k^l is the emission factor for pollutant k in the life cycle stage l, l_{ng} is the total number of life cycle stages considered for the natural gas fuel cycle: exploration, extraction and transportation stages. As the residual gas is produced in the ethylene plant, no life cycle stage has been considered for it.

For imported electricity (IE) life cycle, emissions have been assessed through the life cycle of different electricity generation plants. The electricity generation sector in Argentina has contributions from thermoelectric, hydroelectric and nuclear plants. Thermoelectric power generation consumes coal, oil and natural gas as fuels; nuclear power generation consumes natural uranium fuel. The estimation of pollutant emissions in the electric power generation includes the following life cycle stages: extraction and processing of raw materials, transport, refining (where it is applicable) and electricity generation itself:

$$\mathbf{F}_{\mathbf{k}}^{\mathbf{IE}} = \sum_{\mathbf{q}} \sum_{\mathbf{l}_{\mathbf{q}}} \mathbf{W}_{\mathbf{q}} \times \mathbf{e}_{\mathbf{k},\mathbf{q}}^{\mathbf{l}_{\mathbf{q}}} \qquad \mathbf{l} = 1, \dots, \mathbf{l}_{ie}$$
(4)

Where W_q is the electricity imported and generated with technology q, l_q superscript accounts life cycle stage l in electricity generated by option q, finally $e_{k,q}^{l_q}$ is the corresponding emission factor of pollutant k in electricity generated with option q, for the life cycle stage l_q . The life cycle stages considered are: (i) exploration, extraction, refining and transport of natural gas, oil, coal and uranium consumed in thermoelectric and nuclear plants; (ii) submerged biomass decay in hydroelectric plants (iii) waste treatment and disposal for nuclear plants and (iv) transport in the construction stage of hydroelectric and nuclear plants.

The utility plant potential environmental impact, PEI^{UP} is calculated as follows:

$$\mathbf{PEI}^{\mathbf{UP}} = \sum_{\mathbf{j}} \sum_{\mathbf{k}} \boldsymbol{\alpha}_{\mathbf{j}} \times \mathbf{F}_{\mathbf{k}}^{\mathbf{UP}} \times \boldsymbol{\gamma}_{\mathbf{k},\mathbf{j}}$$
(5)

The component k life cycle emissions F_k^{LC} are estimated adding the component k emissions in the utility plant, life cycle of imported natural gas and electricity:

$$\mathbf{F}_{\mathbf{k}}^{\mathbf{LC}} = \mathbf{F}_{\mathbf{k}}^{\mathbf{UP}} + \mathbf{F}_{\mathbf{k}}^{\mathbf{NG}} + \mathbf{F}_{\mathbf{k}}^{\mathbf{IE}} \tag{6}$$

The life cycle potential environmental impact is evaluated as follows:

$$\mathbf{PEI}^{\mathbf{LC}} = \sum_{\mathbf{j}} \sum_{\mathbf{k}} \boldsymbol{\alpha}_{\mathbf{j}} \times \mathbf{F}_{\mathbf{k}}^{\mathbf{LC}} \times \boldsymbol{\gamma}_{\mathbf{k},\mathbf{j}}$$
(7)

Global warming due to combustion emissions is the most relevant environmental category for steam and power plants and for fossil fuels electricity generation.

2.1.3. Economical Objective Function

The operating cost of the utility plant includes costs of imported electricity (IW), natural gas feed (NG), makeup water (MW) and water treatment (WT); where c_{ng} , c_q , c_{MW} and c_{WT} are the cost coefficients:

$$\mathbf{C} = \mathbf{F}_{ng} \times \mathbf{c}_{ng} + \left(\sum_{q} \mathbf{W}_{q}\right) \times \mathbf{c}_{W} + \mathbf{F}_{MW} \times \mathbf{c}_{MW} + \mathbf{F}_{WT} \times \mathbf{c}_{WT}$$
(8)

A detailed mathematical model of the utility plant operation is presented in Eliceche et al (2007).

3. Multi objective Optimization with Environmental and Economic Objectives

The multi objective (MO) optimization is a system analysis approach to problems with conflictive objectives. A key factor of MO optimization is that rarely exist a single solution that simultaneously optimizes all the objectives. In its place, there is a set of solutions where one objective cannot be improved except at expense of another objective. This set of compromise solutions are generally referred as non-inferior or Pareto optimal solutions. A variety of strategies to solve multi objective optimization problems exist, that can be found in Alves et al (2007). The general approach consists in converting the multiple objectives into a single objective. Some of these methods are: weighted sum, utopia point distance minimization, e-constraint method and global criteria method. The general formulation of a bi objective optimization problem considering continuous and discrete variables follows:

$$\underset{\mathbf{x},\mathbf{y}}{\text{Min } \mathbf{Z} = \mathbf{Z}[\text{PEI}(\mathbf{x},\mathbf{y}), \mathbf{C}(\mathbf{x},\mathbf{y})]$$

s.t:
$$h(x) = 0$$

 $g(x) + A(y) \le 0$
 $x^{LB} \le x \le x^{UB}$
 $x \in \mathbb{R}^n$
 $y \in \{0,1\}^m$

P1

Where x and y are the continuous and binary optimization variables, respectively. Superscripts U and L, indicates upper and lower bounds on vector x, respectively. The equality constraints h(x) = 0 are the system of non-linear algebraic equations that represent the steady state modelling of the process plant, including mass and energy balances; enthalpy and entropy prediction. The inequality constraints $g(x) + A(y) \le 0$

Multiobjective Optimization using Life Cycle Environmental Impact and Cost in the Operation of Utility Plants

represent logical constraints, minimum and maximum equipment capacities, operating and design constraints, etc. The A matrix includes linear relations between binary variables such as logical constraints.

Different strategies to solve multi objective optimization problems have been implemented successfully. The multi objective function Z in problem P1 for the global method presented by Dantus and High (1999) follows, with the nomenclature presented in section 2:

$$\mathbf{Z} = \boldsymbol{\omega}_1 \times \left[\frac{\mathbf{PEI} - \mathbf{PEI}^*}{\mathbf{PEI}^{**} - \mathbf{PEI}^*} \right]^{\mathbf{p}} + \boldsymbol{\omega}_2 \times \left[\frac{\mathbf{C} - \mathbf{C}^*}{\mathbf{C}^{**} - \mathbf{C}^*} \right]^{\mathbf{p}}$$
(9)

Where ω_1 and ω_2 are weighting factors, these preference weights ω_i are used to represent the relative importance of each objective. The decision-maker's preferences are also expressed in the compromise index \mathbf{p} ($1 \le \mathbf{p} \le \infty$), which represents the decision-maker's concern with respect to the maximal deviation from the utopia point. As a result, the non-inferior solutions defined within the range $1 \le \mathbf{p} \le \infty$ correspond to the compromise set from which the decision maker still has to make the final choice to identify the best compromise solution (Dantus and High, 1999). The single asterisk indicates the minimum values of a given objective function solving a single objective optimization problem, while double asterisk indicates the alternative objective function value obtained. The objective functions used are life cycle potential environmental impact (PEI) given in Equation 6 and operating cost (C) given in Equation 8.

4. Numerical Results

A rigorous modelling of the utility plant is formulated in GAMS, including the power and steam demands of the ethylene plant (Eliceche et al, 2007). The continuous operating variables selected are temperature and pressure of the high, medium and low pressure steam headers and the deareator pressure. Binary operating variables are introduced to represent discrete decisions such as the selection of: (i) alternative pump drivers such as electrical motors and steam turbines and (ii) boilers which are on or off, and their auxiliary equipment such as feed pumps and air fans. Thus a multi objective Mixed Integer Nonlinear Programming problem is formulated and solved in GAMS.

Different strategies were implemented to solve the multi objective problem The solution point reported in Table 1 was obtained with the Dantus and High (1999) method and the following parameters for equation 9: $\omega_1=0.1$, $\omega_2=0.9$, p=1. The following GAMS options were used: DICOPT as the outer approximation algorithm; CONOPT3 to solve the Non Linear Programming sub problem and CPLEX to solve the Mixed Integer Linear Programming sub problem.

Objective Functions		Initial Point	Solution point	Reductions
PEI ^{LC}	(PEI / h)	33627.33	29581.88	12 %
Cost	(U\$A / h)	561.84	470.97	16 %

Table 1. Multiobjective problem solution.

Significant reductions in the order of 12 % in the life cycle environmental impact and 16 % in the operating cost can be achieved selecting the operating conditions with the methodology proposed. Regarding the selection of pump's drivers, steam turbines are chosen rather than electrical motors, due to the fact that the environmental impact to

power generated ratio is smaller in the steam and power plant than in the generation of the imported electricity. This is due to the fact that natural gas is burned with residual gas from the demethanizer column. The residual gas is a Hydrogen rich stream, having higher combustion heat and lower combustion emissions than natural gas or any other fossil fuel. The operating cost is also cheaper with steam turbines than with electrical motors. The number of the boilers in operation is reduced from four to three, due to a proper selection of temperature and pressure of steam headers, mainly the high pressure steam header.

This is a process where improving process efficiency, environmental impact and cost are reduced simultaneously. They are not conflictive objectives. This is not the case if the environmental impact evaluation is reduced to the battery limits, where minimizing environmental impact and operating cost leads to different solutions mainly regarding the selection of alternative drivers.

5. Conclusions

A methodology has been presented to select the operating conditions minimizing simultaneously life cycle environmental impact and operating cost, solving a mixed integer nonlinear multi objective optimization problem. Imported natural gas and electricity life cycle environmental impacts have been estimated. Different strategies to solve multi objective optimization problems were implemented successfully. The ethylene steam and power plant analyzed, has a relevant contribution to combustion emissions, global warming, consumption of non renewable fossil fuels and operating cost. Thus, significant improvements in the plant operation can be achieved as shown in Table 1, with the strategy presented. This is a plant where improving process efficiency, environmental impact and cost are reduced simultaneously. It is also very important to extend the battery limits to include life cycle analysis, when environmental objectives are used to support a decision making process.

References

- A. Brooke, D. Kendrick, A. Meeraus and R. Raman, 2003, GAMS development Corporation. A user guide.
- A. Ciric and S. Huchette, 1993, Multiobjective Optimization Approach to Sensitivity Analysis: Waste Treatment Costs in Discrete process Synthesis and Optimization problems, Ind. Eng. Chem. Res., 32, 2636-2646.
- A. Eliceche, S. Corvalan, P. Martinez, 2007, Environmental life cycle impact as a tool for process optimization of a utility plant, Comp.& Chem. Eng., 31, 648-656.
- Electrical Power Research Institute, 2000, Aqueous discharges from steam electric power plants, data evaluation, Updated Report. http://www.epri.com
- E. Pistikopoulos and A. Hugo, 2005, Environmentally conscious long-range planning and design of supply chain networks, Journal of Cleaner Production, 13, 1471-1491.
- J. Guinée, R. Heijungs, G. Huppes, R. Kleijn, A. Koning, L. van Oers, A. Sleeswijk, S. Suh, H. Udo de Haes (eds.), 2002, Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. Kluwer Academic Publishers, Dordrecht.
- IPCC. Climate Change 2001: the scientific basis. Intergovernmental Panel on Climate Change. Cambridge University.
- M. Alves and J. Climaco, 2007, A review of interactive methods for multiobjective integer and mixed-integer programming, European J. of Operatinal Research, 180, 99-115.
- M. Dantus, K. High, 1999, Evaluation of waste minimization alternatives under uncertainty: a multi objective optimisation approach, Comp. Chem. Eng. 23, 1493-1508.
- U.S. Environmental Protection Agency, 1998, AP-42. Compilation of air pollutant emission factors.