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Recently, there has been renewed interest in the coupling between
geometry and topological defects in crystalline and striped systems.
Standard lore dictates that positive disclinations are associated with
positive Gaussian curvature, whereas negative disclinations give
rise to negative curvature. Here, we present a diblock copolymer
system exhibiting a striped columnar phase that preferentially
forms wrinkles perpendicular to the underlying stripes. In free-
standing films this wrinkling behavior induces negative Gaussian
curvature to form in the vicinity of positive disclinations.

disclinations and curvature | diblock copolymer | smectic |
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Non-Euclidean geometry has been shown to be one of the
most robust mechanisms used to prescribe the configuration

of defects in crystalline (1, 2) or striped phases (3–5). Gaussian
curvature can also stabilize more exotic defects, including scars
(6), fractionalized defect charges (7), and pleats (8). Likewise, if
a 2D crystal is allowed to buckle out of the plane, the elastic en-
ergy associated with isolated disclinations can be strongly reduced
by screening their strain fields through curvature, trading off
stretching for bending energy (9, 10). Depending on the sign of the
topological charge, isolated defects can deform the membrane
into cone- or saddle-shape configurations, acting as sources of
Gaussian curvature (9, 11). Here we demonstrate experimen-
tally, theoretically, and through simulations that the molecular
splay distortions associated with disclinations in a free-standing
smectic membrane act as sources of Gaussian curvature, resulting
in a pattern of wrinkles in the membrane that form perpendicular
to the underlying smectic layers. Dramatically, wrinkling changes
the very nature of the curvature-defect coupling, making positive
disclinations sources of negative curvature in contrast to intuition
gained from geodesic domes and soccer balls. By dictating the
distribution of topological defects, it should be possible to control
the specific non-Euclidean geometry of the membrane.
The mechanical anisotropy of striped phases can give the bulk

material markedly different properties, depending on the rela-
tive orientation of the stiffer direction with respect to the un-
derlying stripes. Although the case in which both the stiffer
direction and the stripes are parallel has been previously studied
(3, 4), we turn our attention to the peculiarities of the perpendicular
case, in particular the preference of the perturbed system to form
wrinkles orthogonal to the stripes. Defects, ubiquitous in 2D sys-
tems, also signal locations of ill-defined elasticity and thus function
as sources of geometry in a free-standing membrane. We note that
purely molecular splay can drive this unusual behavior in nematic
elastomers due to anisotropic swelling (12–15). However, the
present system relies on wrinkle formation due to anisotropic elastic
moduli as a means of coupling curvature to disclinations.
The two main obstacles to studying the coupling between dis-

clinations and elastic deformations are accurately controlling the
distribution of disclinations and simultaneously measuring both
the height and the smectic phase of a free-standing membrane.

Both challenges can be overcome by studying thin films of cylin-
der-forming block copolymers; a monolayer of cylinders behaves
as a 2D smectic, wherein the density of defects can be controlled
quite easily through coarsening. At a constant temperature above
the glass transition temperature (Tg) of both blocks, the average
distance between disclinations measured by the orientational
correlation length ξ2 scales with time as ξ2 ∼ t1=4 (16). In particular,
we consider the cylinder-forming block copolymer polystyrene-
block-poly(ethylene-alt-propylene) (PS-PEP). This polymer was
chosen in part for its thermal properties, as room temperature
is below the Tg of the polystyrene (PS) block and above the Tg
of the poly(ethylene-alt-propylene) (PEP) block. The differ-
ence between the moduli of the glassy PS cylinders and the rub-
bery PEP matrix gives rise to a strong contrast in atomic force
microscopy (AFM) images.
Spin coating a thin layer of polymer on a dissolvable surface en-

sured a uniform monolayer of cylinders. After thermally annealing
the membrane to achieve the desired defect density, the samples
were quenched to room temperature, arresting any coarsening. By
carefully immersing the sample in water, the membrane cleanly
separated from the substrate. The freely floating film was captured
on a transmission electron microscopy (TEM) grid and viewed
through AFM, where height fluctuations and smectic phase could
be measured simultaneously (Fig. 1A). All measurements were in
a regime where the TEM grid spacing 25 μm � ξ2 > dsm = 21 nm,
where dsm is the center to center spacing of the cylinders in the
diblock. Upon being released from the flat substrate, the free-
standing membrane buckled. The resulting surface consisted of
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wrinkles with a well-defined wavelength. Multiple scans of each
film ensured that neither thermal fluctuations nor hydration gra-
dients were responsible for the wrinkles. To study the coupling
between smectic order and the membrane topography, mem-
branes were fabricated with ξ2 spanning nearly an order of mag-
nitude, from 42 nm to 244 nm (Fig. 1 B–D and Fig. S1).
In concert with the experimental system, we use a simple

model to explore the effects of in-plane elastic stresses due to
topological defects on the geometry of the membrane. Com-
bining the Helfrich–Canham model of a fluid membrane and the
classical Brazovskii model describing striped phases accounts for
both smectic order and membrane elasticity (11). The equilib-
rium configuration of unstructured fluid membranes has been
extensively studied since the pioneering papers by Helfrich (17)
and Canham (18). According to the Helfrich–Canham theory
(10, 19, 20), the membrane free energy can be described by

FHC =
Z ffiffiffi

g
p

d2x
�
kb
2
H2 +

kg
2
K + σ

�
, [1]

where g is the metric tensor, H and K are respectively the mean and
Gaussian curvatures, kb and kg are bending modulus and Gaussian
rigidity, respectively, and σ is the constant surface tension. Although
the Gaussian curvature term is normally ignored as a purely topo-
logical term, the free boundaries in these membranes allow for
varying amounts of Gaussian curvature to be expressed. Likewise,
the ordered structure of diblock copolymers can be described to first
order by a Brazovskii model that accounts for long- and short-ranged
interactions (21). Taking into account the membrane geometry, the
Brazovskii free energy for a striped diblock copolymer is given by
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where ψðrÞ is the smectic order parameter, g is the metric of the
membrane, t= ðTc −TÞ=Tc is the reduced temperature, with Tc
denoting the critical temperature, and the coupling between mem-
brane shape and smectic order parameter enters through the metric
of the membrane and the Laplace–Beltrami operator ∇2

LB =ð1= ffiffiffi
g

p Þ∂i ffiffiffi
g

p
gij∂j (22). Here we use the standard summation index

Fig. 1. (A) Schematic showing the preparation of freestanding smectic membranes. A 30-nm layer of cylinder-forming PS-PEP was deposited on a 50-nm layer
of sucrose. The monolayer of cylinders coarsens according to the law ξ2 ∼ t1=4 at 363 K to achieve the desired density of defects. After the membrane is
released from the substrate, it is captured on a TEM grid. (B–D) AFM images of the freestanding films simultaneously measure height and the location of the
cylinders. Three samples with orientational correlation lengths ξ2 = 42 nm (B) ξ2 = 217 nm (C), and ξ2 = 244 nm (D) show the coupling between the smectic
order and the membrane geometry. The coloration of each of the (2 μm)2 images indicates the local smectic layers. (E and F) Likewise, two simulated
membranes with (E) ξ2 = 11 nm and (F) ξ2 = 67 nm have average wrinkle wavelengths of 206 nm and 203 nm, respectively. The simulated membranes are
calibrated such that the average smectic layer spacing dsm = 21 nm matches the experimentally determined value.
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convention. At low temperatures, FB favors the formation of the
smectic phase with a well-defined wavevector k0 = 1=

ffiffiffi
2

p
. A linear

instability analysis relates the Brazovskii free energy to the standard
smectic free energy, Fsm = ð1=2Þ R d3x½Bð1− ð∇ϕÞ2Þ+ K1ð∇ ·nÞ2�,
where the smectic layers are defined by level sets of the phase field
ϕðrÞ= nd,   n∈Z, the in-plane director field is given by n=∇ϕ=
j∇ϕj, and B and K1 are respectively the compression modulus and
splay constant. Both smectic elastic constants can be written as
functions of the reduced temperature (SI Text and ref. 23).
Adding fluid membrane and smectic contributions to the free
energy, we arrive at the final Hamiltonian: Fψ ,h =FHC +FB.

In addition to the analytic treatment of the static equations, we
also study the coupling between membrane geometry and smectic
order by numerically solving the dynamical model

∂ψ
∂t

=−∇2
LB

�
∂Fψ ,h

∂ψ

�
+ ηψ ðr, tÞ,  

∂h
∂t

=−
∂Fψ ,h

∂h
+ ηhðr, tÞ, [3]

where ηψ ðr, tÞ and ηhðr, tÞ are random Gaussian noise fields satis-
fying the fluctuation dissipation theorem (11). As in the experi-
ment, ψðr, tÞ is first evaluated in a planar system (h= 0) to obtain
the desired defect density. Immediately following a quench below

A B C

D E F

G

Fig. 2. (A–E) The peaks (red) and valleys (blue) of wrinkles with relation to the underlying smectic order. As ξ2 increases, the wrinkles and smectic layers becomemore
perpendicular. The membrane with the smallest ξ2 = 42 nm (A) has a wavelength of λ= 385 nm, whereas the membranes with larger correlation lengths, ξ2 = 217 nm
(B) and ξ2 =244 nm (C), both have a wavelength of λ≈ 593 nm. (D) Similarly, the simulated membrane with ξ2 = 11 nm has an average wrinkle wavelength of 206 nm.
The wrinkles are quite disordered on the length scale of the smectic order. (E) In the opposite limit, the orientational correlation length is much greater than the block
copolymer period, ξ2 = 67 nm� dsm = 21 nm. (F) The tendency for the wrinkles to align perpendicular to the smectic with increasing ξ2 can be seen in this histogram.
(G) In these membranes, the wrinkle wavelength q= 2π=λ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K1=kb

p
scales as the square root of the ratio between the splay K1 and bend kb elastic constants.
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Tc, the equilibrium configurations of hðr, tÞ and ψðr, tÞ are calcu-
lated. Here, we analyze the results from two simulated membranes
with orientational correlation lengths ξ2 = 11 nm (Fig. 1E) and
ξ2 = 67 nm (Fig. 1F).
There are two distinctly different regimes of membrane be-

havior, depending on the orientational correlation length or,
equivalently, the average distance between defects. In the mem-
brane with the smallest orientational correlation length ξ2 = 42 nm,
the wrinkles have an average wavelength of λ= 385 nm, and they
appear to be quite disordered (Fig. 2A). In the membranes with
much larger values of ξ2, not only does the wavelength change, but
also the coupling between the in-plane smectic order and large-
scale membrane deformations begins to show up. One might ex-
pect the elastic anisotropy due to the difference between cylinders
and matrix to penalize bending along the cylinders, causing the
wrinkles to form parallel to the underlying smectic layers (3, 4).
However, the wrinkles are perpendicular to the smectic in mem-
branes with ξ2 ranging from 217 nm to 244 nm. Remarkably, they
all have the same wavelength of λ≈ 593± 6 nm (Fig. 2 B and C,
Table S1, and Fig. S2). Increasing ξ2 results in surfaces with more
uniform and ordered wrinkles.
Numerical minimization of Eq. 3 faithfully reproduces many

features of the experimental membranes. In both types of mem-
branes, changing the density of defects affects the order and
regularity of the wrinkle patterns. When ξ2 � λ, within each
wavelength the disorder coming from multiple disclinations leads
to a disorganized pattern of bumps and wrinkles (Fig. 2 A and D).
In effect, the system behaves as an unstructured membrane, where
there is quenched disorder associated with the overlapping dis-
tortion fields coming from each defect. Whereas for values of
ξ2 J λ the wrinkles become well organized and orient perpendic-
ular to the smectic layers (Fig. 2 B, C, E, and F and Fig. S2). Be-
cause the numerical model explores a much broader range of ratios
ξ2=λ than the experiment, the coupling between curvature and
disclinations can be more easily unveiled. The numerical model can
also probe the effects of different elastic constants. Fig. 2G shows
the dominant wavevector q= 2π=λ of each wrinkle as a function of
the ratio of the splay K1 and bend kb elastic constants.
To understand the interplay between smectic orientation and

wavelength, let us, for simplicity, consider a single, isolated +1
disclination described by ψ = a cosðqrÞ or ϕ= r located at the
center of a circular membrane. (Although +1 disclinations are
rarely, if ever, seen in experiment, a +ð1=2Þ disclination consists
of a half-plane of the +1 disclination attached to a half-plane
containing an ideal flat smectic.) Here, the elastic distortions
involve only splay contributions. Thus, to leading order the
Brazovskii and smectic free energies are identical. For ease of
computation, we use the smectic free energy. The flat system has
a splay energy Fsplay = ðK1=2Þ

R
d2xð∇ · r̂Þ2 = ðK1=2Þ

R 2π
0 dθ

R R
a dr=r=

ðK1=2ÞlnðR=aÞ, where R is the system size and a is the size of the
defect core.
Upon buckling, the metric of the surface becomes non-Euclidean,

affecting both the splay energy of the smectic and the bending
energy of the membrane. To estimate the role of the different free
energy contributions, we consider the membrane geometry in cy-
lindrical Monge gauge, Xðr, θÞ= fr cosðθÞ,   r sinðθÞ,   hðr, θÞg, which
has the metric

ffiffiffi
g

p
= ðr2 + ð∇hÞ2Þ1=2. We assume that the surface is

slowly varying or ∇h is small. hðr, θÞ= h0 cosðnθÞ, where the max-
imum height of the distortions h0 and the wavelength at radius
r0 are λ= 2πr0=n= qr0. This surface deformation has a nonzero
energy due to contributions from both mean curvature, Fbend ≈
ðkb=2Þ

R
d2x

ffiffiffi
g

p ðð1=2Þ∇2hÞ2 ≈ ðπkb=8Þ
R
drðh20n4=r3Þ, and surface

area, Fσ = 2σ
R
d2x

ffiffiffi
g

p ≈ 2πσ
R
drrð1+ h20n

2=4r2Þ, whereas Gaussian
curvature away from the disclination core remains zero. How-
ever, the surface deformation also lowers the splay energy, be-
cause splay measures the divergence of the average molecular
orientation. The smectic energy can be approximated as Fsplay =
ðK1=2Þ

R
d2x

ffiffiffi
g

p ðg−1=2∂ið ffiffiffi
g

p
niÞÞ2≈ πK1

R
drð1=rÞð1−3h20n2=4r2Þ. Thus,

adding the three terms of the energy and minimizing with regard
to n produce

qr∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3K1 − 4σr2

kb

s
. [4]

For elastic constants given by kb ∼ 1.7× 10−8 erg, K1 ∼ 4.6× 10−8
erg, and σ ∼ 30.6 dyn·cm−1 (SI Text), the estimated wavelength
for r= ξ2 = 217 nm, λ∼ 627 nm, is found to be in agreement with
the experimental measurements. Further experiments with many
different polymers would be needed to examine this degree
of freedom.
Because disclinations are points where the local smectic ori-

entation winds by mπ=2, m∈Z≤ 2, they facilitate bending or
branching of the wrinkles. Isolated +ð1=2Þ disclinations, places
where radially oriented wrinkles meet, are therefore centers of
negative Gaussian curvature, and conversely, −ð1=2Þ disclinations,
which allow wrinkles to bend, are centers of positive Gaussian
curvature. To elucidate this unexpected wrinkle-driven coupling
between disclinations and curvature, let us consider two ideal
cases: the +1 disclination and the −ð1=2Þ disclination. Surfaces can
be constructed from waves with normals to the wavefront taken
from the in-plane tangents to the local smectic layers and phase
offset chosen such that the height is given by a C2 function. Upon
calculating the Gaussian curvatures of both surfaces, it becomes
evident that the positive and negative disclinations must be centers
of negative and positive curvature, respectively (Fig. 3).
The correlation between defect density and wrinkle organization

extends to curvature, as the orientation of the wrinkles dictates the
local sign of Gaussian curvature. The crossover in behavior occurs
when the orientational correlation length exceeds half the elastic
wrinkle wavelength, ξ2 J λ=2. At this length scale, a single dis-
clination can have influence over the wrinkles surrounding it,
without the influence of neighboring disclinations. The more or-
dered a membrane is, the stronger the preference for large negative

A B

C D

Fig. 3. (A and B) Schematic illustrating the relationship between wrinkles
and Gaussian curvature in (A) +1 and (B) −ð1=2Þ disclinations. Wrinkles are
constructed such that they are everywhere perpendicular to the smectic
order. The Gaussian curvature for both of these structures demonstrates that
+1 (−ð1=2Þ) disclinations are centers of negative (positive) curvature, where
K > 0 (K < 0) is shown in orange (blue). (C) Complex membrane topographies
can be generated merely by choosing the locations of disclinations, as dem-
onstrated in this simulation. (D) +1 (red circles) and −ð1=2Þ (green triangles)
disclinations have average values of Gaussian curvature −3±5× 10−7ðdsmÞ2
and 0.4± 5× 10−7ðdsmÞ2, respectively.
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(positive) values of curvature associated with +ð1=2Þ (−ð1=2Þ)
disclinations (Fig. 4 A–E and Fig. S3). Note that this tendency is
stronger for positive disclinations, as more than 71% of +ð1=2Þ
disclinations are sources of negative Gaussian curvature (Fig. 4 F
and G and Table S2). Positive disclinations give splay to the
wrinkles, thereby accommodating more area than an equivalent
flat membrane.
In summary, we have found that topological defects can induce

wrinkling in smectic membranes. The wrinkles in the membrane
reveal not only the nature of the stress field associated with the

defects, but also the anisotropic behavior of the smectic phase.
Unlike crystalline systems, +ð1=2Þ (−ð1=2Þ) disclinations are
centers of negative (positive) Gaussian curvature. The simple re-
lationship between elastic constants and wrinkle wavelength
provides a method to characterize the properties of multicom-
ponent, anisotropic thin films. Whereas defect-induced defor-
mations have been experimentally observed in different
systems, including graphene (24, 25) and lyotropic gels (26), it is
hoped that this work will stimulate further experimental re-
search to study the process of wrinkling in different textured

A B C

D E

F G

Fig. 4. Surfaces are colored by mean curvature where H> 0 (H< 0) is shown in red (blue). (A–E) Isolated +ð1=2Þ (−ð1=2Þ) disclinations, depicted by red circles
(green triangles), are shown with respect to the Gaussian curvature. In the regime where ξ2 � λ=2, the experimental membrane (A) and the simulated
membrane (D) display little correlation between the locations of the disclinations and their associated Gaussian curvatures. In the opposite limit, where
ξ2 J λ=2, more than 71% of +ð1=2Þ disclinations are located at negatively curved parts of the membrane in two experimental membranes (B and C) and
a simulated membrane (E). (F and G) Histograms of the Gaussian curvature for each type of defect show a strong correlation between the sign of the dis-
clination and curvature of the opposite sign for both experimental (F) and simulated (G) membranes.
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membranes. Our findings can have important implications in the
use of smectic membranes as actuators or in the development of
novel defect-prescribed shapes.

Materials and Methods
Synthesizing Polymer. The smectic membranes consist of a free-standing thin
film made of a cylinder-forming PS-PEP diblock copolymer. The block co-
polymer was synthesized through sequential living anionic polymerization of
styrene and isoprene followed by selective saturation of the isoprene block
(see ref. 27 for more details). The number-average block molecular weights
for the block copolymer are 4.3 kg/mol for PS and 13.2 kg/mol for PEP. The
bulk morphology of the block copolymer consists of hexagonally packed PS
cylinders embedded in the PEP matrix. For this system the glass transition
temperature for the PS block is about 330 K, whereas the order–disorder
transition temperature is TODT = 417 K (the glass transition temperature of
the PEP block is well below room temperature). In thin films, the cylinders
adopt a configuration parallel to the substrate because of large surface
energy differences between the blocks. The repeat spacing for the block
copolymer is 21 nm (measured on thin films by AFM).

Creating the Freestanding Membranes. To obtain the freestanding membrane
amonolayer of block copolymer was spin coated onto a 50-nm-thick flat layer
of sucrose deposited onto a silicon wafer. The 50-nm-thick sucrose films were
prepared via spin coating from a 3 wt% solution in water. The block co-
polymer thin films were prepared via spin coating from a 1 wt% solution in

toluene, a good solvent for both blocks. By manipulating the spin speed, the
thickness of the film, measured through ellipsometry, can be controlled. We
produced amonolayer of cylinders, plus the associated brush-likewetting layer at
the substrate (∼30-nm-thick film of PS-PEP 4/13). Order was induced through
annealing at T = 363 K, above the glass transition of the PS block and below the
TODT of the block copolymer (28). During this process the content of defects is
strongly reduced and the degree of order in the pattern is mainly disrupted
by ±1=2 disclination multipoles (28). After annealing, the film was lifted off
the substrate and deposited on a TEM grid. To analyze the effect of the liftoff
procedure in water, test samples were redeposited onto a silicon wafer. Because
the process occurs at room temperature, well below the glass transition tem-
perature of the minority block in the copolymer, it was found that the individual
layers retain the symmetry, average intercylinder distance, and structure
established during the annealing. The thin films were imaged using a Bruker
Dimension 3000 AFM in tapping mode. The spring constant of the tip (un-
coated Si) was ∼40 N/m and its resonant frequency was 300 kHz.
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