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Flux-flow phenomena in a superconducting mesoscopic stripe submitted to an applied current
and external magnetic field is studied. The time-dependent Ginzburg-Landau equations are solved
numerically to obtain the electric and magnetic response of the system. It is shown that the I-
V curves, for the wider strips, present an universal behaviour. The dependence of the flux-flow
resistivity on the magnetic field and width allow us to propose a criterion characterizing, both,
the macroscopic and mesoscopic regimes. The power spectrum of the average voltage permits
identifying the effect of surface currents in vortices movement. Based on the maximum value of the
power spectrum first harmonic we propose a geometric condition for matching between the sample
dimensions and the vortex lattice parameter.

PACS numbers: VER: 74.78.Na, 74.40.+k, 74.20.De

I. INTRODUCTION

In a macroscopic superconductor the vortices arrange
in a triangular lattice also called Abrikosov lattice1. In
this lattice the most important interaction between vor-
tices is due to the magnetic repulsion between them.
However when the size of the superconductor decreases
the interaction between the magnetic field of the vortices
and the screening currents should be take in account. Ad-
ditionally the usual boundary condition superconductor-
vacuum allows the creation of the surface superconduc-
tivity with size of the coherence length. Boundary effects
also modify the configuration of the vortex lattice. For
example in small mesoscopic disks the circular geome-
try lead to the formation of concentric shells. When the
radius of the disk is increased, more concentric shells ap-
pears but the inner shells starts to resemble an Abrikosov
lattice2. This behaviour of vortex configurations was de-
scribed theoretically using the molecular-dynamics simu-
lations finding vortex configurations which are in agree-
ment with those observed in the experiment3. This kind
of analysis was performed in another superconducting
symmetries. For example, theoretical and experimental
results were obtained for square4 and triangular5 sam-
ples showing that the filling rules for vortices in these
geometries, with increasing applied magnetic field, can
be formulated in terms of formation of vortex shells.
Even, in cases as large mesoscopic triangles6 and thin
disks with finite Λ7 evidence of the influence of the sym-
metry in the vortex configuration is present. In exis-
tence of boundary defects, the competition between the
confinement geometry and the geometric position of the
defects leads to non-conventional vortex configurations
which are distinct from the sample geometry8. For the

case of a strip, the vortex lattice solutions also incorpo-
rate surface superconductivity. The vortex configuration
is made of individual vortex rows parallel to the surfaces
resembling an Abrikosov lattice when the width of the
strip is increased9. In presence of an applied current
the Lorentz force between the current and the magnetic
flux of the lattice causes a continuous transverse move-
ment of the vortices. For a mesoscopic strip with an
applied current the vortices interact with the vortex lat-
tice, the applied current and the screening currents. For
a small applied current the vortices are pinned by the
surface superconductivity but displaced from the center
of the strip to one of the edges. Vortex flow starts at
some finite current and the vortex structure is close to
the triangular lattice. With increasing current, it trans-
forms to a rowlike structure but keeping the triangular
ordering. By further increasing the current, the num-
ber of vortex rows decreases and the number of vortices
in the rows increases10. The moving vortices create an
excess of quasiparticles behind themselves generating a
wake of depleted order parameter. These vortices with a
very anisotropic vortex core elongated in the direction of
motion are called kinematic vortices. Each new vortice
entering is attracted and interconnected to the previous
one, creating the rowlike structure11. In a finite-length
superconducting thin stripe with finite-size normal metal
leads the moving vortex lattice becomes rearranged by
the external current and fast and slow moving vortex
channels are formed. Curved vortex channels are ob-
served near normal contacts12. I-V measurements on
wide thin Nb strips as a function of temperature and
applied magnetic field show the intrinsic flux flow elec-
tronic instabilities of vortex motion13 predicted by the
Larkin-Ovchinnikov theory. For superconducting films



2

with a periodic array of antidots a transition from tur-
bulent to laminarlike vortex flow has been found showing
a negative differential resistivity in the current-voltage14.
Kinematic vortices has been observed in superconducting
samples with a periodic array of holes at high current
densities by scanning Hall probe microscopy15. In super-
conducting films under an applied dc current it was anal-
ysed the influence of engineered pinning centers on the
vortex velocity at which the flux-flow dissipation under-
goes an abrupt transition from low to high resistance. For
strongly disordered superconducting films, it was shown
that, the mean critical vortex velocity for flux-flow insta-
bility has a nonmonotonic dependence on magnetic field
and decreases as the pinning strength is increased16. Su-
perconducting stripes with a periodic array of weakly-
superconducting regions were studied finding different
behaviour of vortices mobility in each region17. Oppo-
site charged kinematic vortices have been predicted in
mesoscopic superconducting loops18 and submicron su-
perconducting stripes in the presence of a longitudinal
current19. These vortices can nucleate in the middle
being expelled or enter on opposite sides and be an-
nihilated in the middle of the stripe. Using the time-
dependent Ginzburg-Landau in current-carrying super-
conductors magnetoresistance oscillations produced by
the vortices movement have been predicted20. It was also
studied the dynamics of flux-flow and phase slip states,
and hot spot in a superconducting thin-film sample when
abruptly a external current is switch on21. Finally the
difference between the radiation produced by a single vor-
tex or vortex bundle and a vortex lattice crossing a super-
conductor boundary were studied. For a moving vortex
lattice coherent electromagnetic radiation should accom-
pany the flux-flow state. The spectrum of the radiation
has discrete character and extends up to the supercon-
ducting gap22.
In this work we study the properties of flux-flow state in
an infinite current-carrying superconducting strip for sev-
eral strip widths. Both, the transition from microscopic
to mesoscopic regime, in the presence of surface super-
conductivity, and the radiation spectrum as a function of
the strip width are discussed.

II. MODEL

A. Time-dependent Ginzburg-Landau theory

As a model system, we use a bulk superconductor
which is infinite in the z and x directions and is finite
in the y direction (width=W ). With this model we ne-
glect the possibility of curved vortices in the z direction
and, therefore, our problem becomes two dimensional.
Our numerical simulations are carried out using the time-
dependent Ginzburg-Landau (TDGL) equations. In the
zero-electric potential gauge we have:23

η
∂

∂t
Ψ = (~∇− i ~A)2Ψ + (1− |Ψ|2)Ψ (1)

∂

∂t
~A = Im[Ψ∗(∇− i ~A)Ψ]− κ2~∇× ~∇× ~A, (2)

where Ψ and ~A are the order parameter and vector po-
tential respectively. Equations (1) and (2) are in their
dimensionless form. Lengths have been scaled in units of
the coherence length ξ, times in units of the Ginzburg-
Landau relaxation time t0 = h/16kB(Tc−T )η = ξ2/ηD,

magnetic field in units of the critical field Hc2, ~A in
units of Hc2ξ, Ψ in units of 4kBTcη

1/2/π(1 − T/Tc)1/2
and temperatures in units of the critical temperature
Tc. D is the electron diffusion constant, kB and h are
the Boltzmann and Planck constants respectively. η is
equal to the ratio of the characteristic time t0 for the

relaxation of ~A and the time tGL for the relaxation of
Ψ: η = tGL/t0 = c2/(4πσnκ

2D), with tGL = ξ2/D,
where σn is the quasiparticle conductivity. For super-
conductors with magnetic impurities η = 12, in our case
we use η = 5.7924. The electric field is in units of
E0 = ~/e∗ξt0, voltages in units of ~/e∗t0 and the current
density per unit length in the z-direction J in units of
~c2/4πe∗λ2ξ with λ the London penetration length. Pe-
riodic boundary conditions are applied in the x-direction:

Ψ(x) = Ψ(x+L) and ~A(x) = ~A(x+L), where L = 80ξ is
the period. The usual superconductor-vacuum boundary
conditions are applied in the y-direction

(∇y − iAy) |y=0,y=W = 0 (3)

The transport current is introduced via the boundary
condition for the vector potential in the y-direction,
~∇ × ~A|z(y = 0, y = W ) = H ± Hind where H is the
applied magnetic field and Hind = 2πI/c is the mag-
netic field induced by the current per unit length in the
z-direction, I. As the system voltage response is a time-
dependent variable, we averaged it over a finite time in-
terval which is taken to be larger than the period of the
voltage variation. We solve the TDGL equations using
a standard finite difference discretization scheme23. We
consider a rectangular mesh consisting of nx × ny cells,
with mesh spacings ax and ay. We use finite difference
method based on gauge-invariant link variables25. This
numerical method is defined by the finite unknowns of
the method, Ψ, Ax, and Ay, plus the equations relat-
ing these unknowns. In what follows, we have solved
the TDGL equations numerically for a type II supercon-
ductor with κ = 2. We used a spatial discretization of
∆x = ∆y = 0.5ξ and, in order to make efficient calcula-
tions, we have chosen adequately the time step. We also
include a thermal random force uncorrelated in space and
time selected from a Gaussian distribution with a zero
mean. Its standard deviation σ is given by

σ =

√
2π

η
Er∆t(T/Tc) (4)

where ∆t is the time step and Er is the ratio of the ther-
mal energy to the free energy of a vortex (Er = 105)23.
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III. RESULTS

For two different widths W = 10ξ and W = 66ξ
and an applied magnetic field H = 0.425Hc2 we present
the superconducting densities for some currents (Fig. 1
and Fig.2) and their current-voltage (J-E) characteristic,
within the flux-flow regime. At J = 0, vortices arrange in
structures that show the confinement effects of the small
mesoscopic sample, In Fig. 1(a) there is a single vortex
row for W = 10ξ, while in Fig. 2(a) for W = 66ξ, there
is a nearly triangular structure in the center of the sam-
ple, with increasing defects when approaching the bound-
aries.

FIG. 1: Snapshots of the order parameter in the flux-flow
regime for different values of the applied current, (a) J = 0,
(b) J > Jc, and W = 10ξ and H = 0.425Hc2.

Applying a current smaller than a critical current Jc,
where Jc is the current for which the vortices start to
move, it is induced the entrance of vortices into the sam-
ple, which rearrange in a new static structure with a
higher vortex density. Above this critical current Jc, the
vortex structure moves, and vortex motion helps to heal
the lattice defects due to confinement in a finite sample.
In Fig. 1(b) we can see three rows of vortices flowing in
a W = 10ξ sample at a current J > Jc. In Fig. 2(b) we
see a nearly perfect triangular vortex lattice flowing in a
larger sample with W = 66ξ. When increasing current,
the effect of current-induced magnetic fields becomes in-
creasingly important, inducing a gradient in vortex den-
sity, as it can be observed in Fig. 2(c). This density
gradient introduces defects in the vortex lattice struc-
ture, which becomes important for increasing current.
The magnitude of the current induced field is Bind ∝ J ,
being more important for large currents.

In Figs. 3(b) and 4(b) we can see that the field B
increases with J in this regime. For a small sample
(W = 8ξ) [Fig. 3(b)] jumps in B correspond to struc-
tural rearrangements after vortex entrance. On the other
hand, large samples, [like W = 51ξ in Fig. 4(b)] the field
B, the magnetic induction, increases smoothly with cur-
rent. Thus, the ”ideal” flux flow regime of a triangular

FIG. 2: Snapshots of the order parameter in the flux-flow
regime for different values of the applied current within the
flux-flow regime, for (a) J = 0, (b) J = J1 > Jc, (c) J = J2,
with J1 > J2, and W = 66ξ and H = 0.425Hc2.

lattice moving at constant speed can be found in a meso-
scopic sample in a narrow region above the critical cur-
rent Jc but below the current where the induced density
gradient introduces important distortions in the lattice.
In the case of Fig. 4, this corresponds to the range of cur-
rents where B is nearly constant with J and E is nearly
linear with J . In the case of very small samples, like in
Fig. 3, this flux flow regime is never achieved, since the
effect of current induced fields is always relevant in this
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FIG. 3: (a) Longitudinal electric field as function of the cur-
rent density with H = 0.425Hc2 and W = 8ξ. (b) Magnetic
induction as function of the current density. Inset: Total E
vs. J curve.

FIG. 4: (a) Longitudinal electric field as function of the cur-
rent density with H = 0.425Hc2 and W = 51ξ. (b) Magnetic
induction as function of the current density. Inset: Total E
vs. J curve.

case.

A. I-V curves

J-E curves keeping fixed H = 0.425Hc2 and varying
widths are shown in the Fig. 5. The critical current Jc is
due to the nucleation of vortices at the edge of the sample
when the edge magnetic field Hind = 2πI/c is of the or-
der of the field Hp needed to overcome the surface barrier
of the sample. Therefore, the critical current density de-
pends on W as Jc = Ic/W ∝ Hp/W . Then in Fig. 5 we

FIG. 5: J-E curve with H = 0.425Hc2. Upper panel for
W < 20ξ and lower one for W > 20ξ.

FIG. 6: J.W -E.W curve with H = 0.425Hc2. Upper panel
for W < 20ξ and lower one for W > 20ξ.

see that the J-E curves move to the left when increasing
W , since the critical current density decreases with W .
Assuming that in the flux flow regime E ≈ ρff (J − Jc),
when plotting E.W vs. J.W one should get a single lin-
ear curve for the different widths W . We see in Fig. 6(b)
that this linear scaling of the J-E curves is indeed ob-
tained for W > 20ξ. On the other hand, as shown in
Fig. 6(a), it is not possible to collapse the J-E curves
for smaller sizes. In Fig. 7(a) we present the behaviour
of the product Jc.W ∝ Hp, as a function of the stripe
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width W for several values of the applied field. It can be
seen that for a fixed field and for large W (W > 20ξ),
Hp is independent of width. On the other hand, for fixed
W , Hp decreases with increasing magnetic field. We also
obtained also the values for a critical current density, Jd,
where the superconductivity disappears. As shown in Fig
7(b), for fixed magnetic field, Jd converges with increas-
ing W , and also decreases for increasing magnetic field,
for fixed width. It is necessary recall that our model is
valid only for small values of the current although our
results for Jd are consistent with the expected ones.

FIG. 7: Critical currents for different values of W . (a) Critical
current density Jc for onset of voltage. (b) Current density
for onset of normal state Jd.

B. Flux-flow regime

The relation between ~E, the electric field, and the ap-

plied density current, ~J defines the flux-flow resistivity
ρff = E/J = BΦ0/(µc

2), where Φ0 is the quantum of
magnetic flux and µ is the viscous coefficient. We cal-
culated dE/dJ for different widths and fixed magnetic
field. This ratio correspond to the slopes of the curves
J-E in the flux flow regime [Fig. 8(a)]. dE/dJ curves
present several plateau associated to different vortex con-
figurations. The first plateau corresponds to the flux-
flow regime. For smaller widths, in the flux-flow regime,
we observe oscillations in dE/dJ , while for larger width
dE/dJ becomes constant. By normalizing dE/dJ by
Bav, the averaged magnetic induction, one see that all
curves with for W ≥ 20ξ collapse, [Fig. 8(b)], as is ex-
pected for a macroscopic behaviour of the system26.

C. Power spectrum and washboard frequency

As the number of vortices fluctuates due to incoming
and outgoing of the vortices, thus the average voltage

FIG. 8: Flux flow slopes vs. W . (a) dE/dJ vs. W for different
H. (b) Flux flow slope normalized by Bav vs. W .

also shows fluctuations. In this way, the average volt-
age, in the direction of the applied current, depends on
the vorticity of the system and its profile has a sequence
of periodic pulses. These voltage pulses are related to
the vortex motion. It is observed that a voltage pulse
with a sharp peak is generated when a vortex appears or
disappears at the boundaries27. Numerical simulations
with similar results were reported previously describing
these phenomena as caused by the intense surface cur-
rent which gives rise to the effective strong force on vor-
tices near the boundaries29. As the vortex motion and
the electric field in the cores can be related to a time
varying current which is associated to a potential dif-
ference through the a.c. Josephson effect in supercon-
ducting weak links28, we obtained profiles of the average
voltage as function of time for several widths for fixed
applied magnetic and electric fields H = 0.425Hc2 and
Ex = 0.00548E0. For these profiles we calculated the
power spectrum (W = 18ξ and W = 66ξ, Fig. 9(a)
and Fig. 9(b) respectively) obtaining an harmonic com-
ponent group with periodicity in the frequency for the
wider stripe, whereas for the smaller one only the first
and second harmonic can be distinguished.

In Fig. 10(a) we see that for W > 50ξ the first har-
monic frequency ω0 obtained from the power spectrum
of E(t), not presented, is independent of W . This shows
that for large samples it corresponds to a washboard fre-
quency. The washboard frequency for a perfect lattice
moving at constant speed v is given by ω0 = 2πv/a,
where a is the lattice constant and the speed v is given
by v = E/B, an therefore ω0 is size independent. On the
other hand, the size dependence of ω0 observed in Fig.
10(a) for small W is due to the fact that the time depen-
dence of E(t) is more affected by the entry and exit of
vortices at the sample edges. In Fig. 10(b) it is shown
the profile of the power spectrum value at washboard
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FIG. 9: Power spectra, for H = 0.425Hc2 within the flux-flow
regime, fixed E = 0.00548E0. (a) W = 18ξ. (b) W = 66ξ.

FIG. 10: Width dependence of the (a) washboard frequency
ω0 and (b) power at washboard frequency P = P (ω0), at fixed
E and H, for H = 0.425Hc2 and E = 0.00548E0, within the
flux-flow regime.

frequency. Again we observe two different behaviours
depending of width. For small systems there are fluc-

tuations in the value of the power spectrum maximum,
while this feature is not observed for the wider samples.
We assume that this behaviour is produced by a geomet-
rical pinning which comes from the match between the
width of the system and the lattice constant of the vortex
lattice.

IV. SUMMARY AND CONCLUSIONS

In the framework of the time-dependent Ginzburg-
Landau equations, we studied the flux-flow phenomena
in a superconducting mesoscopic stripe submitted to an
applied current and external magnetic field, for several
stripe width W . We showed that above a critical cur-
rent Jc the vortices move resembling a nearly perfect
Abrikosov moving lattice. The flux-flow regime occurs in
a narrow region between Jc and a current where an im-
portant distortion of the vortex structure is introduced.
In this flux-flow regime, for sizes W > 20ξ a linear scal-
ing is obtained when plotting E.W vs. J.W whereas for
smaller sizes this behaviour is not observed. Similar re-
sults are obtained when the flux-flow resistivity ρff vs.
W is plotted for several applied magnetic fields. From
these results, we obtained a critical width that separate,
both, the macroscopic and mesoscopic regimes. We also
obtained, in the flux-flow regime, profiles of the average
voltage vs. time for several widths and calculated their
power spectrum. We found that for large W , the first
harmonic frequency ω0 obtained is independent of W .
For small W the power spectrum is affected by the entry
and exit of vortices at the sample edges. Based in the
fluctuations of the first harmonic maximum we propose
a geometric condition for matching between the sample
dimensions and the vortex lattice parameter.
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