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Abstract. The usual treatment of a (first order) classical field theory such as
electromagnetism has a little drawback: It has a primary constraint submani-
fold that arise from the fact that the dynamics is governed by the antisymmetric
part of the jet variables. So it is natural to ask if there exists a formulation of
this kind of field theories which avoids this problem, retaining the versatility
of the known approach. The following paper deals with a family of variational
problems, namely, the so called non standard variational problems, which in-
tends to capture the data necessary to set up such a formulation for field
theories. A multisymplectic structure for the family of non standard varia-
tional problems will be found, and it will be related with the (pre)symplectic
structure arising on the space of sections of the bundle of fields. In this setting
the Dirac theory of constraints will be studied, obtaining among other things a
novel characterization of the constraint manifold which arises in this theory, as
generators of an exterior differential system associated to the equations of mo-
tion and the chosen slicing. Several examples of application of this formalism

will be discussed.

1. Introduction. In this work, the term field theory will refer to a particular kind
of variational problems on the sections of some bundle on space-time (for defini-
tions, see section 2). In the usual approach, the Dirac constraints in a field the-
ory are found using the Gotay-Nester-Hinds algorithm on an infinite dimensional
presymplectic manifold associated to the underlying variational problem. One of
the purposes of this article is to show another way to build up these constraints,
namely, by using a geometrical representation of the corresponding Euler-Lagrange
equations into the exterior algebra of a bundle. The tools used for this task were
taken from the theory of exterior differential systems (EDS from now on, for refer-
ences see appendix B). In this way the Cauchy-Kowalevsky existence theorem can
be introduced into the realm of field theory; on the contrary, the usual setting has
to do with functional analytic conditions, hiding these existence conditions into the
(infinite dimensional) manifold structure.
In more precise terms, the variational problems we are concerned with are initially
characterized by a double fibration

Λ → Λ1 →Mn
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together with an exterior differential system I ⊂ Ω• (Λ) and an n-form λ. These
kind of problems will be called non standard variational problems throughout the
work. The idea for this formulation can be traced back to [18], for the case in
which the base manifold has dimension n = 1; another work on the subject, in the
same vein, can be found in [21]. It is worth remarking that both references provide
examples from geometry (not only mechanics) where this scheme can be applied.
The basic idea is that, for every section σ of the bundle Λ1, we can build a section
prσ for the bundle Λ by using these data (see details below); the non standard
problem consists of finding those sections σ of the bundle Λ1 which are extremals
of the functional

Sλ [σ] :=

ˆ

M

(prσ)
∗
λ.

This setting includes what can be called standard variational problems, like the
usual Lagragian mechanics and the lagrangian viewpoint of first order field theories
as in [15]: For example, in the latter case the bundle Λ1 corresponds to the bundle
of fields, Λ is the 1-jet space of sections for this bundle, and the prolongation of a
section σ is given by its 1-jet j1σ.
Our aim is twofold:

1. In first place, to set up an infinite dimensional presymplectic manifold with
a hamiltonian for every non standard variational problem. This is done by
appealing to a bivariant Lepagean equivalent variational problem associated
to the non standard problem; it provides us with a multisymplectic-like struc-
ture, and introducing an slicing of the bundle where this structure lives, the
presymplectic manifold can be defined.

2. Secondly, we want to prove that the Dirac constraints obtained from the suc-
cessful application of Gotay-Nester algorithm to the data found in the previous
item can be calculated as the generators of some EDS closely related to the
(Lepagean equivalent) variational problem. We must remark here that these
constraints generalize in some sense the Dirac constraints to the non standard
setting: The usual Dirac constraints can be found through this procedure by
using the canonical Lepage equivalent (in the sense of definition 2.4 below)
for a first order field theory on the 1-jet bundle associated to the bundle of
fields, as shown in example 11.

The present article is structured as follows: In section 2 the non standard varia-
tional problem is defined, and some relevant examples are presented. In particular,
it is shown that several dynamical problems of mathematical physics can be formu-
lated as non standard problems; as a particular example, we discuss in this setting
the electromagnetism. The Euler-Lagrange equations of the non standard problem
are found here, and the ideas of Lepage equivalent and canonical Lepage equivalent
system associated to a non standard variational problem are introduced. This gives
us a kind of multisymplectic structure for every non standard variational problem.
It is important to note that no use of Legendre transform is made in the construc-
tion of this multisymplectic space; the main disadvantage of this approach is that
the equivalence between the original equations of motion and the equations of mo-
tion in the multisymplectic space must be done in each case separately (this is an
issue related to the so called bivariance of the chosen Lepage equivalent problem,
see below). By adding a compatible slicing of the space-time, a Hamiltonian version
of the equations governing the extremals is developed in section 3: it is described a
procedure that associates a presymplectic manifold (infinite dimensional if n > 1)
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and a function on it to every (Lepagean equivalent of a) non standard problem.
Moreover it is proved here that the solutions of the dynamical system determined
by these data are extremals of the underlying variational problem. Section 4 con-
tains the main result of the article, which deals with the description of the constraint
submanifold arising from the Gotay-Nester algorithm [17] in terms of an exterior
differential system associated to the data of the theory. The section 5 contains
four examples where these considerations are applied. The first two constitues the
examples with physical content, namely, electromagnetism and the Poisson sigma
model, and the last two explores other aspects of the method: the calculation of
integrability conditions for a system of PDEs via Gotay-Nester algorithm, and a toy
model where this algorithm fails to reach a succesful termination. The relevance of
the last example is that its features could be related to the singular behaviour of
some field theories (cf. remark 5.7). We show also how the EDS perspective help
us in the interpretation of the results. A note of caution about these examples is in
order here: It will be assumed that there exists a well-defined differential structure
on the sets of sections which we work with, so several of the manipulations in this
context are of formal nature.

It is worth noting that the idea giving rise to the definition of the EDS associated
to the constraints is an extension of the one used in [19] for the treatment of classical
mechanics from the EDS viewpoint. Similar results, but from the viewpoint of
Janet-Riquier theory, instead of Cartan’s EDSs, and oriented to the construction
of an algorithm, can be found in [28, 29, 12, 11]. The introductory material about
variational calculus and exterior differential systems was deferred to Appendices A
and B.

Notation. Given a bundle F → B, Γ (F ) denotes the set of differentiable sec-
tions of this bundle. The subbundle V F ⊂ TF denotes the set of vertical vectors.
The symbol Ω• (X) indicates the set of forms of any order on the manifold X, and
correspondingly Ωk (X) is the set of k-forms on X. Although in some cases this
fact was proved (see proposition 6 below), it is assumed that some vector fields de-
fined on certain subsets of the bundles which we work with admits an extension to
a neighborhood of these subsets. We do not discuss the convergence of the inte-
grals used elsewhere; it is supposed that the hypothesis ensuring its convergence are
satisfied. The notation τX (resp. τ̄X) used in [1] in order to denote the canoni-
cal projection of the tangent bundle (resp. cotangent bundle) of X is adopted. If
i : Y →֒ X is the canonical injection of some submanifold Y of X, the symbol
TYX will denotes the pullback bundle i∗ (TX). Given a set of forms S ⊂ Ω• (X)
we denote by 〈S〉alg ⊂ Ω• (X) the algebraic ideal generated by these forms, and by

〈S〉diff ⊂ Ω• (X) the minimal algebraic ideal containing S and is closed with respect
to the exterior derivative operator. If S ⊂ V is a set of vectors in the vector space
V , we indicate by 〈S〉 the subspace spanned by the vectors in S.

2. Formal structure for variational problems. The essential data in both the
formulation of the usual field theories [15, 16, 2] and classical mechanics [1, 19] are

the following: A double fibration Λ
p

−→ Λ1
π1−→ M (with composition π := π1 ◦ p),

an exterior differential system I ⊂ Ω• (Λ) and a semibasic n-form λ ∈ Ωn (Λ), where
n = dimM . In terms of these objects, the prolongation of a section σ ∈ Γ (Λ1) can
be defined as a section prσ ∈ Γ (Λ) such that

1. Its graph is an integral submanifold for I, that is, prσ∗ (I) = 0, and
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2. The section prσ covers σ, that is, the following diagram is commutative

Λ

M Λ1

?
p

�
�

���prσ

-
σ

Hence we introduce the action as a real-valued function on the set of sections of Λ1

S [σ] :=

ˆ

M

(prσ)
∗
(λ) .

Definition 2.1 (Non standard variational problem). In the previous setting, the
non standard variational problem consists in finding sections σ ∈ Γ (Λ1) which are
extremals of the action S.

The usual point of view in geometric mechanics is to take the contact structure
on jet manifolds as the basic prolongation structure for the underlying variational
problem; in this view it is a piece in the formalism. The non standard approach
consists in the weakening of this assumption, regarding the prolongation structure
as an additional data of the problem, related to some aspects of its underlying
geometry. The following examples may help us to clarify this assertion. Moreover,
they are in order to illustrate the ubiquity of this notion; subsequent sections in the
article will intend to show its usefulness.

Example 1 (Classical Mechanics). Taking M := I ⊂ R a real interval, Q a man-
ifold, Λ1 := Q × I and Λ := TQ × I, with π1 (q, t) = t and p (q, q̇; t) = (q, t),
choosing as the prolongation EDS the differential ideal generated by the forms
θi := dqi − q̇idt, and with λ := Ldt, we obtain the usual variational problem of the
classical mechanics. In this case if we have that σ : t 7→ (q (t) , t), then

prσ : t 7→

(
q (t) ,

dq

dt
(t) ; t

)

is the formula defining the prolongation of sections.

Example 2 (First order field theories). The following example show how first order
field theories fits in our scheme, that is, how one might formulate a first order field
theory as a non standard problem. So let us suppose that the fields are sections of

certain bundle F
π

−→ M on space-time. The double fibration is in this case

Λ := J1 (π)
π1,0

−→ Λ := J0 (π) = F →M,

where Jk (π) denotes the k-jet manifold of F . By taking on J1 (π) the contact EDS
as prolongation structure, it can be shown that prσ = j1σ. If L ∈ C∞

(
J1 (π)

)
,

the n-form λ := Ldx1 ∧ · · · ∧ dxn satisfies

(prσ)
∗
λ =

(
L ◦ j1σ

)
dx1 ∧ · · · ∧ dxn;

the variational problem consisting in finding the extremals to

σ 7→

ˆ

M

(
L ◦ j1σ

)
dx1 ∧ · · · ∧ dxn

is the usual Hamilton’s principle for the first order field theory with lagrangian
density L.
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Example 3 (Electromagnetism). Let us consider now the first example on non
standard variational problem, that is, the electromagnetic field on a spacetime M ;
previous work on the subject can be found in [9, 20]. Let us take

Λ : =

2∧
(T ∗M) ⊕ T ∗M

Λ1 : = T ∗M

π1 := τ̄M and for p the projection p2 :
∧2

(T ∗M) ⊕ T ∗M → T ∗M onto the second

summand. An arbitrary element of Λ is given by a pair (F,A) where F ∈
∧2

(T ∗
mM)

and A ∈ T ∗
mM for some m ∈ M . For every k ∈ N there exists a canonical k-form

on
∧k

(T ∗M) defined by

Θk|α := α ◦ τ̄M∗, ∀α ∈
k∧

(T ∗M) ;

as prolongation EDS I we take the differential ideal generated by the form

Γ := dΘ1 − Θ2.

So a section m 7→ (F (m) , A (m)) of Λ is an integral section for I iff F = dA.

Example 4 (EDS as a non standard problem). This is the first example of a non
standard problem of mathematical nature: Every EDS I on a bundle F → M can
be considered as a non standard problem, by using the double fibration

F →M
id
−→M,

with prolongation structure I and lagrangian n-form λ = 0. Therefore the interme-
diate bundle has just one section, namely σ0 = idM , and the possible prolongations
of it are the integral sections of I. Later on we will use this remark in order to
employ the Gotay-Nester algorithm in searching the integrability conditions of a
system of PDEs (see example in section 5.5).

Example 5 (Tetrad gravity). Let M be a pseudoriemannian 4-manifold. Let us
introduce a formulation of the variational problem for tetrad gravity on M in these
terms. The fields in this case are the components eµ ∈ Ω1 (M) , µ = 0, · · · , 3 of
a tetrad on the spacetime M . The natural “velocities” for such an object are not
its prolongation into J1 (τ̄M ); instead, it is more geometric to take as velocities
for a tedrad the associated connection forms ωµν ∈ Ω1 (M). Thus it is possible to
formulate tetrad gravity as a non standard problem on the double fibration

F ∗
O (M) ⊕ (T ∗M)

⊕4 → F ∗
O (M) →M

where p̄M : F ∗
O (M) → M stands for the coframe bundle on M , with prolongation

structure generated by the forms

Θα := dEα − Ωα
ν ∧ Eν , ν = 0, · · · , 3.

Here with capital letters we denote the corresponding canonical forms. The la-
grangian is the scalar curvature, so

λ := ⋆
(
Eα ∧ Eβ

)
∧ (dΩαβ + Ων

α ∧ Ωνβ) .

The prolongation means that it is a torsionless connection.
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The purpose of the forthcoming sections is to show that in the non standard
setting it is possible to build a reasonable multisymplectic space and even to deal
with its Dirac constraints, althought no use of Legendre transformation will be
made in the process. But first let us show how the Euler-Lagrange equations for a
non standard variational problem can be built.

2.1. Euler-Lagrange equations for non standard variational problems. In
order to perform variations on the class of functionals relevant to our study, we
need to adapt the proposition 7 to the case in which the section involved in the
integrand is the prolongation of another one by using some prolongation structure.
To this end, let us introduce the following definition.

Definition 2.2. An (infinitesimal) allowed variation for a non standard varia-
tional problem with prolongation structure given by the EDS I is an element
V ∈ Γ (σ∗ (V Λ)) , σ ∈ Γ (I) admitting an extension V̂ ∈ Γ (V Λ) ⊂ X (Λ) which
is an infinitesimal symmetry for I, that is

σ∗
(
L

V̂
I
)

= 0.

It is assumed, unless explicitly stated, that whenever a manifold has a boundary,
the allowed variations annihilates on this boundary. Then we have the following
proposition [13, 18].

Proposition 1. The Euler-Lagrange equations associated to the functional S [σ] =
´

M
(prσ)

∗
λ defined on Γ (Λ1) are given by

(prσ)∗ (V ydλ) ≡ 0 mod exact n-forms on Λ,

where V ∈ Γ
(
(prσ)

∗
(V Λ)

)
is an arbitrary allowed variation.

Example 6 (Electromagnetism - Cont.). We return to the electromagnetic field in
order to find the Euler-Lagrange equations for the lagrangian λ := Θ2 ∧ ∗Θ2; here

∗Θ2|α := (∗α) ◦ τ̄M∗

by using the Hodge star associated to the spacetime metric. Now, as in every
vector bundle, the vertical space can be identified at each point with the fibre
through that point, so any vertical vector field on Λ can be denoted as an application
(F,A) ∈ Λ 7→ (δF, δA) ∈ π−1 (π (F,A)) ≃ V(F,A)Λ. This identification has the
following interesting property: For the Lie derivative the following holds

(LδαΘk) |α = δα ◦ τ̄M∗, ∀α ∈
k∧

(T ∗M) .

So if V := (δF, δA) is an allowed variation with extension V̂ :=
(

ˆδF , δ̂A
)

to a

vertical vector field on Λ, this extension must be such that

L(δ̂F ,δ̂A) (dΘ1 − Θ2) = µ (dΘ1 − Θ2)

for some function µ ∈ C∞ (Λ). By restricting to the integral submanifold Im (prσ) ,
σ ∈ Γ (I) we obtain the following differential condition

dδA− δF = 0.

Then the Euler-Lagrange equations are expressed as

2dδA ∧ ∗F ≡ 0 ⇔ δA ∧ d (∗F ) ≡ 0 ⇔ d (∗F ) = 0

to which the prolongation condition must be added

F = dA.
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2.2. (Multi)hamiltonian formalism through Lepagean equivalent prob-
lems. We want to construct a hamiltonian version for the non standard variational
problem. The usual approach [15] seems useless here, because of the following facts:

• The covariant multimomentum space is a bundle in some sense dual to the
velocity space, which is a jet space.

• The dynamics in the multimomentum space is defined through the Legendre
transform, and it is not easy to generalize to a non standard problem this
notion.

The trick to circumvect the difficulties is to mimic the passage from Hamilton’s
principle to Hamilton-Pontryaguin principle. This is done by including the genera-
tors of the prolongation structure in the lagrangian density by means of a kind of
Lagrange multipliers. This procedure will be formalized below, where the hamil-
tonian version is defined by associating a first order variational problem to the non
standard variational problem, whose extremals are in one to one correspondence
with its extremals. This is called canonical bivariant Lepage equivalent problem.

2.2.1. Lepagean equivalent problems. Here we will follow closely the exposition of
the subject in the article [13]. Before going into details, let us introduce a bit of

terminology: If Λ
π

−→ M is a bundle, λ ∈ Ωn (Λ) (n = dimM) and I is an EDS

on Λ, the symbol
(
Λ

π
−→M, I, λ

)
indicates the variational problem consisting in

extremize the action

S [σ] =

ˆ

M

σ∗ (λ)

with σ ∈ Γ (Λ) restricted to the set of integral sections of I. Furthermore, E (λ)

will denote the set of extremals for
(
Λ

π
−→M, I, λ

)
.

The idea is to eliminate in some way the constraints imposed by the elements
of I; intuitively, it is expected that the number of unknown increase when this is
done. The following concept captures these ingredients formally.

Definition 2.3 (Lepage equivalent variational problem). A Lepagean equivalent of

a variational problem
(
Λ

π
−→M, I, λ

)
is another variational problem

(
Λ̃

ρ
−→ M, {0} , λ̃

)

together with a surjective submersion ν : Λ̃ → Λ such that

• ρ = π ◦ ν, and

• if γ ∈ Γ
(
Λ̃
)

is such that ν ◦ γ is an integral section of I, then

γ∗λ̃ = (ν ◦ γ)∗ λ.

There exists a canonical way to build up a Lepage equivalent problem associated

to a given variational problem
(
Λ

π
−→M, I, λ

)
, the so called canonical Lepage

equivalent problem. Let I be differentially generated by the sections of a graded
subbundle I ⊂

∧• (T ∗Λ) (this is a “constant rank” hypothesis, ensuring the exis-
tence of a bundle in the construction, see below). Define Ialg as the algebraic ideal
in Ω• (Λ) generated by Γ (I), and

(
Ialg

)l
:= Ialg ∩ Ωl (Λ) .
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For λ ∈ Ωn (Λ), define the affine subbundle Wλ ⊂
∧n

(T ∗Λ) whose fiber above
p ∈ Λ is

Wλ
∣∣
p

:=
{
λ|p + β|p : β ∈

(
Ialg

)n}
.

Definition 2.4 (Canonical Lepage equivalent problem). In the previous setting,

it is the triple
(
Wλ ρ

−→M, {0} , Θ̃
)
, where ν is the canonical projection τ̄n

Λ :
∧n (T ∗Λ) → Λ restricted to Wλ, ρ := π ◦ ν and Θ̃ is the pullback of the canonical
n-form

Θn|α := α ◦ (τ̄n
Λ)∗

to Wλ. The form Θ̃ will be called Cartan form of the variational problem.

Remark 1. It is worth remarking that our terminology was brought from [13],
which is slightly different from the classical theory as exposed in e.g. [24]. It is fully
explained in the former work how to be relate both approaches.

Returning to our main concern, it can be proved that the canonical Lepage equiv-

alent is a Lepagean equivalent problem of
(
Λ

π
−→M, I, λ

)
. Now, the extremals of

some variational problem has, in general, nothing to do with the extremals of its
Lepagean equivalent problem, so it is necessary to introduce the following definition.

Definition 2.5 (Covariant and contravariant Lepage equivalent problems). We

say that a Lepagean equivalent problem
(
Wλ ρ

−→M, {0} , Θ̃
)

for the variational

problem
(
Λ

π
−→ M, I, λ

)
is covariant if ν ◦ γ ∈ E (λ) for all γ ∈ E

(
Θ̃
)
; on the

contrary, it is called contravariant if every σ ∈ E (λ) is the projection of some

extremal in E
(
Θ̃
)

through ν. A Lepagean equivalent problem is bivariant if and

only if it is both covariant and contravariant.

There exists a fundamental relation between the extremals of a variational prob-
lem and the extremals of its canonical Lepage equivalent.

Theorem 2.6. The canonical Lepage equivalent is covariant.

For a proof, see [13]. The contravariant nature of a Lepage equivalent problem
is more subtle to deal with. Next we will describe another construction for the
Lepage equivalent problem, by reducing the number of additional variables that we
put in order to get the prolongation EDS into the variational equations; although
in this way there exist more chances to find a non contravariant Lepage equivalent
problem, we will see that in many cases it leads to well-behaved Lepage equivalent
problems.

2.2.2. Another canonical Lepage equivalent problem. The canonical Lepage problem
has to deal with general EDSs; the examples we will try to manage has some nice
features that allow us to simplify this scheme. Namely, define the subbundle

Z1 (Λ) :=

{
α ∈

•∧
(T ∗Λ) : v1yv2yα = 0 ∀v1, v2 (Λ →M) -vertical vectors

}

and suppose further that the generators of I are in Z1 (Λ); as before, we have a

subbundle
(
Ialg

)n
⊂
∧n

(T ∗Λ). Let Kn ⊂ In be the subbundle whose fibers are
the subspaces Kn|γ ⊂ In|γ of forms of (algebraic) degree 1 in the generators; set
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K̃n := Kn ∩ Z1 (Λ). Depending on I, it can leads to an affine subbundle W̃λ in∧• (T ∗Λ) with fibers

W̃λ
∣∣∣
γ

:=

{
λ|γ + ψ : ψ ∈ K̃n

∣∣∣
γ

}
.

As before, the map ν : W̃λ → Λ is the restriction of the canonical projection
τ̄•Λ :

∧•
(T ∗Λ) → Λ; moreover, it can be shown that it is a covariant Lepagean

equivalent problem also. The reasons for this choice will become apparent later:
The variational problems associated to forms in Z1 (Λ) will have a well defined
description in terms of dynamics on a (infinite dimensional) presymplectic manifold
(cf. prop. 3.4).
A local version of the alternate canonical Lepage equivalent. Let us now define the
pullback bundle π∗

(∧•
(T ∗M)

)
on Λ; then we have the commutative diagram

π∗

(
•∧

(T ∗M)

)
•∧

(T ∗M)

Λ M
?

π∗(τ̄•

M)

-f

?

τ̄•

M

-
π

Let Z0 (Λ) ⊂
∧•

(T ∗Λ) be the subbundle of semibasic forms on Λ, and Zk
0 (Λ) :=

Z0 (Λ) ∩
∧k

(T ∗Λ) for all k ∈ N. The following lemma can be found in [27] (cf.
lemma 3.3.5 there).

Lemma 2.7. There exists a natural identification between bundles π∗
(∧• (T ∗M)

)

and Z0 (Λ).

This identification provides us the horizontal map f , which has the following nice
property.

Proposition 2. The submersive bundle map f : Z0 (Λ) →
∧•

(T ∗M) is graded (of
degree 0), and verifies that

(
f |Zk

0 (Λ)
)∗

ΘM
k = ΘΛ

k

∣∣Zk
0 (Λ) , ∀k ∈ N (1)

where ΘΛ
k ∈ Ωk

(∧k (T ∗Λ)
)

and ΘM
k ∈ Ωk

(∧k (T ∗M)
)

are the canonical k-forms

on the corresponding spaces.

Further simplifications can be performed whenever the EDS admits a set of global
generators

I|γ = R

〈
α1

1

∣∣
γ
, · · · , α1

k1

∣∣
γ
, α2

1

∣∣
γ
, · · · , α2

k2

∣∣
γ
, · · · , αp

1|γ , · · · , α
p
kp

∣∣∣
γ

〉
, ∀γ ∈ Λ,

where
〈
αj

1, · · · , α
j
kj

〉
diff

= I(j) =: I ∩ Ωj (Λ). It is supposed here that αj
i ∈ Z1 (Λ)

for all j = 1, · · · , p, i = 1, · · · , kj , although neither of them is in Z0 (Λ). Let us

define Λ̃ := Λ ×M

⊕p
l=1 (

∧ml T ∗M)
⊕kl where1 ml := n − l; the previous lemma

1Without loss of generality, it will be assumed that p ≤ dimM = n, because we are dealing
with integral sections, a subset of integral manifolds of dimension n for I.
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leads us to the map Fλ : W̃λ → Λ̃ given by

Fλ : λ|γ +

p∑

l=1

kl∑

i=1

αl
i

∣∣
γ
∧ βi

ml
7→

7→
(
γ, f

(
β1

m1

)
, · · · , f

(
βk1

m1

)
, · · · , f

(
β1

mp

)
, · · · , f

(
βkp

mp

))
.

Let us introduce the definitions

Zml
:= Z0 (Λ) ∩

ml∧
(T ∗Λ) , Zkl

ml
:= Zml

× · · · × Zml︸ ︷︷ ︸
kl times

for l = 1, · · · , p. The map Fλ will be well-defined provided that between the gener-
ators there are no “zyzygies of degree n”, namely, that the unique solution for the
system

p∑

l=1

kl∑

i=1

αl
i

∣∣
γ
∧ γi

ml
= 0

in Zk1
m1

× · · · × Z
kp
mp is γi

ml
= 0. Let us suppose that it is indeed the case; on Λ̃ we

will define the n-form

λ̃ :=

p∑

l=1




kl∑

j=1

αl
j ∧ β

j
ml


− λ.

In this setting the proposition 2 implies the following result, that allow us to use
Λ̃ as canonical Lepage equivalent whenever our prolongation EDS I admits global
generators.

Lemma 2.8. Let us suppose that I admits a set of global generators with the proper-
ties detailed above; then the map Fλ : W̃λ → Λ̃ is a diffeomorphism, and F ∗

λ λ̃ = Θ̃.

These considerations can be applied to build a local version for the canonical
Lepage equivalent variational problem, because it is always possible to find an open
set where the considered EDS is described by a set of forms as above, so this
procedure provides a local description (i.e. on the given open set) for the modified
canonical Lepage equivalent.

As we said before, the main difference between our constructions and the con-
struction of the canonical Lepage equivalent problem is that in our case the affine
bundle has lower rank. This means that there are less variables to take care of;
the main drawback is that such a system has lower chances to be contravariant.
Nevertheless, it will be shown below that it works very well in many important
circunstances.

2.2.3. Canonical Lepage equivalent of a non standard problem. We will apply these
considerations to our problem. The important thing to note is that, if a vari-
ational problem has a covariant and contravariant Lepagean equivalent problem,
then the latter can be considered as a kind of Hamilton-Pontryaguin’s principle for
the given variational problem; in fact, it is shown below that the canonical Lepagean
equivalent problem associated to the variational problem underlying the Hamilton’s
principle gives rise to the classical Hamilton-Pontryaguin’s principle (see example
7). This will be our starting point for assigning a multisymplectic space to the
variational problem we are dealing with. The bivariance ensures us that every ex-
tremal has been taken into account in the new setting. Otherwise, namely, for non
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contravariant canonical Lepage equivalent problems, some extremals for the original
variational problem could be lost in the process.

So let us suppose that we have the non standard problem defined by the following
data 




Λ → Λ1 →M,

I ⊂ Ω• (Λ) ,

S [σ] :=
´

M
(prσ)

∗
(λ) .

If I in this non standard problem has the required regularity (i.e. the “constant
rank” hypothesis), then the variational problem (Λ →M, I, λ) will have a canoni-

cal Lepage equivalent problem
(
W̃λ →M, {0} , Θ̃

)
, and we can apply the scheme

described above. In order to carry out this task locally, let us suppose as above that
the fibers of the bundle I on an open set U ⊂ Λ can be written as

I|γ = R

〈
α1

1

∣∣
γ
, · · · , α1

k1

∣∣
γ
, α2

1

∣∣
γ
, · · · , α2

k2

∣∣
γ
, · · · , αp

1|γ , · · · , α
p
kp

∣∣∣
γ

〉
, γ ∈ U

so that the prolongation structure I is (differentially) generated by

I =
〈
αj

i : 1 ≤ i ≤ p, 1 ≤ j ≤ ki

〉
diff

on U , where
〈
αj

1, · · · , α
j
kj

〉
diff

= I(j) =: I∩Ωj (U) and αj
i ∈ Z1 (Λ) for all i, j. Then

if U0 := π (U) ⊂M , we can define for each 1 ≤ l ≤ p the numbers ml := dim (M)−l

and the n-form on Λ̃U := U ×U0

⊕p
l=1 [

∧ml (T ∗U0)]
⊕kl will reads

λ̃ :=

p∑

l=1




kl∑

j=1

αl
j ∧ β

j
ml


− λ

where
(
β1

m1
, · · · , βk1

m1
, · · · , β1

mp
, · · · , β

kp
mp

)
denotes sections of

∧ml (T ∗U0); the sub-

script in these sections thus indicates their degree (in the exterior algebra sense).
It will be shown in the examples below that, in many important cases, the Euler-
Lagrange equations associated to the non standard problem defined by the data





Λ̃U
id
−→ Λ̃U →M,

0 ⊂ Ω•
(
Λ̃U

)
,

S [σ] :=
´

M
(prσ)

∗
λ̃,

has a family of solutions which is isomorphic to the family of solutions of the previous
system; this means that in these cases the canonical Lepage equivalent problem is
also contravariant. By proposition 1, the Euler-Lagrange eqs for an stationary

section σ ∈ Γ
(
Λ̃U

)
are

σ∗
(
V ydλ̃

)
= 0, ∀V ∈ Γ

(
V Λ̃U

)
(2)

because there are no conditions for admisibility of variations; these sections are then
integral sections for the EDS

I :=
〈
V ydλ̃ : V ∈ Γ

(
V Λ̃U

)〉
diff

. (3)

We call this EDS the (local version of) Hamilton-Cartan EDS.
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2.2.4. Some examples. We will illustrate with some examples how the standard
approach fits into the scheme developed above, and moreover we will use it in
variational problems with non standard description.

Example 7. Let us start with the standard variational problem of mechanics.
This scheme can be found in [18, 19]. Our Lepage equivalent problem will have as
underlying bundle

•∧
(T ∗ (R × TQ)) = T ∗ (R × TQ) = R × R × T ∗TQ.

By fixing U ′ ⊂ Q a coordinate neighborhood, we have that on U := R × TU ′ the
EDS I is generated by the collection of forms θi := dqi − q̇idt; therefore the bundle
I ⊂ T ∗ (R × TQ) will have the fibers

I|(t,q,q̇) =





n∑

j=1

ajθ
j : ai ∈ R

n and i = 1, · · · , n



 .

Thus I1 = K1 (the elements in I are of first degree in the generators); moreover

T ∗ (R × TQ) ⊂ Z1 (R × TQ)

implying K̃1 = K1∩Z1 (R × TQ) = I1. In terms of our local description we obtain

that W̃λ
∣∣∣U = U × R

n, where

W̃λ
∣∣∣
(t,q,q̇)

=



−Ldt+

n∑

j=1

ajθ
j : ai ∈ R, i = 1, · · · , n



 ∀

(
t, qi, q̇i

)
∈ U.

The a’s in the previous formula have an important meaning concerning the manifold

Λ̃ := R × (TQ⊕ T ∗Q) with the 1-form λ̃ ∈ Ω1
(
Λ̃
)

defined through λ̃
∣∣∣
(t,v,α)

:=

− [L (α) − α (v)]dt + ΘQ
1

∣∣∣
α

(where ΘQ
1 is the canonical 1-form on T ∗Q), as the

following lemma shows.

Lemma 2.9. The map PL : W̃λ → Λ̃ given locally as

PL

(
−Ldt+

n∑

i=1

aiθ
i

)
=

(
t,

n∑

i=1

q̇i ∂

∂qi
⊕

n∑

i=1

aidq
i

)

is a diffeomorphism, and P ∗
Lλ̃ = Ω̃.

We can work then on the simpler space Λ̃ = R × (TQ⊕ T ∗Q), where locally

λ̃ =

n∑

i=1

pi

(
dqi − q̇idt

)
− Ldt.

The canonical Lepage equivalent problem consist in finding sections σ of R ×
(TQ⊕ T ∗Q) which extremize

S [σ] =

ˆ

R

σ∗

(
n∑

i=1

pi

(
dqi − q̇idt

)
− Ldt

)
;
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the equations for an stationary section σ : t 7→ (q (t) , q̇ (t) , p (t)) are then




dqi − q̇idt = 0

dpi − Lqidt = 0(
pi − Lq̇i

)
dt = 0.

We identify here the Hamilton-Pontryaguin variational principle.

Example 8. The standard first order field theories deals with sections σ of a bundle
π : F → M with typical fiber V ; a lagrangian density L ∈ C∞

(
J1 (π)

)
allow us to

define the action

S [σ] :=

ˆ

M

(L ◦ prσ)dx0 ∧ · · · ∧ dxn−1

=

ˆ

M

(
L ◦ j1σ

)
dx0 ∧ · · · ∧ dxn−1

according to considerations previously made. Let U ⊂ F be an adapted coordinate

chart with coordinates
(
xk, uβ

)
; then I on Û := J1 (π)

∣∣U has the generators

{
θα := duα − uα

kdxk : α = 1, · · · , dimV
}
⊂ Ω1

(
Û
)
.

where the Einstein’s summation convention was asummed. So in this case we will
have

W̃λ
∣∣∣ Û =

{
λ+ β̃n−1

α ∧ θα : β̃n−1
α ∈ Zn−1

0

(
Û
)}

;

by using the Fλ map it can be written

W̃λ
∣∣∣ Û ≃ Û ⊕

[
n−1∧

(T ∗U0)

]⊕dimV

,

(where U0 := π (U)) and this is the local description that we will adopt. Therefore,

we can consider the Cartan form defined on Λ̃ := Û ⊕ Z with local coordinates(
xk;uα, uα

k ,mα

)
; here Z :=

[∧n−1
(T ∗U0)

]⊕dimV

denotes the set of dimV forms of

degree n− 1 on M . So we can write

λ̃ := mα ∧
(
duα − uα

kdxk
)
− Ldx0 ∧ · · · ∧ dxn−1

for the Cartan form. If the variations are (0; δuα, δuα
k , δmα) then the Hamilton-

Cartan equations reads

(0; δuα, δuα
k , δmα)ydλ̃ = 0 ⇒

⇒

(
∂L

∂uα
δuα +

∂L

∂uα
k

δuα
k

)
dx0 ∧ · · · ∧ dxn−1 + δmα ∧

(
duα − uα

kdxk
)
−

− δuαdmα −mαδu
α
kdxk = 0.

Now we can define the collection of (n− 1)-forms (Γα) on M via

∂L

∂uα
k

dx0 ∧ · · · ∧ dxn−1 = Γα ∧ dxk ∀α, k,

from which we obtain that the solutions

xk 7→
(
xk;uα (x) , uα

k (x) ,mα (x)
)
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must satisfies 



Γα −mα = 0

duα − uα
kdxk = 0

dmα −
(

∂L
∂uα

)
dx0 ∧ · · · ∧ dxn−1 = 0.

This system projects onto the local version of Euler-Lagrange equations for first
order field theory. The space of (multi)momenta is locally Û ⊕ Z.

Example 9 (Electromagnetism - Cont.). The first true hamiltonian non standard
theory which we want to deal with is electromagnetism; in this case we have that

Λ̃ :=
∧2

(T ∗M)⊕Λ and λ̃ = p∗1 (∗Θ2)∧(dp∗3Θ1 − p∗2Θ2)+λ, being pi the projection

in the i-th summand of Λ̃ and λ the pullback of the corresponding form on Λ.
As before, let us suppose that we indicate by (P, F,A) ∈ Λ̃ an element of this
(multi)phase space; then a section σ : x 7→ (P (x) , F (x) , A (x)) will be a solution
for the eqs 2 iff 




F = dA

P = ∗F

dP = 0.

Thus the space of momenta coincides with the space of velocities.

Example 10 (Poisson sigma models). The Poisson sigma model [6, 3, 4, 26] can
be analysed from this point of view. This is an interesting system, because its usual
description (cf. the references above) is non standard, in the sense that it deals
with variations without a prolongation structure. Concretely, for a surface Σ and a
Poisson manifold (M,π) we have the fibration

Λ̃ :=

2∧
(T ∗ (M × Σ)) → Σ ×M → Σ.

Then the open set S := Z2
1 (Σ ×M) − Z2

0 (Σ ×M) is a subbundle; let us call
ν : S → Σ the restriction of the above projection. The non standard variational

problem equivalent to the Poisson sigma model is the triple
(
S

ν
−→ Σ, 0, λ̃

)
, where

in the local coordinates (ξα, xµ, ηβν) associated to a coordinate system on M × Σ
via

α ∈ S|(x,ξ) 7→ −ηβνdξ
β ∧ dxν ,

the 2-form λ̃ reads

λ̃
∣∣∣
(ξ,x,η)

:= −ηβνdx
ν ∧ dξβ +

1

2
πµνηαµηβνdξ

α ∧ dξβ.

The Poisson structure on M defines a bundle map Π : T ∗M → TM and there-
fore induces another bundle map (which we denote with the same symbol) Π :

T ∗ (M × Σ) → TM × T ∗Σ; then the form λ̃ can be written in global terms as

λ̃
∣∣∣
η

= Θ2|η +
1

2
〈Π(η) ∧, η〉

where 〈·, ·〉 is the pairing of an element of TM×T ∗Σ with an element of T ∗ (M × Σ) ≃
T ∗M × T ∗Σ and Θ2 is the canonical 2-form (restricted to S). The local generators
of the Hamilton-Cartan EDS are in this case{

dxµ − πµνηανdξ
α,

dηασ ∧ dξα − 1
2 (∂σπ

µν) ηαµηβνdξ
β ∧ dξα.

Thus these systems are naturally formulated in a multisymplectic space.
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3. Slicings and presymplectic structures. Given a Lepagean variational prob-
lem (that is, a non standard problem with trivial prolongation structure) and a
decomposition of the underlying bundle in a family of hypersurfaces (i.e., the con-
stant time slices), the set of sections of a fixed slice can be dressed up with a
presymplectic structure and a hamiltonian, under convenient regularity hypothe-
sis; these data yields through Gotay-Nester algorithm to a set of constraints on
the sections under consideration. The procedure is explained with some extent in
the following paragraphs; additionally, it is settled the relationship between the ex-
tremals of the variational problem and the solutions of the Hamilton eqs associated
to the hamiltonian and the presymplectic structure on the space of sections of the
fixed slice. Finally, it is shown how the usual Dirac theory of constraints for a field
theory can be derived in this setting.

3.1. Preliminaries. The purpose now is to set the framework allowing us to relate
the solutions of the Hamilton eqs on n−1-sections with regular and ordinary n−1-

integral elements of some associated EDS. The initial data is a bundle F
π

−→ B and
a n-form λ (n = dimB) on F . Then the Euler-Lagrange eqs for the action

Sλ [σ] :=

ˆ

B

σ∗λ

characterizes the sections σ : B → F which extremizes it. These sections are integral
for the EDS (we assume that ∂B = 0)

I := 〈Zydλ : Z ∈ Γ (V F )〉diff . (4)

We would like to introduce a presymplectic manifold with a hamiltonian, whose
solution curves are in one-to one correspondence with the integral sections of I. In
this vein it is necessary to introduce the concept of slicings.

3.2. Slicings. The first thing that we need [16] is a compatible slicing (sF , sB) of
the bundle of fields: It consist of a pair of diffeomorphisms

sF : R ×K → F

sB : R × Σ → B

making commutative the diagram

R ×K F

R × Σ B
?

p2

-sF

?

p2

-
sB

Note 1. Although not strictly necessary, we will consider that the factor Σ in the
decomposition of the base manifold is compact. This makes sense to definitions like
10 and 11 below, and turns the 2-form automatically closed.

Let us define Fτ := sF ({τ} ×K) and Στ := sB ({τ} × Σ) for each τ ∈ R. A
useful consequence of this property is that the space of sections Γ (F ) admits a
trivialization; in fact, defining for each τ ∈ R the embedding

iτ : Σ → B : x 7→ sB (τ, x)

we have that the map

sΓ(F ) : R × Γ (K) → Γ (F ) : (τ, σK) 7→ sF ◦ σK ◦ (iτ )
−1

(5)
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makes it works (it is well-defined because of the compatibility of the slicing, meaning
in particular that Im (sF |Στ ) ⊂ Fτ .)

3.3. (Pre)symplectic structure on the space Γ (K). For each τ ∈ R we have
the diffeomorphism iτ : K → Fτ : x 7→ sF (τ, x) so we can define [10, 8] the following
τ -family of forms on K

Ωτ : = i∗τ (dλ|Fτ ) ∈ Ωn+1 (K)

Hτ : = i∗τ (∂0yλ|Fτ ) ∈ Ωn−1 (K)

where the symbol ∂0 is used in order to denote the canonical vector field associated
to the τ -direction in both spaces. These forms can be used to define the following
data on Γ (K) for each τ ∈ R: The 2-form ωτ ∈ Ω2 (Γ (K)) and the function
Hτ ∈ C∞ (Γ (K)), defined through

ωτ |γ (V1, V2) : =

ˆ

Σ

γ∗
(
Ωτ

(
V̂1, V̂2

))

Hτ (γ) : =

ˆ

Σ

γ∗ (Hτ ) .

Here γ ∈ Γ (K) and V1, V2 ∈ Γ (γ∗ (V F )) ≡ TγΓ (K); as before, V̂ ∈ Γ (V K)
denotes an extension to a vector field on K for the element V ∈ Γ (γ∗ (V K)) . With
this data we can define a Hamiltonian system on Γ (K).

3.4. Forms on Γ (K) and forms on K. We want to establish a useful result

concerning forms on a space of sections; that is, by taking on a bundle F
π

−→ B an
n + k-form φ ∈ Ωn+k (F ) , k ∈ Z, n = dimB, we can define the following k-form Φ
on Γ (F ) via

Φ|σ (V1, · · · , Vk) :=

ˆ

B

σ∗
(
V̂1y · · · V̂kyφ

)
. (6)

Definition 3.1. For each k ∈ Z define the bundle Zn+k
k (F )

τ̄
n+k
F−→ F such that the

fiber on e ∈ F is given by

Zn+k
k (F )

∣∣
e

:=

{
α ∈

n+k∧
(T ∗

e F ) : V1y · · ·Vk+1yα = 0 ∀V1, · · · , Vk+1 ∈ VeF

}
.

This set can be called the space of k-semibasic n + k-forms. We will say that a
nonzero form α belongs to Z•

k properly iff α ∈ Z•
k but α /∈ Z•

k−1 (F ).

Then we can prove the next result.

Proposition 3. Let us suppose that φ ∈ Γ
(
Zn+l

k (F )
)

properly (l ≤ k), and let Φ
be as in Eq. 6. Then Φ = 0 iff φ = 0.

Note 2. The previous proposition can be rephrased as follows: The map φ 7→ Φ is
injective when restricted to Γ

(
Zn+l

k (F )
)
.

Proof. It is clear that φ = 0 implies Φ = 0. For the converse implication, Φ = 0

implies that
´

B
σ∗
(
V̂1y · · · V̂lyφ

)
= 0 for all σ ∈ Γ (F ) and V1, · · · , Vl vertical

vectors defined on Imσ; therefore V̂1y · · · V̂lyφ = 0 for all collection of l vertical
vectors, and it means that φ ∈ Zl−1 (F ). Therefore φ = 0.



CONSTRAINTS, FIELD THEORY AND EDS 17

For each τ ∈ R we can define the following EDS on K

Iτ : = i∗τ (I|Fτ ) , (7)

a fundamental object in the subsequent sections, because it is closely related to the
Dirac constraints of the theory.

Finally we state a very important result, because it relates the solutions (if any) of
the presymplectic dynamical system with the extremals of the underlying variational
problem.

Proposition 4. Let λ be a n-form on F such that λ ∈ Zn
1 (F ) properly. Then for

each τ ∈ R, a pair (στ , Xτ ) ∈ Tστ
Γ (K) satisfies the Hamilton equations for sections

(Xτyωτ )|στ
= dHτ |στ

(8)

iff it satifies the following equation

σ∗
τ (V y (XτyΩτ − dHτ )) = 0, ∀V ∈ Γ (σ∗

τ (V K)) . (9)

Proof. The key is to realize that the n-form XτyΩτ − dHτ belongs to Zn
2 (F ) . On

the other side it was shown in proposition 3 that there are no non zero n-forms β
in Zn

2 (F ) such that the map V 7→
´

Σ
σ∗ (V yβ) is zero.

The meaning of this proposition must be clarified: It says that the pair (στ , Xτ )
is a solution of the Hamilton equations on Γ (K) defined by ωτ and Hτ if and only if
Vτ := ∂0 +Xτ belongs to the polar space of the n− 1-integral element στ∗ (TΣ) for
the Hamilton-Cartan EDS in this context, Eq. 4. Then if there exists a regular flag
for this EDS with last terms 0 ⊂ · · · ⊂ στ∗ (TΣ) ⊂ 〈στ∗ (TΣ) , Vτ 〉, the n-integral
manifold passing through it will generate solutions for the Hamilton equations, and
conversely. The following sections will use this remarkable relation.

3.5. Presymplectic structures on a multimomentum space. Let us now ap-
ply the setting of the previous section to our multisymplectic space. In particular,
let us suppose that there exists a compatible slicing of the bundle Λ̃ → M : So be-
sides of the spacetime decompositionM = R×Σ (as above, it will be assumed that Σ

is a compact manifold), we have a decomposition Λ̃ = R× L̃ such that Λ̃τ = {τ}× L̃
for every τ ∈ R; thus p : L̃→ Σ is a fibration that makes commutative the following
diagram

R × L̃ ≃ Λ̃ R × Σ ≃M

L̃ Σ
?

p2

-id×p

?

p2

-
p

In such a case (cf. the previous section) we can define a presymplectic structure on

the space of sections Γ
(
L̃
)

together with a function on it such that the solutions of

the classical mechanics system defined by these data induce solutions for the EDS
generated by 3. That is, if we define

iτ : L̃→ Λ̃τ : l 7→ (τ, l)
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we can use these structures to define the forms

Hτ : = i∗τ

[(
∂0yλ̃

)
|Λ̃τ

]
(10)

Ωτ : = i∗τ

[(
dλ̃
)
|Λ̃τ

]
; (11)

so, we have Hτ ∈ C∞
(
Γ
(
L̃
))

and ωτ ∈ Ω2
(
Γ
(
L̃
))

(which preserves a τ -

dependence) defined by

Hτ (σ) : =

ˆ

Σ

σ∗ (Hτ ) , (12)

ωτ |σ
(
X̃τ , Ỹτ

)
: =

ˆ

Σ

σ∗
(
Ωτ

(
X̃τ , Ỹτ

))
, (13)

for every pair X̃τ , Ỹτ of vertical vector fields that cover σ, i.e., elements of TσΓ
(
L̃
)
.

In this setting the proposition 4 is true, and we have to our disposal (under adequate
regularity conditions, i.e., if the foliation induced by the slicing is regular in the sense
of definition 4.3 below) the identification between the dynamical equations on the
space of sections and the Hamilton-Cartan EDS.

Now it will be necessary to introduce further simplifications; in particular, we
take L∂0

λ̃ = 0. Using the slicing introduced on Λ̃ and the Hamilton-Cartan EDS,
given by 3, we can define a parameterized EDS Iτ according to the Eq. 7. Under
this simplification it is true the following result.

Lemma 3.2. If L∂0
λ̃ = 0, then Hτ = Hτ ′ =: H and ωτ = ωτ ′ =: ω for all τ, τ ′ ∈ R.

Moreover, the EDS Iτ does not depends on τ .

In particular, this lemma allow us to choose a slice to work with.
Finally we want to show how the usual theory of constraints in a field theory can be
obtained from this scheme. In the following example we set up the relation between
the presymplectic structures defined above and the symplectic structures defined in
the usual approach to (first order) field theories.

Example 11 (First order field theories - Cont). Our aim is to calculate the dy-
namical system associated to the multisymplectic structure for field theory found
in example 8; locally we have that λ̃ = mα ∧

(
duα − uα

kdxk
)
−Ldx0 ∧ · · · ∧dxn−1,

so

dλ̃ = dmα ∧
(
duα − uα

kdxk
)
− dL∧ dx0 ∧ · · · ∧ dxn−1 − (−1)

n−1
mα ∧ duα

k ∧ dxk,

and taking into account that mα ∈ Ωn−1 (M), we will have that
(
uα

kdmα ∧ dxk
)∣∣

N0
=
(
mα ∧ duα

k ∧ dxk
)∣∣

N0
= 0

where N0 :=
{
P ∈ Û ⊕ Z : x0 (P ) = 0

}
. Then if Ň0 :=

{
m ∈M : x0 (m) = 0

}
, by

using Eq. 13, the presymplectic form on Γ (N0) will be

ωx|σ (X,Y ) =

ˆ

Ň0

(
δm0

αδv
α − δn0

αδu
α
)
dx1 ∧ · · · ∧ dxn−1

and X := (0; δuα, δuα
k , δmα) , Y := (0; δvα, δvα

k , δnα) indicates a pair of tangent
vectors at σ ∈ Γ (N0). By introducing the coordinates

mα := mk
αdkx,
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with the symbol dkx defined through

dkx := ∂xky

(
dx0 ∧ · · · ∧ dxn−1

)
= (−1)k dx0 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn−1,

then we will see that for the restriction of the n− 1-form

∂x0yλ̃ = (∂x0ymα) ∧
(
duα − uα

kdxk
)
− Ldx1 ∧ · · · ∧ dxn−1 − (−1)

n−1
uα

0mα

to N0, it can be proved that

∂x0yλ̃
∣∣∣
N0

=

= (∂x0ymα)|N0
∧
(
duα − uα

AdxA
)
−
[
L− (−1)

n
uα

0m
0
α

]
dx1 ∧ · · · ∧ dxn−1,

where the capital letter indices takes values in the range 1, · · · , n− 1. Finally

(∂x0ymα) ∧ dxB = mA
α (∂x0ydAx) ∧ dxB

= (−1)
n−1

mB
α dx1 ∧ · · · ∧ dxn−1

and from Eq. 12, the hamiltonian function Hx ∈ C∞ (Γ (N0)) will becomes

Hx (σ) :=

ˆ

Ň0

σ∗

(
∂x0yλ̃

∣∣∣
N0

)

=

ˆ

Ň0

{
(−1)

n−1
mB

α [(∂Bu
α) − uα

B] − L− (−1)
n−1

uα
0m

0
α

}
dx1 ∧ · · · ∧ dxn−1.

We are now ready to make contact with the usual theory of constraints. In order
to do that, it is necessary to calculate the primary constraints associated to the
dynamical data found above. This can be achieved by realizing that kerωx ={(

0; 0, δuα
k , δm

A
α

)}
, so the primary constraints for the dynamical system will be

0 = dHx (δuα
k )

=

ˆ

Ň0

[
(−1)nmk

α −
∂L

∂uα
k

]
δuα

kdx1 ∧ · · · ∧ dxn−1,

0 = dHx
(
δmA

α

)

=

ˆ

Ň0

(−1)
n−1

[(∂Bu
α) − uα

B] δmB
α dx1 ∧ · · · ∧ dxn−1.

Let us now define the set of primary constraints

C1 :=

{
(−1)

n
mk

α −
∂L

∂uα
k

, (∂Bu
α) − uα

B :

: α = 1, · · ·dimV, k = 0, · · · , n− 1, B = 1, · · · , n− 1

}
;

then M1 ⊂ Γ (N0), the zero locus of C1, is a presymplectic manifold with hamilton-
ian, both structures being defined through restriction. Let N0 be the trivial bundle
Ň0 × R

m × R
m(n−1) × R

m × R
m on Ň0 with coordinates (x;φα, φα

B , φ
α
0 , πα); then

the map Π : N0 → N0 defined through

Π :





φα = uα,

φα
B = uα

B,

φα
0 = uα

0 ,

πα = (−1)
n
m0

α
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has the following properties.

Lemma 3.3. Let L1 ∈ C∞ (N0) be the unique map such that L1 ◦ Π = L. The set

M̃1 := Π ◦ (M1) is composed by the sections of N0 given by

σ : x 7→ (x;φα (x) , φα
B (x) , φα

0 (x) , πα (x))

such that

πα =
∂L1

∂φα
0

, φα
B =

∂φα

∂xB
.

If M̃1 is a manifold, the the presymplectic form defined through

ω1 =

ˆ

Ň0

dπα ∧ dφα ∧ dx1 ∧ · · · ∧ dxn−1

will verify that (Π◦)∗ ω1 = ωx|M1
; also the hamiltonian function

H1 (σ) =

ˆ

Ň0

σ∗ (φα
0 πα − L1)dx

1 ∧ · · · ∧ dxn−1

will satisfy (Π◦)∗H1 = Hx|M1
. Due to the injectivity of (Π◦)∗, the structures are

uniquely determined by these requeriments.

Then the dynamical problem reduces to solve

XH1
yω1 = dH1

on each σ : x 7→ (x;φα (x) , φα
B (x) , φα

0 (x) , πα (x)) such that

πα =
∂L1

∂φα
0

, φα
B =

∂φα

∂xB
,

and this is the basic scheme in the usual theory of constraints for a (first order)
field theory; therefore, the primary constraints in the standard approach are related
through Π with the primary constraints found in the non standard viewpoint.

4. Constraints and EDS. The aim in this section is to prove the main result of
the article: The fact that, under certain regularity hypothesis (cf. definition 4.3
below), it is possible to describe the set of constraints arising from the application
of the Gotay-Nester algorithm on the dynamical data 12, 13 as a set of generators of
the EDS induced on the chosen slice by the (prolongation of the) Hamilton-Cartan
EDS.

4.1. Useful characterization for constraints. As we said above, we want to
relate the Dirac constraints arising from a field theory (in the non standard setting)
with a EDS associated to its eqs of motion. In order to achieve this, it is necessary to
adopt a meaningful picture for these constraints. So we use the following description
for the constraints obtained through the Gotay-Nester algorithm [16].

Definition 4.1. Given a presymplectic manifold (N,ω) with a hamiltonian H ∈
C∞ (N), the constraint submanifold C ⊂ N is the maximal submanifold of N
according to property

dH
(
TC⊥

)
= 0 (14)

where TC⊥ denotes the (perhaps singular) subbundle of TN composed by the
symplectic complements of the fibres of the subbundle TC. A submanifold in M
satisfying property 14 is said to be invariant respect to the dynamics defined by
(ω,H).
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Because we need to know the tangent spaces for submanifolds Γ (K) ⊂ Γ
(
L̃
)

composed of integral sections for some EDS K, we prove the next lemma.

Lemma 4.2. If the set Γ (K) , with K ⊂ Ω•
(
L̃
)

an EDS, is a true submanifold in

Γ
(
L̃
)
, then its tangent space in σ ∈ Γ (K) is the vector space

TσΓ (K) =
{
X ∈ Γ

(
σ∗
(
V L̃
))

: σ∗
(
L

X̂
K
)

= 0
}
,

where the hat denotes some extension to X

(
L̃
)

of an element of Γ
(
σ∗
(
V L̃
))

.

Proof. Under our hypothesis, we just need to derive along a curve to obtain the
lemma.

4.2. Admissible sections and involution. We start with a (non standard) vari-
ational problem on a bundle Λ → M , where dimM = n; by assuming that there
exists a (bivariant) Lepage-equivalent problem, we pass to a non restricted varia-

tional problem on a new bundle Λ̃ →M . The variational equations defines here an

EDS I ⊂ Ω•
(
Λ̃
)
; the integral sections for this EDS are the classical solutions to

our field theory. So we have the EDS
(
I,Ω := dx1 ∧ · · · ∧ dxn

)

generated by the Hamilton-Cartan equations, i.e.

I :=
〈
V ydλ̃ : V ∈ Γ

(
V Λ̃
)〉

diff
, (15)

and by using the Cartan-Kuranishi theorem we found a bundle Λ̃′ →M , a submer-

sion Π : Λ̃′ → Λ̃ and an EDS (I ′,Ω′) ⊂ Ω•
(
Λ̃′
)

which is n-involutive and verifies

that
Π∗ (Vn (I ′,Ω′)) = Vn (I,Ω) .

Remark 2. It is important to pointing out the following facts.

• The original EDS does not work if there exists n − 1-integral manifolds on
each τ -slice whose possible thickening directions rests in the same slice. The
way to avoid this annoying fact is to select in Vn (I) only those integral el-
ements satisfying the independence condition; this subset of sections can be
described as n-integral submanifolds for an involutive EDS I ′, obtained from
I by performing enough prolongations.

• It is assumed that there are no 0-forms to take care of in I and I ′; if it occurs,
one must to include them into the bundles Λ̃ and Λ̃′, that is, redefine these
sets by taking into account that the new 0-forms annihilates on them. The
corresponding EDSs are the pullback of the original ones.

• We know that Λ̃ → M admits a compatible slicing; we will suppose further
that the same is true for Λ̃′ →M with Λ̃′ ≃ R× L̃′. This diffeomorphism will
be denoted as sΛ̃′ . Moreover, it will be assumed the existence of a submersion

Π0 : L̃′ → L̃ such that the following diagram is commutative

Λ̃′ Λ̃

L̃′ L̃

?
p2

-Π

?
p2

-
Π0
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• For each τ ∈ R it is tempting to define the EDS

I ′
τ := i∗τ

(
I ′| Λ̃′

τ

)
⊂ Ω•

(
L̃′
)

where Λ̃′
τ := iτ

(
{τ} × L̃′

)
and

iτ : L̃′ →֒ Λ̃′ : l 7→ sΛ̃′ (τ, l) ,

claiming that

Γn−1 (I ′
τ , ω

′) = i∗τ (Γn (I ′,Ω′)) (16)

where ω′ := ∂0yΩ′. It is obvious that Γn−1 (I ′
τ , ω

′) ⊃ i∗τ (Γn (I ′,Ω′)). The
n-involutivity of I ′ ensures that every n-integral element is tangent to some
solution; however, the opposite inclusion Γn−1 (I ′

τ , ω
′) ⊂ i∗τ (Γn (I ′,Ω′)) is

achieved if every n−1-integral element of I ′
τ can be thickened out (in a regular

fashion) to a n-integral element for I ′. The requeriment of involutivity is not
enough; instead, we need the regularity of every n− 1-integral element of I ′

τ .

Note 3 (System where 16 is not verified). There exists an almost canonical coun-
terexample to this claim: The EDS describing orthogonal coordinates in three di-
mensions. See example 3.2 and theorem 3.3 in [5].

Due to the previous discussion, we need to introduce a new definition.

Definition 4.3. Let I be an involutive EDS on M and let us suppose that M ≃
R × N for some manifold N ; as above, for each τ ∈ R let us define the following
EDS on N

Iτ := i∗τ (I| {τ} ×N) .

We say that the induced foliation is regular with respect to the EDS I if every n−1-
integral element of Iτ , τ ∈ R, is regular. A slicing inducing a regular folitation will
be called regular.

The regularity notion for a foliation ensures that one can extend any n−1-integral
manifold for the EDS contained in a leaf to a n-integral manifold; for suitable
independence conditions the required involutivity ensures that the extension is not
included in that leaf. So we can state the following result.

Proposition 5. If I is an involutive EDS on P , and sP : P
∼
−→ Q×R is a regular

slicing for I, then

Γn−1 (Iτ , ω) = i∗τ (Γn (I,Ω)) ,

where ω := ∂0yΩ and ∂0 is the vector field pointing in the R-direction of the slicing.

Proof. The hard inclusion is

Γn−1 (Iτ , ω) ⊂ i∗τ (Γn (I,Ω)) .

Because of the regularity, it follows from the Cartan-Kähler theorem that any n−1-
integral section for Iτ can be extended to a n-integral section for I.

It remains to show some revelant properties of the solutions of an EDS. In order
to do that, it is important to establish the following fact.

Lemma 4.4. Let I be an EDS on the manifold M , N ⊂M an integral submanifold
and X ∈ Γ (TNM) such that

(Xyα)|N = 0
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for all α ∈ I. If X̂ ∈ X (M) is any extension for X, then
(
L

X̂
I
)∣∣N = 0.

Proof. If i : N →֒ M is the canonical injection, we have that

i∗
(
X̂yα

)
= i∗ (Xyα) ,

so
(
L

X̂
α
)∣∣N = i∗

(
X̂ydα+ d

(
X̂yα

))

= i∗ (Xydα) + di∗ (Xyα)
= 0

for all α ∈ I.

By using the definition 7 we obtain an EDS (I ′
τ , ω

′ := ∂0yΩ′) on L̃′. As we will
see in the next sections, this exterior system gives another description for the Dirac
constraints, namely, as (algebraic) generators of an EDS.

4.3. The constraint submanifold as an space of sections.

4.3.1. An outline. Here we describe the essential elements involved in proving that
the constraint submanifold coincides with the set of maps Π0◦Γn−1 (I ′

τ , ω
′). Because

this proof uses the characterization of C as the maximal invariant submanifold of
the set of section of the bundle L̃, it is necessary to prove that

1. Π0 ◦ Γn−1 (I ′
τ , ω

′) is invariant, and
2. C ⊂ Π0 ◦ Γn−1 (I ′

τ , ω
′).

It seems that the first condition is consequence of the fact that the original PDEs
9 are satisfied by the elements of this set. The second condition can be verified by
building a n-section from a n− 1-section in C via the formula

σ : (τ, x) 7→ (τ, στ (x))

realizing that it is an integral section for (I ′,Ω′), and then restricting to a τ -slice.

It was previously stated that a submanifold Q ⊂ P in our phase space Γ
(
L̃
)

is

invariant iff

dH
(
TQ⊥

)
= 0.

According to a result of Marsden et al [16], the invariance property is equivalent to
the existence of tangent solutions to the Hamilton eqs restricted to Q; that is, for
every q ∈ Q the system

(XHyω)|q = dH |q

has a solution XH |q belonging to TqQ. In the first part of the proof the construction
is performed in order to ensure that the submanifold defined by the EDS admits
tangent solutions to the Hamilton eqs, implying the invariance. In the second
part the strategy is to prove that our submanifold is maximal with respect to the
property of invariance; now the characterization of invariance is used in the opposite
direction, that is, it is initially supposed that certain submanifold is invariant, and
by using the characterization, arriving to the conclusion that the Hamilton eqs.
admits tangent solutions to this submanifold. Finally it can be related to the
manifold defined by the EDS because of the interpretation of the Hamilton eqs as
generators of the EDS.

After this warm-up, we are then ready to formulate the theorem with its proof.
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4.3.2. The main theorem and its proof. There are several elements to be included
in the final proof of the main theorem of the paper. In the previous paragraphs
it was argued the necessity of having a submersion Π : Λ̃′ → Λ̃ between bundles
fitting in the diagram

Λ̃′ Λ̃

M

-Π

@
@R

�
�	

Next it is assumed that there exists a compatible (with respect to the both bundle
structures) slicing of M which is well-behaved with the maps in this diagram. That

is, there exists a map Π0 : L̃′ → L̃ making commutative the following

Λ̃′ L̃′ × R

Λ̃ L̃× R

M Σ × R

-sΛ̃′

?

Π

?

Π0×id

-
sΛ̃

? ?
-

sM

The slicing on Λ̃′ allows us to define the EDS

I ′
τ := i∗τ

(
I| L̃′ × {τ}

)
,

which is nothing but the original involutive EDS I ′ restricted to the leaf L̃′ × {τ}.
In order to ensures that Vn−1 (I ′

τ ) ⊂ V r
n−1 (I ′), it is required furthermore that the

slicing be regular with respect to the EDS I ′. Now we define

Γ (I ′
τ ) := Π0 ◦ Γn−1 (I ′

τ , ω
′) ,

and the main theorem can be stated as follows.

Theorem 4.5. Let us suppose that the EDS I defined through 15 is τ-invariant,
namely

L∂0
I ⊂ I.

Then the constraint submanifold C in the presymplectic space of sections is equal to
Γ (I ′

τ ).

Proof. The constraint submanifold C can be characterized as the maximal invariant

submanifold of the set of sections of L̃ [16], where invariance for J ⊂ Γ
(
L̃
)

means

that

dH
(
TJ⊥

)
= 0,

being H the Hamiltonian function for our system and the orthogonal complement
is taken with respect to the presymplectic structure in the space of sections. It
can be proved (prop. 6.9 in [16]) that the invariance of a submanifold J in a
presymplectic manifold is equivalent to the fact that through any point of J there
exists solutions to the Hamilton equations tangent to this submanifold. So let us
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take στ ∈ Γ (I ′
τ ); according to the very definition of this space, there exists a unique

σ′
τ ∈ Γn−1 (I ′

τ , ω
′) such that

στ = Π0 ◦ σ
′
τ .

Because of the regularity of the submanifold Im (σ′
τ ) ⊂ Λ̃′, by Cartan-Kähler

theorem there exists a (non necessarily unique!) integral section σ′ ∈ Γn (I ′,Ω′)

such that σ′|
(
L̃′ × {τ}

)
= σ′

τ . If ∂0 denotes alternatively the vector fields defined

through

∂0|(λ,τ) : = (sΛ̃′)
−1
∗

∣∣∣
(λ,τ)

(
0,

d

dτ

∣∣∣∣
τ

)
on Λ̃′

∂0|(m,τ) : = (sM )−1
∗

∣∣∣
(m,τ)

(
0,

d

dτ

∣∣∣∣
τ

)
on M

then we can define the section X ′
τ ∈ Γ

(
(σ′

τ )
∗
(
V L̃′

))
= Tσ′

τ

(
Γ
(
L̃′
))

via

(σ′)∗ (∂0) = ∂0 + iτ∗ (X ′
τ ) . (17)

Thus the expression Xτ := Π0∗ ◦X ′
τ is a well defined section of the pullback bundle

(στ )∗
(
V L̃
)
, because the prolongation procedure and the proposition 5 ensures us

that the map Π0 ◦ (·) between n− 1-sections of the relevant bundles is one-to-one.
Furthermore, by projecting both sides of 17 along Π∗ ◦ (·) we obtain that

σ∗ (∂0) = ∂0 + iτ∗ (Xτ ) (18)

where σ := Π ◦ σ′ is a n-integral section for I on Λ̃, due to prolongation property.
In particular, σ∗|(m,τ) (TmM ⊕ ∂0) ⊂ T Λ̃ is a n-integral element for I contain-

ing the subspace στ∗|m (TmM), which is n − 1-integral for Iτ . Then σ∗ (∂0) ∈
H (στ∗|m (TmM)), so we must have that

(σ∗ (∂0)yα)| (στ∗|m (TmM)) = 0, ∀α ∈ I.

By using eq. 15, we obtain that Xτ satisfies

σ∗
τ (V y (XτyΩ − dH)) = 0, ∀V ∈ Γ

(
σ∗

τ

(
V L̃
))

,

meaning through proposition 4 that Xτ is solution of the Hamilton eqs. associated
to H . It remains to show that this solution is tangent to Γ (I ′

τ ); according to lemma
4.2, it is equivalent to show that

σ∗
τ

(
L

X̂τ
Iτ

)
= 0

for some extension X̂τ ∈ X

(
L̃
)

of Xτ . Because of lemma 4.4 and taking into

account that στ is a n− 1-dimensional integral submanifold of I, we conclude that

σ∗
τ

(
L

X̂
I
)

= 0, (19)

where X̂ := ∂0 + iτ

(
X̂τ

)
, and X̂τ ∈ X

(
L̃
)

is some extension to Xτ . The τ -

invariance

L∂0
I ∈ I
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implies that2

σ∗
τ

(
L

iτ∗(X̂τ )I
)

= 0, (20)

and furthermore, because Xτ (m) ∈ V L̃ for all m ∈M , for each α ∈ I we will have
that

σ∗
τ (iτ∗ (Xτ )yα) = σ∗

τ

(
iτ∗ (Xτ )y

(
α| L̃× {τ}

))

= σ∗
τ

(
Xτy

(
i∗τ α| L̃× {τ}

))
.

Then the Cartan’s Magic Formula allows us to rewrite the expression 20 as

σ∗
τ

(
L

X̂τ
Iτ

)
= 0,

which is the desired tangency condition. Therefore we have shown that Γ (I ′
τ ) is an

invariant submanifold of Γ
(
L̃
)
.

Our next task is to show that Γ (I ′
τ ) is maximal among all the invariant sub-

manifolds of the space of sections Γ
(
L̃
)
. So let us take Q ⊂ Γ

(
L̃
)

an invariant

submanifold. Then for every σ0 ∈ Q there exists X0 ∈ Γ
(
σ∗

0

(
V L̃
))

such that

• X0 ∈ Tσ0
Q, and

• σ∗
0 (V y (X0yΩ− dH)) = 0 for all V ∈ Γ

(
σ∗

0

(
V L̃
))

.

Assuming that any vector field Z ∈ X (Q) assigning to every section σ0 a vector X0

with these characteristics has integral curves3 τ 7→ στ passing through σ0 ∈ Q when
τ = 0, we are able to build the n-section σ : (τ, x) 7→ (τ, στ (x)) of Λ̃. This section is
n-integral for I because of the Hamilton equations. In fact, both conditions above
implies that στ∗ (TxΣ)⊕〈∂0|τ 〉 (τ belonging to some neighborhood of 0) annihilates
the set of forms

S :=
{
V ydλ̃ : V ∈ Γ

(
V Λ̃
)}

;

because S ⊂ I, we have that 〈S〉diff = I (by the definition of I, see Hamilton-Cartan
EDS, equation 3) and thus Vn (〈S〉diff) = Vn (I). Then by using the prolongation
properties we can find an integral section σ′ which is n-integral for I ′ and Π◦σ′ = σ;
moreover,

i0 ◦ σ0 = Π0 ◦
(
σ′| Λ̃′

0

)

and σ| Λ̃′
0 ∈ Γn−1 (I ′

0), and then σ0 ∈ Π0 ◦ Γn−1 (I ′
0) = Γ (I ′

0).

In the following section we will use the relation settled by this theorem between
Dirac constraints and the EDS Iτ in some interesting examples.

5. Examples. This section contains examples where the techniques developed in
the work will be applied. The first two of them deals with variational problems re-
lated to field theories; the last two shows some applications with more mathematical
taste.

2Abuse of language: The symbol iτ∗

(
X̂τ

)
in the following equation represents the vector field

(l, s) 7→ is∗

(
X̂s (m)

)
on Λ̃ ≃ L̃ × R, where the number τ refers to the second factor in this

decomposition.
3We hide behind this assumption some issues concerning hard analysis.
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5.1. Techniques in the EDS treatment. Before to start with, it is necessary to
mention some specific issues related to the verification of involutivity for a system
with independence condition. Namely, it consists of two parts:

1. The verification that the reduced characters are equal to the original charac-
ters.

2. The verification of the equality hypothesis of the second part of the Cartan’s
test.

If any of these fails, we use some of the tools discussed in the appendix B in order to
find an EDS with the same integral manifolds (in some dimension) which make them
hold. In order to work with these conditions, let us suppose that E = 〈v1, · · · ,vn〉 ⊂
TxX is an n-integral element of an EDS (I, ω1 ∧ · · · ∧ ωn) on a manifold X and we
take the flag induced by the subspaces

E0 : = 0,

Ek : = 〈v1, · · · ,vk〉 , k = 1, · · · , n− 1;

for each k, the linear system 23 gives us the space H (Ek) as the kernel of a linear
operator M (v1, · · · ,vk) : TxX → T ∗

xX . Then we have that the Cartan characters4

are

ck = rank M (v1, · · · ,vk) .

For the calculation of the reduced Cartan characters, we must write the operators
M (v1, · · · ,vk) in terms of a basis {ω1, · · · , ωn, · · · } ⊂ T ∗X and its dual: The
reduced Cartan characters c̃k are the ranks of the matrices obtained through this
procedure, after deleting the columns corresponding to the elements ω1, · · · , ωn of
the chosen basis.

5.2. Electromagnetism. We apply our results in the case of the classical theory
of electromagnetic field; as we know, the EDS associated to their Hamilton-Cartan

equations is defined on Λ̃ =
∧2

(T ∗M)⊕
∧2

(T ∗M)⊕T ∗M with coordinates (P, F,A)
by

I := 〈F − dA,P − ∗F,dP,dF,dP − d (∗F )〉alg

with the independence condition Ω := (p3 ◦ τ̄M )
∗
(ωM ) 6= 0, where ωM ∈ Ω4 (M)

is some volume form defined on the space-time (by supposing M orientable). For
this system the reduced characters c̃2 and c̃3 are less than the corresponding Cartan
characters; this is because of the appeareance of the form P − ∗F in the system,
which reduces to a collection of functions on Λ̃ when it is evaluated on integral
elements satisfying the independence condition. In order to circumvect this, we will

deal with the associated EDS on Λ :=
∧2

(T ∗M) ⊕ T ∗M defined through

J := 〈F − dA,d (∗F ) ,dF 〉alg ;

it is the EDS induced by pullback of our original one to the submanifold described by
the equation P = ∗F . Anyway, by using the identification of the vertical directions
with the fibres in our bundle, we use the following vectors

V µ := (∂µ;Fµ, Aµ)

as the basis inducing the flag

E0 := {0} ⊂ E1 :=
〈
V 1
〉
⊂ E2 :=

〈
V 1, V 2

〉
⊂ E3 :=

〈
V 1, V 2, V 3

〉
⊂ E

4These are not the true Cartan characters as they are defined in the literature, although they
are closely related.
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in E :=
〈
V 0, · · · , V 3

〉
⊂ T(F,A)Λ whose Cartan characters are being calculated.

Concretely

• Because J (1) := J ∩ Ω1 (Λ) = {0} we obtain that

H (E0) =
{
v ∈ T(F,A)Λ : vyφ = 0 for all φ ∈ J (1)

}

= T(F,A)Λ

and so c0 = codim H (E0) = 0.
• In this case

H (E1) =
{
v ∈ T(F,A)Λ : vy (wyφ) = 0 for all φ ∈ J (2) and w ∈ E1

}
,

so v ∈ H (E1) if and only if

vy
(
∂1yF −A1 − ∂1ydA

)
= 0;

then c1 = rank M
(
V 1
)

= 1.
• Now

H (E2) =
{
v ∈ T(F,A)Λ : vy (w1yφ) = 0 and vy (w2yw3yψ) = 0

for all φ ∈ J (2), ψ ∈ J (3) and w1, w2, w3 ∈ E2

}

and then v ∈ H (E2) iff it is solution for the system

vy
(
∂1yF −A1 − ∂1ydA

)
= 0

vy
(
∂2yF −A2 − ∂2ydA

)
= 0

vy
(
∂1y

(
∗F 2

)
− ∂2y

(
∗F 1

)
+ ∂1y∂2yd (∗F )

)
= 0

vy
(
∂1yF

2 − ∂2yF
1 + ∂1y∂2ydF

)
= 0;

this means that c2 = 4.
• Accordingly, the equations determining H (E3) will be

vy
(
∂1yF −A1 − ∂1ydA

)
= 0

vy
(
∂2yF −A2 − ∂2ydA

)
= 0

vy
(
∂3yF −A3 − ∂3ydA

)
= 0

vy
(
∂1y

(
∗F 2

)
− ∂2y

(
∗F 1

)
+ ∂1y∂2yd (∗F )

)
= 0

vy
(
∂1y

(
∗F 3

)
− ∂3y

(
∗F 1

)
+ ∂1y∂3yd (∗F )

)
= 0

vy
(
∂2y

(
∗F 3

)
− ∂3y

(
∗F 2

)
+ ∂2y∂3yd (∗F )

)
= 0

vy
(
∂1yF

2 − ∂2yF
1 + ∂1y∂2ydF

)
= 0

vy
(
∂1yF

3 − ∂3yF
1 + ∂1y∂3ydF

)
= 0

vy
(
∂2yF

3 − ∂3yF
2 + ∂2y∂3ydF

)
= 0;

the associated Cartan character being

c3 = 9

because of the Hodge operator.
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Let us now calculate the codimension of V4 (J ) ⊂ G4 (TΛ); as before, it will be the
rank of the linear operator behind the linear system5

V µ
yV ν

y (F − dA) = 0

V µ
yV ν

yV σ
y (d (∗F )) = 0

V µ
yV ν

yV σ
y (dF ) = 0 ∀µ, ν, σ = 0, · · · , 3.

Using the symmetries of the contraction operator, we see that the a priori indepen-
dent equations in this set are determined by the set of pairs of indices

(0, 1) , (0, 2) , (0, 3) , (1, 2) , (1, 3) , (2, 3)

and the set of triples

(0, 1, 2) , (0, 1, 3) , (0, 2, 3) , (1, 2, 3) .

The linear operator is constant, consequently it has maximal rank everywhere; so
we have that codimEV4 (J ) = # equations = 14. Thus the hypothesis of the
Cartan’s test are satisfied, and the EDS J will be involutive. By using the slicing
x0 = constant we can identify M ≃ R × L

Λx0 ≃ (R × L) ⊕ T ∗L⊕
2∧

(T ∗L) ⊕
2∧

(T ∗L)

with coordinates (a0, a, e, b) induced by the definitions (⋆ is the 3-Hodge star induced
by the metric)

F : = (⋆e) ∧ dx0 + b

A : = a0dx
0 + a.

From here we build the hamiltonian version of the equations of motion; by using
the rules

∗
(
⋆
(
dxi ∧ dxj

)
∧ dx0

)
= −dxi ∧ dxj

∗
(
dxi ∧ dxj

)
= ⋆

(
dxi ∧ dxj

)
∧ dx0

the constraint submanifold will be given by the 3-integral sections of the EDS

Jx0 : = i∗x0 (J |Λx0)

= 〈da− b,de = 0,db = 0〉alg

which are the usual constraints in the Hamiltonian version of electromagnetic field
equations.

5.3. Gotay-Nester algorithm. Before starting with the next examples, it is nec-
essary to summarize the Gotay-Nester algorithm. The initial data is a triple
(M0, ω0, H0) where (M0, ω0) is a presymplectic manifold and H0 ∈ C∞ (M0). Then
the algorithm proceed with the following steps:

1. Calculate K0 := kerω0.
2. For each l ∈ N, let Cl+1 be the ideal in C∞ (Ml) generated by Cl+1 :=

{X ·Hl : X ∈ Kl}.
3. Define Ml+1 as the zero locus for functions in Cl+1. Admitting that Ml+1

is a submanifold, define ωl+1 := ωl|Ml+1
, Hl+1 := Hl|Ml+1

, and Kl+1 :=

(TMl+1)
⊥

.
4. The algorithm stops whenever Ml+1 = Ml.

5That this system is linear is not a general fact; instead it is a property of the EDS which we
are handled, and is equivalent to the linearity of the Maxwell equations.



30 SANTIAGO CAPRIOTTI

5. The dynamics on the final constraint manifold Ml is governed by the solutions
of XH0

yω0 = dH0 tangent to Ml.

Some shortcuts are in order here: Because Ml+1 ⊂ Ml, we have that (TMl)
⊥ ⊂

(TMl+1)
⊥

, so in each step there are dim (TMl+1)
⊥ − dim (TMl)

⊥
complementary

vectors to look for. In order to find them out, it is useful the following remark: If

F ∈ Cl+1, and it admits a hamiltonian vector, then XF ∈ (TMl+1)
⊥.

5.4. Poisson sigma models. Here we will work in the setting of example 10.

5.4.1. EDS analysis of Poisson sigma models. According to our previous discusion,
we have that the Hamilton-Cartan EDS I is locally generated by

{
θµ := dxµ − πµνηανdξ

α,

Γσ := dηασ ∧ dξα − 1
2 (∂σπ

µν) ηαµηβνdξ
β ∧ dξα.

It can be shown (see for example [26]) that if J (π) is the jacobiator of the bivector
π, then

dθµ ≡ [J (π)]
µνρ

ηανηβρdξ
α ∧ dξβ mod I.

So the jacobiator in these systems is related to the torsion of the associated EDS.
Because we will study the Cartan characters of a 2-dimensional integral element, it
is not necessary to find an expression for dΓµ.

Let us consider the flag E0 = 0 ⊂ E1 := 〈v1〉 ⊂ E := 〈v1, v0〉, where

vi := ∂ξi +Xµ
i ∂xµ + Ξi

αν∂ηαν
∈ T(ξ,x,η)S, i = 0, 1.

Then E will belong to V2 (I) iff




Xρ
0 − πρνη0ν = 0,

Xρ
1 − πρνη1ν = 0,

Ξ0
1σ − Ξ1

0σ − (∂σπ
µν) η0µη1ν = 0

for ρ, σ = 1, · · · , dimM ; then codimEV2 (I) = 3n. On the other side, for the polar
spaces we have that

H (E0) =
{
v ∈ T(ξ,x,η)S : vy (dxµ − πµνηανdξ

α) = 0, µ = 1, · · · , dimM
}

H (E1) =

{
v ∈ H (E0) : vyv1y

(
dηασ ∧ dξα −

1

2
(∂σπ

µν) ηαµηβνdξ
β ∧ dξα

)
= 0

}

=
{
v ∈ H (E0) : dη1σ + terms in dξβ

}
,

so the reduced characters for E will be c0 (E) = dimM, c1 (E) = 2n. Then the
Cartan test is satisfied, and the system is involutive at E.

5.4.2. Investigation through the Gotay-Nester algorithm. It is interesting to see how
the Jacobi identity for π can be obtained from the Gotay-Nester algorithm associ-
ated to the non standard variational problem describing a Poisson sigma model. So
let us fix on Σ a 1-submanifold Σ0, which is locally described as ξ0 = 0, and define
S0 := S|Σ0. According to our recipe, on Γ (S0) there exists a presymplectic form
and a hamiltonian; in order to get them, let us calculate

dλ̃ = dηαµdξα∧dxµ−(∂σπ
µν) ηαµηβνdx

σ∧dξα∧dξβ−2πµνηβνdηαµ∧dξα∧dξβ

⇒ dλ̃
∣∣∣
S0

= −dη1µ ∧ dxµ ∧ dξ1



CONSTRAINTS, FIELD THEORY AND EDS 31

and

∂ξ0yλ̃ = η0µdxµ − πµνη0µηβνdξ
β ⇒ ∂ξ0yλ̃

∣∣∣
S0

= η0µdxµ − πµνη0µη1νdξ
1.

In order to simplify notation, let us introduce the definitions τ := ξ0, σ := ξ1, ηµ :=
η0µ and γµ := η1µ; then if Xi :=

(
δxµ

i , δη
i
ν , δγ

i
ρ

)
, i = 1, 2 indicates arbitrary vectors

in T(x,η,γ)Γ (S0) the presymplectic structure reads

ω0 (X1, X2) =

ˆ

Σ0

(
δxµ

1 δγ
2
µ − δxµ

2 δγ
1
µ

)
dσ

and the hamiltonian will be

H0 :=

ˆ

Σ0

ηµ

[
(xµ)

′ − πµνγν

]
dσ.

Here we denote with a prime the derivative respect to the σ-variable. So we have
that

kerω0 = {(0, δηµ, 0)} ,

and the primary constraints will arise from

0 = dH0 (δην)

=

ˆ

Σ0

δηµ

[
(xµ)

′ − πµνγν

]
dσ ⇒ (xµ)

′ − πµνγν = 0.

Termination of the algorithm. Let C1 be the set C1 :=
{
(xµ)

′ − πµνγν

}
and M1 ⊂

Γ (S0) its zero locus. Now let us define

F :=

ˆ

Σ0

fµ

[
(xµ)

′ − πµνγν

]
dσ,

where fµ, µ = 1, · · · , n are arbitrary functions on Σ0 and n = dimM ; then

dF (X2) =

ˆ

Σ0

fµ

[
(δxµ

2 )
′
− (∂ρπ

µν) γνδx
ρ
2 − πµνδγ2

ν

]
dσ

=

ˆ

Σ0

{
−fµπ

µνδγ2
ν −

[
(fρ)

′ + fµ (∂ρπ
µν) γν

]
δxρ

2

}
dσ,

and this function will have hamiltonian vector field, namely

XF :=
(
−fµπ

µν , 0, (fρ)
′
+ fµ (∂ρπ

µν) γν

)
.

The different choices for the arbitrary functions fµ will gives the vector fields com-
plementary to kerω0. The secondary constraints are obtained from

0 = dH0 (XF )

=

ˆ

Σ0

ηµ

[
− (fνπ

νµ)′ + (∂ρπ
µν) γνfωπ

ωρ − πµν
(
(fν)′ + fω (∂νπ

ωρ) γρ

)]
dσ

=

ˆ

Σ0

ηµ

[
fν (∂ρπ

νµ) (xρ)
′
+ (∂ρπ

µν) γνfωπ
ωρ − πµνfω (∂νπ

ωρ) γρ

]
dσ

=

ˆ

Σ0

ηµ [fν (∂ρπ
νµ)πρωγω + (∂ρπ

µν) γνfωπ
ωρ − πµνfω (∂νπ

ωρ) γρ]dσ

=

ˆ

Σ0

ηµfνγω [(∂ρπ
νµ)πρω + (∂ρπ

µω)πνρ − πµρ (∂ρπ
νω)]dσ
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where was used that we are restricting on M1, so that (xρ)
′
= πρωγω. Because π is a

Poisson structure, these constraints are identically satisfied, and M1 is an invariant
manifold.

5.5. Dirac method and integrability conditions. From [29] we know that the
following PDE system {

φzz + yφxx = 0

φyy = 0

has the equations φxxy = φxxxx = 0 as integrability conditions. This system can be
written as the EDS I generated by
{
θ := dφ− pdx− qdy − rdz,

Γ1 := dr ∧ dx ∧ dy + ydp ∧ dy ∧ dz,Γ2 := dq ∧ dx ∧ dz
}

on R
7 with coordinates (x, y, z, φ, p, q, r). It is noted also that these integrability

conditions can be obtained applying the prolongation procedure twice. In the fol-
lowing sections we will use the correspondence settled by Theorem 4.5 in order to
calculate the aforementioned integrability conditions through the Gotay-Nester al-
gorithm. The idea is that, although the system initially considered is highly non
regular, there exists (via Cartan-Kuranishi) a prolongation which is regular6, and
the Dirac constraints can be determined by our theorem 4.5: Therefore if we know
the Dirac constraints, we know something about the prolonged EDS. In particular,
the integrability conditions must arise as these kind of constraints.

Therefore we need to formulate the EDS as a non standard variational problem;
thus let us define the double fibration

Λ := R
7 → Λ1 := R

4 → M := R
3

(x, y, z, φ, p, q, r) 7→ (x, y, z, φ) 7→ (x, y, z) ,

taking as prolongations structure the given EDS I, and as lagrangian the trivial one
λ = 0. In order to build an associated Lepagean equivalent problem, we consider

Λ̃ := Λ ⊕
2∧

(T ∗M) ⊕ R
2

with coordinates (x, y, z, φ, p, q, r;α, λ, µ), α = Adx∧dy+Bdx∧dz+Cdy∧dz, µ, λ ∈
R; the functional to be extremized will be

S :=

ˆ

M

(α ∧ θ + λΓ1 + µΓ2) .

We know that it is a covariant Lepage equivalent problem; the following lemma
shows that it is also contravariant.

Lemma 5.1. The projection

ν : Λ̃ → Λ : (x, y, z, φ, p, q, r;α, λ, µ) 7→ (x, y, z, φ, p, q, r)

maps extremals of S into integral sections for I; conversely, for each integral section
of I given by

(x, y, z) 7→ (x, y, z, φ, p, q, r)

there exists α ∈ Ω2 (M) , λ, µ ∈ C∞ (M) such that joined to the integral section
gives rise to an extremal of S.

6There remains the question of regularity of the foliation introduced in order to define the
presymplectic space; it is supposed that this condition is fulfilled.
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Proof. The variations respect to α, µ and λ gives us the generators of I, so its
projection will be an integral section of I. The variations respect to φ, p, q and r
leads to 




dα = 0,

ydλ ∧ dy ∧ dz + α ∧ dx = 0,

dµ ∧ dx ∧ dz + α ∧ dy = 0,

dλ ∧ dx ∧ dy + α ∧ dz = 0.

This system is equivalent to




Az −By + Cx = 0,

yλx + C = 0,

µy +B = 0,

λz +A = 0;

in order to find a solution to it, we take λ arbitrary, and define C and A by using the
second and fourth equation respectively. From third equation we can determine B
once µ is known, and the first of them gives us a differential equation for µ, namely

µyy = λzz + yλxx.

So the system has solutions, and our new variational problem is contravariant.

5.5.1. Associated dynamical system. Let λ̃ be the form below the integral sign in
S, and let us define N0 ⊂ Λ̃ as the submanifold consisting of the points in Λ̃ such
that z = 0. Then

dλ̃ = dα ∧ (dφ− pdx− qdy − rdz) − α ∧ (dp ∧ dx+ dq ∧ dy + dr ∧ dz)

+ dλ ∧ (dr ∧ dx ∧ dy + ydp ∧ dy ∧ dz) + dµ ∧ dq ∧ dx ∧ dz

and thus

dλ̃
∣∣∣
N0

= dA ∧ dx ∧ dy ∧ dφ+ dλ ∧ dr ∧ dx ∧ dy;

this allows us to define on N0 the presymplectic form

ωz (X1, X2) :=

ˆ

R2

[(δA1δφ2 − δA2δφ1) + (δλ1δr2 − δλ2δr1)]dx ∧ dy,

where we put

Xi = (δφi, δpi, δqi, δri; δαi, δλi, δµi) , i = 1, 2

in order to denote generic vectors in the tangent space of Γ (N0). It is important
to know the kernel of this form.

Lemma 5.2. The kernel of ωz is given by

kerωz = 〈(0, δp, δq, 0; δBdx ∧ dz + δCdy ∧ dz, 0, δµ)〉 .

Let us now build the hamiltonian; contracting λ̃ in the z-direction

∂zyλ̃ = − (Bdx+ Cdz) ∧ (dφ− pdx− qdy − rdz) − rα+ yλdp ∧ dy + µdq ∧ dx,

so that

∂zyλ̃
∣∣∣
N0

= − (Bdx+ Cdy)∧dφ+(Bq − Cp)dx∧dy−rAdx∧dy+yλdp∧dy+µdq∧dx
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we obtain the following expression for the hamiltonian

Hz =

ˆ

R2

[(Cφx −Bφy) + (Bq − Cp− rA) + (yλpx − µqy)]dx ∧ dy.

Primary constraints . The first order constraints can be obtained from

dHz (kerωz) = 0;

the resulting constraints are

C1 := {yλx + C,B + µy, φy − q, φx − p, qy}

and it gives rise to the primary constraints submanifold M1 = {C1 = 0} ⊂ Γ (N0).

In order to find out the elements in (TM1)
⊥

, let us use the remark made in the
subsection 5.3: If F is a constraint, and it admits a hamiltonian vector, then XF ∈

(TM1)
⊥

. Let us take the constraints qy = 0 y φy − q = 0; none of them has a
hamiltonian vector field, although the consequence φyy = 0 admits such a vector.
Therefore the function

F1 :=

ˆ

R2

φyyf1dx ∧ dy

(where f1 ∈ C∞
(
R

2
)

is arbitrary) has a hamiltonian vector field. In fact, from the
equation

ωz (XF1
, X2) = dF1 (X2)

and taking into account that

dF1 (X2) =

ˆ

R2

(δφ2)yy f1dx ∧ dy

=

ˆ

R2

δφ2 (f1)yy dx ∧ dy

we conclude that

XF1
=
(
0, 0, 0, 0; (f1)yy dx ∧ dy, 0, 0

)
.

Therefore we see that (TM1)
⊥

= kerωz ⊕ 〈XF1
〉, and we are ready to calculate the

secondary constraints.

Secondary constraints . These constraints are obtained from dHz
(
(TM1)

⊥
)

= 0

and we know that on M1, dHz (kerωz) is identically zero; then C2 := C1 ∪ {ryy} is
the new set of constraints and M2 := {C2 = 0} is its associated constraint manifold.
By using the additional constraint ryy we can define

F2 :=

ˆ

R2

ryyf2dx ∧ dy

and so

dF2 (X2) =

ˆ

R2

(δr2)yy f2dx ∧ dy =

ˆ

R2

δr2 (f2)yy dx ∧ dy;

the associated hamiltonian vector field is

XF2
=
(
0, 0, 0, 0; 0, (f2)yy , 0

)
.

It is the complementary vector we were looking for, and so (TM2)
⊥

= (TM1)
⊥ ⊕

〈XF2
〉. Thus we can calculate the new constraint, namely dHz (XF2

) = 0; so it
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results (ypx)yy = 0. But on M2, p = φx, and therefore

(ypx)yy = (yφxx)yy

= (yφxxy + φxx)
y

= yφxxyy + 2φxxy

= 2φxxy

on M2.
Tertiary constraints. Now C3 := C2 ∪ {φxxy} and let M3 be its zero locus. Contin-
uing with the algorithm, we need to find the vectors in the symplectic orthogonal
to TM3 associated to the (new) constraints functions. So we define

F3 :=

ˆ

R2

f3φxxydx ∧ dy,

and its derivative along X2 will read

dF3 (X2) =

ˆ

R2

f3 (δφ2)xxy dx ∧ dy

= −

ˆ

R2

(f3)xxy δφ2dx ∧ dy.

Then

XF3
=
(
0, 0, 0, 0;− (f3)xxy dx ∧ dy, 0, 0

)
,

therefore (TM3)
⊥ = (TM2)

⊥ ⊕ 〈XF3
〉, and from here we obtain the new constraint

dHz (XF3
) = 0, namely rxxy = 0.

Quaternary constraints. We define C4 := C3 ∪{rxxy} and M4 := {C4 = 0}. Then if

F4 :=

ˆ

R2

f4rxxydx ∧ dy

we have that dF4 (X2) = −
´

R2 (f4)xxy δr2dx ∧ dy, and the new vector in (TM4)
⊥

will be

XF4
=
(
0, 0, 0, 0; 0,− (f4)xxy , 0

)
.

Then we have that (TM4)
⊥ = (TM3)

⊥ ⊕ 〈XF3
〉, and for the new constraint

dHz (XF2
) = 0 or equivalently (ypx)xxy = 0. But on M4

(ypx)xxy = (yφxx)xxy = (yφxxxx)y = φxxxx + yφxxy = φxxxx,

giving rise to the constraint φxxxx = 0.
Fifth order constraints. With the definitions C5 := C4 ∪ {φxxxx} ,M5 := {C5 = 0}
and

F5 :=

ˆ

R2

f5φxxxxdx ∧ dy

we have that dHz (X2) =
´

R2 (f5)xxxx δφ2dx ∧ dy, so

XF5
= (0, 0, 0, 0; (f5)xxxx dx ∧ dy, 0, 0) .

The new symplectic complement is given by (TM5)
⊥

= (TM4)
⊥ ⊕ 〈XF5

〉. Thus it
is obtained a new constraint from

0 = dHz (XF5
)

=

ˆ

R2

rxxxxf5dx ∧ dy ⇒ rxxxx = 0.
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Termination of the algorithm. Let us define M6 ⊂ M5 as the zero locus of rxxxx

in M5; by adding the hamiltonian vector field of F6 :=
´

R2 f6rxxxxdx ∧ dy to

(TM5)
⊥, we obtain the vector space (TM6)

⊥; it can be proved that the function
dHz (XF6

) is identically zero on M6, and we can conclude that it is an invariant
submanifold of Γ (N0). By performing an elimination of the auxiliar variables on
the set of constraints C6 := C5 ∪ {rxxxx} and keeping those involving only the
original variables x, y, z, φ, we see that the integrability constraints must be φxxy =
0, φxxxx = 0. A note of caution about the applicability of the method is that this
elimination process can in principle be as involved as the problem of finding the
original integrability conditions.

5.6. Non regular EDS and Gotay-Nester algorithm failure. We want to
construct an example where the Dirac method fails in some sense; in order to do
that, we will use the approach to variational problems developed here. The rationale
behind this is the following: We know from the theorem 4.5 that whenever the EDS
associated to the equations of motion admits regular elements, there exists a one-
to-one correspondence between the solutions for this EDS and the solutions for the
dynamical system on the sections of the selected spatial slice. Therefore we need
to find a variational problem whose extremals are described for an EDS with non
regular integral elements. Concretely, we will take a system where the non regularity
stems from singularities of the set of integral elements: this lack of regularity cannot
be circumvected via prolongation, and the Dirac method would fail. So the Gotay
algorithm could run into problems in facing them.

5.6.1. Initial setting. Let us consider the EDS I generated by

θ1 := du− qdx, θ2 := dv − qdr

on Λ := R
6 with coordinates (x, y, u, v, q, r); the independence condition is dx∧dy 6=

0. The idea is the one given in example 4, that is, by considering that I as the ideal
defining a prolongation structure on Λ, which has the double fibration structure via

Λ → Λ1 := R
4 → M := R

2

(x, y, u, v, q, r) 7→ (x, y, u, v) 7→ (x, y) ,

and by taking the lagrangian λ = 0. Using our prescriptions, the Lepage equivalent
will be constructed on Λ̃ :=

(
R

2 × R
4
)
⊕
(
T ∗

R
2 ⊕ T ∗

R
2
)
, with action

S :=

ˆ

R2

(α ∧ θ1 + β ∧ θ2) ,

where α = adx + bdy, β = mdx + ndy. We need to prove that it is a bivariant
Lepage equivalent problem.

Lemma 5.3. The projection

ν : (x, y, u, v, q, r, α, β) 7→ (x, y, u, v, q, r)

makes
(
Λ̃, 0, α ∧ θ1 + β ∧ θ2

)
into a Lepagean equivalent of (Λ, I, 0). Furthermore,

it is bivariant, that is, every extremal of the variational problem posed by S on
sections of Λ̃ projects on an integral section of I (because the lagrangian is trivial,
there are no action to work with here) and conversely, every integral section of I
can be lifted to an extremal of S.
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Proof. The variations along α and β will give us the generators for I; this shows
that it is a covariant Lepage equivalent problem. On the other side, variations along
u, v, q and r leads to the following system on α and β:





dα = 0,

dβ = 0,

β ∧ dr + α ∧ dx = 0,

d (qβ) = 0.

For every (x, y) 7→ (u, v, q, r) integral section for I, this systems admits solutions,
so it is contravariant also.

5.6.2. Gotay-Nester algorithm. Now we start with the analysis of the dynamical
equations associated to the regular slicing y = 0. In order to do that, we take
N0 ⊂ Λ̃ the submanifold composed by the points in Λ̃ such that y = 0; it is a bundle
on R, and our next task is to define on its space of sections a presymplectic structure
and a hamiltonian function. The first thing to note is that for λ̃ := α ∧ θ1 + β ∧ θ2

dλ̃ = dα ∧ (du− qdx) + α ∧ dq ∧ dx+ dβ ∧ (dv − qdr) + β ∧ dq ∧ dr,

so

dλ̃
∣∣∣
N0

= da ∧ dx ∧ du+ dm ∧ dx ∧ (dv − qdr) +mdx ∧ dq ∧ dr.

Therefore if

Xi = (δui, δvi, δqi, δri; δαi, δβi) , i = 1, 2

denotes a pair of arbitrary elements in TΓ (N0), the presymplectic structure will be

ωy (X1, X2) =

ˆ

R

[
− δa1δu2 − δm1δv2 −mδr1δq2

+ (qδm1 +mδq1) δr2 + δu1δa2 + (δv1 − qδr1) δm2

]
dx

and

Hy =

ˆ

R

[b (ux − q) + n (vx − qrx)]dx.

Primary constraints. As above

kerωy =

〈
(0, 0, 0, 0; δbdy, 0)︸ ︷︷ ︸

Z1

, (0, 0, 0, 0; 0, δndy)︸ ︷︷ ︸
Z2

〉

and therefore the primary constraints will arise from dHy (kerωy) = 0. Then
C1 := {ux − q, vx − qrx} is the set of primary constraints andM1 := {C1 = 0} is the
associated constraint submanifold; in order to find the two vectors complementary
to kerωy, we define

F1 :=

ˆ

R

f1 (ux − q)dx, F2 :=

ˆ

R

f2 (vx − qrx)dx;
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then

X2 · F1 =

ˆ

R

f1 [(δu2)x − δq2]dx

= −

ˆ

R

[(f1)x δu2 + f1δq2]dx,

X2 · F2 =

ˆ

R

f2 [(δv2)x − rxδq2 − q (δr2)x]dx

=

ˆ

R

[(qf2)x δr2 − (f2)x δv2 − rxf2δq2]dx.

Then, under the assumption m 6= 0, we obtain that

XF1
=

(
0,
qf1
m
, 0,

f1
m

; (f1)x dx, 0

)

XF2
=

(
0,
qrxf2
m

,
qxf2
m

,
rxf2
m

; 0, (f2)x dx

)
,

yielding to the secondary constraints
{
n qx

m
, b qx

m

}
. We are now in a very uncom-

fortable situation: Let us suppose that we define C2 := C1 ∪
{
n qx

m
, b qx

m

}
and

M2 := {C2 = 0}, and we want to calculate kerωy ∩ TM2. This set is composed
by those vectors in kerωy that annihilates the differentials of the new constraints;
therefore Z = (0, 0, 0, 0; δbdy, δndy) ∈ TM2 iff

{
δn qx

m
= 0

δb qx

m
= 0.

Thus if qx 6= 0 the algorithm must stops, because in this case TM⊥
2 = TM⊥

1 , and
it will continue in those points where qx = 0. This is a very bad behaviour of
the Gotay-Nester algorithm, and it has to do with the singular nature of the new
constraints.

5.6.3. EDS analysis. The analysis of this PDE system is interesting, because its set
of integral elements consists of several parts, each of them with different regularity
behaviour. In fact, we will see that these differences introduces the singularities in
the Gotay-Nester algorithm.

The integral elements for I divides into two sets: the set W consisting of the
elements with qx = 0, and U3 is the set of integral elements such that n = b = 0.
None of them has regular elements; in particular, the elements in U3 has 0-forms
in its definition, so this set needs to be redefined. The procedure is to pull back
the original EDS I to the submanifold defined by the collection of problematic 0-
forms. It gives rise to a new EDS I3 whose set of integral elements admits a new
decomposition into a pair of subsets V1 and V3. The set V3 is characterized by the
0-form constraint m = 0, and will not be studied; the set V1 is composed by regular
elements. Additionally the prolongation of the portion of the EDS corresponding
to the elements in W gives rise to a new EDS IW on G2

(
TR

10
)

which is regular
too.

Therefore it is necessary to know the main characteristics of our EDS I; first of
all, a set of algebraic generators will be

{θ1, θ2,dq ∧ dx,dq ∧ dr,dα,dβ, β ∧ dr + α ∧ dx, β ∧ dq} .
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Now we proceed to calculate the (reduced) characters for the flag E0 := 0 ⊂ E1 :=
〈v1〉 ⊂ E := 〈v1, v2〉, where

v1 := ∂x + U1∂u + V1∂v +Q1∂q +R1∂r +A1∂a +B1∂b +M1∂m +N1∂n,

v2 := ∂y + U2∂u + V2∂v +Q2∂q +R2∂r +A2∂a +B2∂b +M2∂m +N2∂n

are in T(x,y,u,v,q,r)R
10. Then these components must satisfy





v1y (du− qdx) = 0 ⇔ U1 − q = 0,

v1y (dv − qdr) = 0 ⇔ V1 − qR1 = 0,

v2y (du− qdx) = 0 ⇔ U2 = 0,

v2y (dv − qdr) = 0 ⇔ V2 − qR2 = 0,

(v1 ∧ v2)ydq ∧ dx = 0 ⇔ Q2 = 0,

(v1 ∧ v2)ydq ∧ dr = 0 ⇔ Q2R1 −Q1R2 = 0,

(v1 ∧ v2)ydα = 0 ⇔ A2 −B1 = 0,

(v1 ∧ v2)ydβ = 0 ⇔ M2 −N1 = 0,

(v1 ∧ v2)y (β ∧ dr + α ∧ dx) = 0 ⇔ nR1 −mR2 − b = 0,

(v1 ∧ v2)yβ ∧ dq = 0 ⇔ nQ1 −mQ2 = 0.

Thus V2 (I) is described by the equations





U1 = q, U2 = 0,

V1 = qR1, V2 = qR2,

Q2 = 0, Q1R2 = 0,

A2 −B1 = 0,

M2 −N1 = 0,

nR1 −mR2 − b = 0,

nQ1 = 0.

It is necessary to analyze carefully this system. It results that V2 (I) = W ∪ U3,
where

W :





U1 = q, U2 = 0,

V1 = qR1, V2 = qR2,

Q1 = 0, Q2 = 0,

A2 −B1 = 0,

M2 −N1 = 0,

nR1 −mR2 − b = 0,

U3 :





U1 = q, U2 = 0,

V1 = qR1, V2 = 0,

Q2 = 0, R2 = 0,

A2 −B1 = 0,

M2 −N1 = 0,

b = 0,

n = 0.
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Let us calculate the polar spaces for the integral element E; we have that

H (E0) =
{
v ∈ T(x,y,u,v,q,r,a,b,m,n)R

10 : vy (du− qdx) = 0, vy (dv − qdr) = 0
}
,

H (E1) =
{
v ∈ H (E0) : vy (v1ydq ∧ dx) = 0, vy (v1ydq ∧ dr) = 0, vy (v1ydα) = 0,

vy (v1ydβ) = 0, vy (v1y (β ∧ dr + α ∧ dx)) = 0, vy (v1yβ ∧ dq) = 0
}

=
{
v ∈ H (E0) : vy (Q1dx− dq) = 0, vy (Q1dr −R1dq) = 0,

vy (A1dx+B1dy − da) = 0, vy (M1dx+N1dy − dm) = 0,

vy (mdr −R1β − bdy) = 0, vy (mdq −Q1β) = 0
}
.

We can consider the reduced Cartan characters for E in each of the sets W and U3;
in every case we have that c0 (E) = 2 and c1 (E) = 6 on W , by supposing that7

m 6= 0. Moreover we have that codimEW = 9, so there are no regular elements in
W .

On U3 we must take care of the fact that it is defined through 0-forms, namely,
the constraints n = 0 and b = 0. The regularity of I must be studied through the
regularity of the EDS I3 obtained from I by pulling back to the submanifold

Λ̃3 := {(x, y, u, v, q, r, a, 0,m, 0) : x, y, u, v, q, r, a,m ∈ R} ;

a set of generators for I3 will be

{θ1, θ2,dq ∧ dx,dq ∧ dr,da ∧ dx,dm ∧ dx,mdx ∧ dr,mdx ∧ dq} .

Then if

w1 := ∂x + U1∂u + V1∂v +Q1∂q +R1∂r + A1∂a +M1∂m,

w2 := ∂y + U2∂u + V2∂v +Q2∂q +R2∂r +A2∂a +M2∂m

the set of 2-integral elements V2 (I3) is described by the equations

U ′
3 :





U1 = q, U2 = 0,

V1 = qR1, V2 = 0,

Q2 = 0, Q1R2 = 0,

A2 = 0,M2 = 0,

mR2 = 0.

Thus we will have that U ′
3 = V1 ∪ V3, where

V1 :





U1 = q, U2 = 0,

V1 = qR1, V2 = 0,

Q2 = 0, R2 = 0,

A2 = 0,M2 = 0,

V3 :





U1 = q, U2 = 0,

V1 = qR1, V2 = 0,

Q2 = 0, Q1 = 0,

A2 = 0,M2 = 0,

m = 0

(21)

7In points where m = 0, some of the characters decrease by one.
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and codimEV1 = 8. On the other side, the polar spaces for the flag E′
0 := 0 ⊂ E′

1

:= 〈w1〉 ⊂ E′ := 〈w1, w2〉 will be

H (E0) =
{
v ∈ T(x,y,u,v,q,r,a,m)R

8 : vy (du− qdx) = 0, vy (dv − qdr) = 0
}
,

H (E1) =
{
v ∈ H (E0) : vy (w1ydq ∧ dx) = 0, vy (w1ydq ∧ dr) = 0,

vy (w1yda ∧ dx) = 0, vy (w1ydm ∧ dx) = 0,

vy (w1y (mdx ∧ dr)) = 0, vy (w1y (mdx ∧ dq)) = 0
}

=
{
v ∈ H (E0) : vy (Q1dx− dq) = 0, vy (Q1dr −R1dq) = 0,

vy (A1dx− da) = 0, vy (M1dx− dm) = 0,

vy (mdr −mR1dx) = 0, vy (mdq −mQ1dx) = 0
}
,

and for E ∈ V1 we have that c0 (E) = 2, c1 (E) = 6. Therefore, the integral elements
in V1 are regular.

Finally it is necessary to consider the prolongation of the set W , in order to see
if some of its elements can be considered as the tangent space of some solution.
The prolongation of an EDS I ⊂ Ω• (M) is the pullback of the contact EDS on
G2 (TM) to the set V2 (I). Let us introduce the coordinates

(x, y, u, v, q, r, a, b,m, n, ux, vx, qx, rx, ax, bx,mx, nx, uy, vy, qy, ry, ay, by,my, ny)

on G2

(
TR

10
)
; then W is the subset described by

W :





ux = q, uy = 0,

vx = qrx, vy = qry,

qx = 0, qy = 0,

ay − bx = 0,

nx −my = 0,

nrx −mry − b = 0,

and the pullback IW of the contact system to W will have the generators





θu := du− qdx

θv := dv − q (rxdx+ rydy)

θq := dq

θr := dr − rxdx− rydy

θa := da− axdx− aydy

θb := db − aydx− bydy

θm := dm−mxdx−mydy

θn := dn−mydx− nydy

⇒





dθu ≡ 0

dθv = −q (drx ∧ dx+ dry ∧ dy)

dθq = 0

dθr = −drx ∧ dx− dry ∧ dy

dθa = −dax ∧ dx− day ∧ dy

dθb = −day ∧ dx− dby ∧ dy

dθm = −dmx ∧ dx− dmy ∧ dy

dθn = −dmy ∧ dx− dny ∧ dy.
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Let E be the flag E0 := 0 ⊂ E1 := 〈v1〉 ⊂ E := 〈v1, v2〉, with basis

v1 := ∂x + U1∂u + V1∂v +Q1∂q +R1∂r +A1∂a +B1∂b +M1∂m +N1∂n

+ U1
x∂ux

+ V 1
x ∂vx

+Q1
x∂qx

+R1
x∂rx

+A1
x∂ax

+B1
x∂bx

+M1
x∂mx

+N1
x∂nx

+ U1
y∂uy

+ V 1
y ∂vy

+Q1
y∂qy

+R1
y∂ry

+A1
y∂ay

+B1
y∂by

+M1
y∂my

+N1
y∂ny

,

v2 := ∂y + U2∂u + V2∂v +Q2∂q +R2∂r +A2∂a +B2∂b +M2∂m +N2∂n

+ U2
x∂ux

+ V 2
x ∂vx

+Q2
x∂qx

+R2
x∂rx

+A2
x∂ax

+B2
x∂bx

+M2
x∂mx

+N2
x∂nx

+ U2
y∂uy

+ V 2
y ∂vy

+Q2
y∂qy

+R2
y∂ry

+A2
y∂ay

+B2
y∂by

+M2
y∂my

+N2
y∂ny

;

then V2 (IW ) is given by





U1 = q, U2 = 0, V1 = qrx, V2 = qry , Q1 = 0, Q2 = 0, R1 = rx, R2 = ry,

A1 = ax, A2 = ay, B1 = ay, B2 = by,M1 = mx,M2 = my, N1 = my, N2 = ny,

R2
x −R1

y = 0, A2
x −A1

y = 0, B2
x −B1

y = 0,M2
x −M1

y = 0, N2
x −R1

y = 0.

This means that codimEV2 (IW ) = 21. For E integral element the polar spaces are

H (E0) =
{
v ∈ TW : vyθu = 0, vyθv = 0, vyθq = 0, vyθr = 0,

vyθa = 0, vyθb = 0, vyθm = 0, vyθn = 0
}

H (E1) =
{
v ∈ H (E0) : vy (drx + · · · ) = 0, vy (dax + · · · ) = 0,

vy (day + · · · ) = 0, vy (dmx + · · · ) = 0, vy (dmy + · · · ) = 0
}
,

and the reduced Cartan characters results c0 (E) = 8, c1 (E) = 13; therefore E is a
regular integral element.

5.6.4. Return to Gotay-Nester algorithm. Nevertheless, it can be instructive to
desingularize these constraints by mimicking the finite dimensional procedure: That
is, by considering that the sections fulfilling the problematic constraints are the
union of the sections such that n = b = 0 with the set of sections satisfying the
single constraint qx = 0. Despite the validity of such a procedure, we consider the
continuation of the algorithm in each of these sets.

• Case n = b = 0. In this case C′
2 := C1 ∪ {n, b} and if M ′

2 is the zero locus for
C′

2 . Therefore the algorithm must stops, namely, M ′
2 is an invariant manifold.

In order to find the dynamical equations, let us obtain the hamiltonian vector
field for Hy on Γ (N0), restricting it to the submanifold M ′

2. We will have
that

X2 ·H
y =

ˆ

R

{
δb2 (ux − q) + δn2 (vx − qrx)

+ b [(δu2)x − δq2] + n [(δv2)x − rxδq2 − q (δr2)x]
}
dx (22)

and so X2 ·Hy|M ′

2
= 0; if the hamiltonian vector field for Hy reads XHy =

(uy, vy, qy, ry, aydx+ bydy,mydx+ nydy), the tangent solution to M ′
2 of the
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Hamilton eqs must be8 XHy = 0 and the dynamical equations reads



uy = 0

vy − qry = 0

qy = 0

ay = 0

my = 0.

It can be compared with the regular EDS V1 described by Eq. 21: This
branch of the regularization procedure finds the solutions associated to regular
elements in V1.

• Case qx = 0. Now C′′
2 := C1 ∪ {qx}, and M ′′

2 = {C′′
2 = 0}. If we define

G :=

ˆ

R

gqxdx

its derivative along X2 results

X2 ·G =

ˆ

R

g (δq2)x dx = −

ˆ

R

gxδq2dx.

Therefore

XG =
(
0, q

gx

m
, 0,

gx

m
, 0; 0, 0

)
∈ (TM ′

2)
⊥

and the invariance condition will reads

0 = XG ·Hy

=

ˆ

R

n
[(
q
gx

m

)
x
− q

(gx

m

)
x

]
dx

=

ˆ

R

gx

nqx
m

dx ⇒
(
n
qx
m

)
x

= 0.

This condition is fulfilled onM ′′
2 , so it is an invariant manifold for the dynamics

defined by ωy and Hy. Thus let us calculate the hamiltonian vector field XHy ,
and then restricts it to M ′′

2 ; by taking into account Eq. 22 we have that

X2 ·H
y|M ′′

2
=

ˆ

R

[
− bxδu2 − (b− nrx) δq2 − nxδv2 (nq)x δr2

]
dx.

Therefore the equations of motion are




uy = 0

vy − qry = 0

qy = 0

ay = bx

by = δb

my = nx

ny = δn.

In this case the solutions of the dynamical equations are in a one-to-one corre-
spondence to solutions associated to the regular elements in the prolongation
of W ; moreover, the additional step in the Gotay algorithm has to do with
the extra prolongation performed.

8All the hamiltonian vector fields for Hy has the form XHy = µ1Z1 + µ2Z2, and the tangent
condition requires µ1 = µ2 = 0.
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5.7. Some remarks. It must be noted that there exists a field theory whose Dirac
constraints has similar behaviour to the constraints found in the last example: It is
the system composed of a massless spin 1 charged particle and the electromagnetic
field [14]. A detailed analysis of such a system from the point of view adopted in
this article is being performed; the true nature of the problems encountered there
is under investigation yet [7]. Nevertheless, it is interesting to note here that the
non standard perspective permits us to analyse any EDS (in particular, any PDE
system) using techniques of (pre)symplectic geometry. The example 5.5 is a sample
in this direction.

6. Conclusions. In this paper it was built an entire dynamical theory for non
standard variational problems, at least for those admitting a Cartan form. We were
able also to describe the constraint submanifold in every case where such a descrip-
tion is possible. It was proved that this submanifold is the space of integral sections
of an EDS which is associated to the EDS generated by the Hamilton-Cartan equa-
tions and the slicing of the space-time. We saw that the Dirac constraints has two
sources: They can arise from the differential closure of the Hamilton-Cartan EDS,
although some others can appears because of the involutiveness requeriment, which
is a consequence of the stability condition defining the constraint submanifold. Four
relevant examples showing these aspects were discussed in some extent.
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thanks warmly to Sergio Grillo for useful comments on the work, and CONICET
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Appendix A. On (formal) variational calculus. The purpose of this appendix
is to set some common facts about geometrical concepts involved in the description
of spaces of sections and the variational calculus used throughout the work [15, 16].

A.1. Variational derivative. Given the bundle F → B, let us consider on Γ (F )
a monoparametric family σt of sections such that σ0 = σ; for every b ∈ B we can
calculate the following vector

V (b) :=
~d

dt
[σt (b)]

∣∣∣
t=0

∈ Tσ(b)F

which has the following properties:

• It is a vertical vector, that is, it belongs to ker (τ∗).
• The map b 7→ V (b) covers σ, that is, it makes the following diagram commu-

tative

V F

B F
?
τF

�
�

��V

-
σ

Therefore V is a section of the pullback bundle σ∗ (V F ). So we make the following
definition.

Definition A.1. The tangent space at σ of the space of sections Γ (F ) of a bundle

F
τ

−→ B is the space of sections Γ (σ∗ (V F )).
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Note. We want to remark that the previous one is just a definition, and does not
implies the existence of differential structure in particular cases.

Now we proceed in the opposite direction: Let us suppose that we have an
element V ∈ Γ (σ∗ (V F )), and we need to build a monoparametric family of sections
σt ∈ Γ (F ) such that

• They satisfies the initial condition σ0 = σ.
• The section V can be reconstructed through the formula

V (b) :=
~d

dt
[σt (b)]

∣∣∣
t=0

.

This is the case when V admits an extension9 V̂ ∈ Γ (V F ); in general it is a problem
with no solution. Nevertheless there exists a particular case for which there always
exists such an extension, namely whenever F is a vector bundle.

Proposition 6. Let F
τ

−→ B a vector bundle, σ ∈ Γ (F ) a section and V ∈

Γ (σ∗ (V F )) a tangent vector at σ. Then there exists V̂ ∈ Γ (V F ) which extends V .

Proof. Because F is a vector bundle, we have the identification Vσ(b) (F ) ≃ τ−1 (b),
and then we can consider V as a section for F . Then defining the family of sections
σt : b 7→ σ (b) + tV (b) we obtain a vector field on F (the tangent vector field)
extending the given vector.

A functional on F is a function on Γ (F ) (from a set-theoretical point of view).
We say that a functional S on F is differentiable at σ ∈ Γ (F ) iff for every extensible
V ∈ Γ (σ∗ (V F )) the number

V |σ · S :=
d

dt
(S [φt (σ)])

∣∣∣
t=0

exists and it is independent of the extension. Here φt : Γ (F ) → Γ (F ) is the flux
in Γ (F ) defined through ψt : F → F, ψ0 = idΛ1

associated to some extension for V
(that is, φt (σ) : b 7→ (ψt ◦ σ) (b)). With respect to this subclass of functionals we
define the variational derivative.

Definition A.2. The variational derivative of the differentiable functional S in
σ ∈ Γ (F ) is the form δS [σ] : TσΓ (F ) → R, given by

δS [σ] (V ) = V |σ · S.

Remark 3. The uniqueness of the derivative of a functional depends strongly on
each case; it has to do with the choice of the extension of the vector V .

A.2. Variational derivative for special functionals. We want to study the
variational derivative of some class of differentiable functionals on F , that is, those
that can be given by the formula

Sλ[σ] :=

ˆ

B

σ∗ (λ)

for some λ ∈ Ωn (F ) , n = dimB.

9This means that there exist on F a vector field V̂ whose restriction to the image of σ is equal
to V
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Proposition 7. [13] The variational derivative for Sλ at σ is given by

δSλ [σ] (V ) =

ˆ

B

σ∗
(
L

V̂
λ
)
,

where V̂ ∈ Γ (V F ) is some extension for V . In particular, on these kind of func-
tionals the variational derivative is unique.

Appendix B. Some facts about exterior differential systems. In this section
we introduce the basic concepts of the theory of EDS; the sources of the material
presented here are [5, 22, 23, 25]. The problem is to find out conditions that ensures
us the existence of submanifolds on which a certain set of forms vanish. Since any
of such submanifold annihilates the algebraic ideal generated by these forms and its
differentials, let us introduce the following definition.

Definition B.1. An exterior differential system on the manifold M is an ideal
I ⊂ Ω• (M) closed with respect to the exterior differential operator. We say then
that I is differentially closed. A manifold which annihilates all the elements in I is
called integral submanifold of the EDS.

It will be supposed that the EDS does not contain 0-forms; it is not a true
restriction in cases where the zero locus of these 0-forms is a submanifold of M . In
order to build up the integral submanifolds of a given EDS, we find out the planes
(of the corresponding dimension) that annihilates I, asking about the conditions
under which these planes are tangent to some submanifold. The following definition
is motivated by these ideas.

Definition B.2. An integral element of dimension k for an EDS I is a subspace
E ⊂ TxM of dimension k such that α|E = 0 for all α ∈ I. The set of k-integral
elements associated to a given I will be denoted by Vk (I), and it is naturally
included in the manifold Gk (TM), the k-grassmannian on M .

The verification that a given subspace is integral for some EDS involves the
resolution of a (mostly large) linear system, as the following fact shows.

Lemma B.3. Let us define Ik := I ∩ Ωk (M); moreover, let us fix
(
α1

1, · · · , α
1
k1
, α2

1, · · · , α
2
k2
, · · · , αp

1, · · · , α
p
kp

)
⊂ Ω• (M)

a set of generators (in the algebraic sense) for the EDS I such that
{
αl

1, · · · , α
l
kl

}
⊂

Il for all l. Then

• Vk (I) |x =
{
E ∈ Gk (TxM) : α|E = 0 ∀α ∈ Ik

}
.

• The subspace E ⊂ TxM is r-integral for I if and only if αm
l |E = 0 for all

1 ≤ l ≤ km and 1 ≤ m ≤ r.

It is important to note that in order to verify integrability in terms of algebraic
generators of an EDS, it is necessary to prove that the given subspace annihilates
all the generators of degree less than or equal to its dimension.

If the EDS I is defined on a bundle F
τ

−→ B, we ask about integral submanifolds
which are sections of the given bundle, called integral sections10; if n = dimB, the
procedure that allows to find them works by fixing a nonzero element Ω ∈ Ωn (B)
and looking for n-integral manifolds for I on which τ∗ (Ω) 6= 0. This discussion
motivates the following definition.

10The set of integral sections for an EDS on a fiber bundle will be denoted by the symbol Γ (I).
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Definition B.4. An EDS with independence condition on a manifold M is a pair
(I,Ω) composed by an EDS I and a differential n-form Ω. The integral elements
(resp. submanifolds) of such an object are the integral elements (resp. submani-
folds) of I such that Ω 6= 0 on them. The set of n-integral elements for a given
EDS I satisfying the independence condition Ω 6= 0 will be denoted by the symbol
Vn (I,Ω).

The independence condition, although apparently innocuous, changes dramati-
cally the analysis of an EDS, as we will see in the discussion on the Cartan-Kähler
theorem.

B.1. Kähler-ordinary integral elements. First we need to speak about the no-
tions of regularity which are necessary in the hypothesis of the Cartan-Kähler the-
orem. The first thing that we have to impose is the regularity condition for the
integral elements in the differential geometric sense.

Definition B.5. Let I ⊂ Ω• (M) be a EDS. An n-integral element E ∈ Vn (I)
is Kähler-ordinary iff there exists a neighborhood E ∈ U ⊂ Gn (TM) such that
U ∩ Vn (I) is a submanifold of Gn (TM).

This is a typical requeriment which ensures (at least locally) a description of the
set of n-integral elements as the level set of some differentiable functions. In general
the sets Vn (I) are algebraic subvarieties of Gn (TM) and so there exists singular
points.

B.2. Polar spaces and Kähler-regularity. In order to build up integral sub-
manifolds of dimension n from an integral submanifold of (n− 1)-dimensional, we
need to consider the possible directions in which it is possible.

Definition B.6. Given an element E ∈ Vk (I), we will define its polar space as the
subspace generated for all the integral elements of dimension k + 1 associated to I
which contains E. The polar space for an integral element E will be denoted by
H (E).

The following lemma gives us a way in which we can calculate a polar space.

Lemma B.7. If E ⊂ TxX and {v1, · · · , vk} is a basis of E, then

H (E) =
{
w ∈ TxX : φ (v1, · · · , vk, w) = 0, ∀φ ∈ Ik+1

}
.

From the previous lemma we get some intuition about how the polar spaces are
determined. That is, supposing that I has generators like in lemma B.3 and that
E = 〈v1, · · · ,vn〉; the vector x ∈ TxX will belongs to H (E) iff





α2
ν (vi1 ,x) = 0, 1 ≤ ν ≤ k2, 1 ≤ i1 ≤ n

α3
µ (vj1 ,vj2 ,x) = 0, 1 ≤ µ ≤ k3, 1 ≤ j1 < j2 ≤ n

...
...

αn+1
σ (v1, · · · ,vn,x) = 0, 1 ≤ σ ≤ kn+1.

(23)

So, instead of having a set of algebraic equations, we have a linear system deter-
mining x, which depends on a flag in E; the next notion to be introduced assures
the regularity of this system, in the sense that it deals with the invariance of its
rank.



48 SANTIAGO CAPRIOTTI

Definition B.8. A Kähler-ordinary element E ∈ Vn (I) is Kähler-regular if

codimH (E) = codimH (E′)

for all E′ belonging to a neighborhood of E in Vn (I) ⊂ Gn (TX).

We need to develop some strategies in order to deal with this condition, because
it is difficult to verify in practice. The main theoretical resource in this direction is
the Cartan’s Test for Involutivity.

Theorem B.9 (Cartan’s Test for involutivity). Let Ek, 0 ≤ k ≤ n a flag of integral
elements for I at x, and let us define

ck := codimH (Ek) , 0 ≤ k ≤ n− 1.

Then
codimEn

Vn (I) ≥ c0 + · · · + cn−1,

where the codimension of Vn (I) at En is measured in the algebraic sense: It is
defined as the maximum number of smooth functions on Gn (TX) which vanish on
Vn (I) and has independent differentials at En.

Moreover, Vn (I) is smooth of codimension exactly c0 + · · · + cn−1 at En if and
only if the Ek are all Kähler-regular for 0 ≤ k ≤ n− 1.

B.3. Cartan-Kähler Theorem. Once we have introduced all the necessary in-
gredients, we can formulate a version of the Cartan-Kähler Theorem [22, 23].

Theorem B.10 (Cartan-Kähler Theorem). Assume I is an analytic EDS on M
and Pn ⊂ M is an analytic submanifold which is Kähler-regular and such that, at
each p ∈ P , H (TpP ) has dimension n+r+1. Moreover, let us assume that R ⊂M
is an analytic submanifold of codimension r such that P ⊂ R and TpR intersects
transversely with H (TpP ). Then for each p ∈ P there is a neighborhood U ⊂ R of
p and a unique analytic (n+ 1)-dimensional integral manifold N ⊂ U containing
P ∩ U .

The main drawback of this theorem is that we need to work in the analytic
setting; for the systems which we consider here this hypothesis is fulfilled, although
it is important to remark that it is a strong condition to be required.

B.4. Cartan-Kuranishi Theorem. According to the Cartan’s test for involu-
tivity, we can apply the Cartan-Kähler theorem only in those cases in which the
codimension of the set of integral elements has the appropiate value. It can happen
that the integral manifolds we are looking for cannot be obtained by using this exis-
tence theorem. For example, to ensure that the set of 3-integral sections for an EDS
can be obtained by restriction of 4-integral sections to some particular submanifold,
the hypothesis of the Cartan-Kähler theorem needs to be verified for each 3-integral
section. These ideas motivate the following concept, central in the theory of PDEs.

Definition B.11. Let I ⊂ Ω• (M) be an EDS on M , and E ∈ Vn (I). A flag
0 ⊂ E1 ⊂ · · · ⊂ En = E is a regular flag iff Ek is a regular k-integral element of I
for 1 ≤ k ≤ n− 1.

The regular flags allows us to solve the PDE behind an EDS as a sucession of
Cauchy-Kowalevky problems; we can introduce a fundamental concept related to
the integrability of the underlying PDE.

Definition B.12. An EDS is n-involutive iff every n-integral element is the termi-
nus of a regular flag.
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The main consequence of this definition and the Cartan-Kähler theorem is the
following proposition (see for example [5]).

Proposition 8. If an EDS is n-involutive, through any n-integral element passes
an integral manifold of dimension n.

One may prove there exists an operation, called prolongation, which allows us to
associate to every EDS I on a manifold M and every n ∈ N a new EDS I ′ on a
manifold M ′ such that

• There exists a submersion p : M ′ → M , and
• the n-integrals elements of I and I ′ are in one to one correspondence via the

map p.

The key point is that, under certain technical assumptions [5], after a finite number
of prolongations one can obtain an involutive EDS: This fact is known as Cartan-
Kuranishi theorem. In this work we are assuming that these technical requeriments
are fulfilled elsewhere.
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