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a  b  s  t  r  a  c  t

Control  and  operation  of  electric  networks  undergo  several  changes  due  to growing  energy  coming  from
renewable  sources  and  demanding  power  quality  standards.  New  dynamic  load  features  also  pose  a
challenge  to grid  designers.  In addition,  economic  reasons,  an  increasing  demand  and  remote  generation
push  transmission  lines  to  their  stability  limits  causing  oscillation  modes  to  become  more  lightly  damped.
In this  context,  controllers  and  devices  are  used  to  enhance  the  performance  of  the new  power  systems.  In
this  work,  an  observer-based  controller  to  improve  stability  in  power  systems,  by using  the  excitation  of
synchronous  generators,  is  introduced.  The  strategy  goal  is to attain  maximum  damping  injection  and  to
increase  the  transient  stability,  while  good  voltage  regulation  performance  is maintained.  The proposed
strategy  presents  two  important  features  from  the implementation  point  of view.  First,  the  controller
only  needs  sensing  currents  and  rotor  speed,  and  second,  previous  knowledge  of network  parameters
and  topology  is not  required.  Several  comparisons  in  multi-machine  scenarios  with  current  power  system
stabilizers  are presented.  These  studies  confirm  the  viability  and  the  performance  improvement  when
conventional  solutions  are  replaced  by the  proposed  approach.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Currently, both planning and operation of power systems are
changing due to several reasons. New technologies based on
power electronics, such as flexible ac transmission systems (FACTS)
(high-voltage direct current transmissions, static synchronous
compensators, etc.) and distributed generation are being intro-
duced [1–3]. The installed capacity on renewable energies (wind
energy, photo-voltaic generation, etc.) is also increasing in a fast
way [4–6]. In many power networks exist great distances between
places where the energy is generated and where it is consumed.
Consequently, groups of generators behave like areas and oscil-
lations among them can produce great blackouts [7,8]. Besides,
power systems operate close to stability limits due to transport and
economic reasons. In this context, multi-machine power system
stability arises as a very important subject to be deeply analyzed
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by engineers and researchers. Classical control schemes needed to
be updated, and new and enhanced strategies to improve transient
stability and voltage regulation in current and future power system
scenarios must be found.

Control using the excitation of synchronous generators is a
viable option to improve the stability margin, when economic con-
straints do not allow to use FACTS equipment. In this way, a cheaper
solution based on the existing power facilities is obtained. The
improvement of excitation controllers is also important because
it is expected that future smart grids include both excitation
controllers and FACTS equipments, working in a coordinated
way.

One of the first studies on excitation control for stabilizing
power systems is reported in [9].  There, oscillations are damped
by using a power system stabilizer (PSS). This kind of controllers
adds a stabilizing signal in the excitation system, and they are
based on robust transfer functions to be tuned via linear techniques
around an operating point. However, due to the generator behavior
is nonlinear, this technique is not completely appropriate for large
disturbances such as topology changes and short circuits. In such
cases, PSS performance could vary causing stability problems. Tak-
ing into account this negative aspect of PSS controllers, nonlinear
control techniques were introduced to improve performance in the
presence of large disturbances which push the machine states out of

0378-7796/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
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its nominal operating point. Strategies based on feedback lineariza-
tion can be found in the following pioneer works [10–14],  being
those proposals continued in [15,16]. A design based on a Lyapunov
technique, named LgV control, was presented in [17]. Stabilization
by energy-shaping was proposed in [18]. Adaptive and discrete pre-
dictive controllers were reported in [19–22].  Back-stepping and
sliding mode techniques can also be found in [23–25].  All previ-
ously cited works present decentralized controllers because they
only use local measurements. On the other hand, nonlinear cen-
tralized controllers have been proposed in [26–28].  In order to
construct nonlinear controllers, feedback linearization is often pre-
ferred, because it presents high-performance and it allows tuning
the controller through several ways. For example, in [27,29] an
adaptive control based on feedback linearization was presented. In
[30] feedback linearization was used and gains were set via optimal
control; whereas, in [31,32] the tuning was made by using robust
control techniques.

A power network is a complex system and there are many
specifications to be satisfied. For these reasons, many times
controllers are developed under several simplifications and/or
they partially satisfy the specifications. An often used assump-
tion considers symmetrical dq inductances (i.e. Lq = L′

q = L′
d
), for

instance, in Refs. [17,18,27,28,30,31,33]. Sometimes, only load
angle control is considered without taking into account the volt-
age regulation [22,27,28,30]. Other works address the problem
assuming an infinite bus in the system [10,14,16,17,19,29,34–36].
Some authors assume that generator internal states are available
(load angle ı or transient electromotive force voltages (EMF) e′

q,
e′

d
) [13,15–17,27,28,34,36–40], or they build observer-based con-

trollers measuring the load angle ı [25,34,38,39].  Nevertheless, it
must be considered that load angle and dq-axis transient EMFs are
not measurable in generating stations. A nonlinear observer to esti-
mate the load angle from the generator electrical power, currents
and rotor speed was proposed in [41,42]. However, the observer
gains were calculated using a Taylor linearization around a partic-
ular equilibrium point, reducing the observer performance beyond
the point of tuning.

In order to obtain a more precise and easily implementable con-
trol strategy, the above aspects should be reconsidered. Generators
based on steam turbine could be better modeled with asymmetrical
dq inductances. The requirement of good post-fault voltage regula-
tion must also be included. Besides, regarding the implementation
aspects, the availability of sensors of the variables to be fed back
must be taken into account. Robustness against parameters; net-
work topology uncertainties; and large disturbances must also be
provided by the control law.

Due to the above-mentioned issues, this paper proposes a
controller to improve the stability margin in a multi-machine
power system via nonlinear decentralized excitation control of
synchronous generators. Its design is based on the feedback
linearization technique; considers asymmetrical dq inductances
(Lq /= L′

q /= L′
d
); and only easily measurable variables are used to con-

struct the controller (current and rotor speed states are fed back). In
order to obtain the generator internal states, needed in the control
stage, a nonlinear observer is used. The nonlinear observer gains
are calculated by using the Lyapunov theory. Not only the strategy
increases the transient stability in multi-machine power systems,
but also it provides good post-fault voltage regulation. Besides, it
is robust against parameter uncertainties and large disturbances,
being the network knowledge not needed.

The rest of the paper is organized as follows. Section 2 describes
the model of power system components. In Section 3 the control
strategy is presented. In Section 4 a static open-loop technique
to obtain the generator internal states is introduced. In Section 5
the proposed nonlinear observer used to estimate the generator
internal states is designed. In Section 6 the controller performance

Table 1
State variable definitions.

Description Symbol

Load angle of the generator i referred to the bus r ıir

Generator rotor speed ω
d, q axis transient EMF e′

d
, e′

q

d, q axis generator stator current id , iq
D, Q axis generator stator current iD ,  iQ
d, q axis high-side transformer voltage vd , vq

D, Q axis high-side transformer voltage vD , vQ

Electromagnetic and mechanical torque Te , Tm

Exciter output voltage efd

evaluation, discussions and multi-machine tests are presented.
Finally conclusions are drawn in Section 7.

2. Multi-machine power system model

2.1. Local model of synchronous generators

The local model presents the synchronous generator with its
step-up transformer connected to a generic bus “r” of the power
system network. Because steam and hydraulic generators are to
be included, a two-axis dynamic model, widely used in transient
stability studies [16,18,26],  is considered [43],

ı̇ir = �B(ωi − ωri), (1)

2Hiω̇i = Tmi − Tei − Dbiωi − Kdi(ωi − ωri), (2)

T ′
d0iė

′
qi = −e′

qi + (Ldi − L′
di)idi + efdi, (3)

T ′
q0iė

′
di = −e′

di − (Lqi − L′
qi)iqi, (4)

and Tei = e′
qi

iqi + e′
di

idi + (L′
di

− L′
qi

)iqiidi, where “i”-subindex stands
for the ith generator of the system. The stator algebraic constraints
are,

0 = Rsriidi + L′
qriiqi − e′

di + vdi, (5)

0 = Rsriiqi − L′
driidi − e′

qi + vqi, (6)

where the following definitions apply,

Ldri
�=Ldi + Lri, Lqri

�=Lqi + Lri,

L′
dri

�=L′
di + Lri, L′

qri
�=L′

qi + Lri,

Rsri
�=Rsi + Rri.

(7)

Dynamic states and model parameters are in the per unit system.
They are defined in Table 1 and 2. In both tables, notation to be used
in the rest of the article has also been included.

A synchronous DQ reference frame is defined by synchronizing
with the high-side transformer voltage vrie

j�ri . In this synchronous
DQ reference frame, the high-side transformer voltage is expressed
as vrie

j0◦ = vQi + jvDi. The high-side transformer voltage, in the local
dq reference frame, is given by vrie

−jıir = vqi + jvdi. Therefore,

vdi = −vri sin ıir, (8)

vqi = vri cos ıir . (9)

Current iiej(�ri−�i) can also be expressed in the synchronous DQ ref-
erence frame as iie−j�i = iQi + jiDi and in the local dq reference frame
as iie−j(ıir+�i) = iqi + jidi. These reference frames are shown in Fig. 1.
In this point must be remarked a very important implementation
issue. Variables in the local dq reference frame are not available to
be fed back, because they are referred to a frame which depends on
the non-measurable load angle ıir. However, actual sensors can be
used to measure currents and voltages when they are expressed in
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Table 2
WECC system parameters and data.

Description Parameter Value

Gen#1 Gen#2 Gen#3

Synchronous generators
Rated power SN (MVA) 247.50 192.00 128.00
Base  angular frequency �B (r/s) 2�60 2�60 2�60
Generator inertia constant H (s) 23.640 6.4000 3.0100
d-axis inductance Ld 0.1460 0.8958 1.3125
d-axis  transient inductance L′

d
0.0608 0.1198 0.1813

q-axis  inductance Lq 0.0969 0.8645 1.2578
q-axis  transient inductance L′

q 0.0969 0.1969 0.2500
d-axis  transient open circuit time constant T ′

d0
(s) 8.9600 6.0000 5.8900

q-axis  transient open circuit time constant T ′
q0 (s) 0.3100 0.5350 0.6000

Amortisseur damping coefficient Kd 9.5756 2.4881 0.9802
Mechanical losses damping coefficient Db 0.0000 0.0000 0.0000
Step-up transformer and stator resistances Rr , Rs 0.0000 0.0000 0.0000
Step-up transformer inductance Lr 0.0576 0.0625 0.0586

Excitation systems
Amplifier stage gain KA 210.00 210.00 210.00
Amplifier stage time constant TA (s) 0.0100 0.0100 0.0100
Minimum exciter voltage limit Emin

fd
−6.000 −6.000 −6.000

Maximum exciter voltage limit Emax
fd

6.4300 6.4300 6.4300
Gen.  terminal &regulator refer. voltages vt , v∗

t 1.0400 1.0250 1.0250
Power  system stabilizer gain KS – 8.2550 0.0820
Washout time constant Two (s) – 5.0000 5.0000
Phase  compensation time constant T1 (s) – 0.2010 0.6310
Phase  compensation time constant T2 (s) – 0.0500 0.0500
Phase  compensation time constant T3 (s) – 0.1370 0.6290
Phase  compensation time constant T4 (s) – 0.0500 0.0500

Turbine-governor
Water  time constant Tw (s) 2.0000 – –
Permanent droop RDp 0.0500 0.0500 0.0500
Transient droop RDt 0.0909 – –
Dashpot time constant TRt (s) 9.0000 – –
High  pressure power fraction FHP – 0.3000 0.3000
Intermed. and low pressure power fractions FIP , FLP – 0.7000 0.7000
Steam  chest time constant TCH (s) – 0.3000 0.3000
Reheater time constant TRH (s) – 7.0000 7.0000

Gate/valve rate limit Ġmin,max
(

1
s

)
0.1600 0.3000 0.3000

Proposed nonlinear control and observer parameters
Pole placement of control � – 11.000 11.000
Proportional gain of voltage control KPvt – 0.1000 0.5000
Integral gain of voltage control KIvt – 0.1400 0.7000
Observer gain g – 200.00 200.00

Induction motors and static loads A B C
Stator  winding resistance Rs 0.0068 0.0068 0.0068
Motor  plus driven load inertia constant H(s) 0.5000 0.5000 0.5000
Induction motor inductance Ldq 3.5000 3.5000 3.5000
Induction motor transient inductance L′

dq
0.1700 0.1700 0.1700

Transient open circuit time constant T ′
dq0

(s) 0.5300 0.5300 0.5300
Per  unit of load that is constant impedance ˛Z 0.2000 0.2000 0.2000
Per  unit of load that is const current ˛I 0.4000 0.4000 0.4000
Per  unit of load that is const power ˛P 0.1750 0.1750 0.1750
Per  unit of load that is dynamic ˛IM 0.2250 0.2250 0.2250

Except where indicated, parameters are in p.u. on 100MVA base.

the synchronous DQ reference frame. Relationships between both
reference frames can be obtained as,

vDi = vdi cos ıir + vqi sin ıir, (10)

vQi = vqi cos ıir − vdi sin ıir, (11)

iDi = idi cos ıir + iqi sin ıir, (12)

iQi = iqi cos ıir − idi sin ıir . (13)

2.2. Excitation system and power system stabilizer

The performance of the proposed strategy is compared with a
conventional approach consisting of an automatic voltage regulator
type IEEE-ST1A, and a power system stabilizer type IEEE-PSS1A (see
IEEE Standard 421.5-2005 [44] for further model details).

2.3. Steam and hydraulic turbine-governor

A third-order dynamic model is used to represent the steam tur-
bines. This model takes into account the steam chest and reheater
dynamics. The governor and valve servomotor models are also
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Fig. 1. Synchronous and local reference frames of each generator.

considered [45]. Hydraulic turbines are modeled by a nonlinear
fourth-order model. This model is composed of a governor and
includes a transient term to compensate the nonminimum-phase
behavior of the hydraulic turbine [46].

2.4. Composite load model

It is known that both dynamics and stability strongly depend on
the loads. In this work, the load model follows recommendations
introduced in [47,48] and references therein. In those works, it is
recommended to consider model of loads composed by both static
and dynamic components. The static component is represented by
a ZIP load, which consists in a combination of impedance, current
and power constant loads. On the other hand, induction motors are
considered as dynamic loads. These motors are represented by a
third-order transient model. Percentages of static loads and motor
parameters are indicated in Table 2.

3. Nonlinear decentralized excitation control

3.1. Input–output feedback linearization of the synchronous
generator

In this section the feedback linearization control strategy is
described for completeness of the work. More details about this
technique, applied to the synchronous generator, can be consulted
in previous works, for example in Refs. [10–16].  This strategy allows
to cancel the model nonlinearities linearizing the input–output
dynamics. Since the system (1)–(6) is a set of differential algebraic
equations (DAE), the algebraic states idi and iqi are calculated from
(5) and (6) and replaced in (1)–(4).  In this way, a set of ordinary
differential equations (ODE) representing the generator dynamics
becomes,

ı̇ir = �B(ωi − ωri), (14)

2Hiω̇i = Tmi − Tei − Dbiωi − Kdi(ωi − ωri), (15)

T ′
d0iė

′
qi = −

Ldrie
′
qi

L′
dri

+ (Ldri − L′
dri

)

L′
dri

vri cos ıir + efdi, (16)

T ′
q0iė

′
di = − Lqrie

′
di

L′
qri

−
(Lqri − L′

qri
)

L′
qri

vri sin ıir, (17)

where,

Tei =
e′

qi

L′
dri

vri sin ıir + e′
di

L′
qri

vri cos ıir +
(L′

dri
− L′

qri
)

L′
dri

L′
qri

v2
ri cos ıir sin ıir .

(18)

Since in large synchronous generators stator resistance losses are
small, for simplicity resistance has been neglected. A more compact
description of (14)–(17) is obtained by changing the notation as
follows,

ẋ = f (x) + gu, (19)

where

f(x)
�=

⎡⎣ a0(x2 − 1)
−a1px3 sin x1 − a2px4 cos x1 − a4x2 − a5(x2 − 1) + a3p2 cos x1 sin x1 + T

−a6x3 + a7p cos x1

−a8x4 − a9p sin x1

⎤⎦ ,

g
�=
[

0 0 1 0
]T

,

with,

xT �=
[

x1 x2 x3 x4
]

=
[

ıir ωi e′
qi

e′
di

]
,

u
�= efdi

T ′
d0i

, T
�= Tmi

2Hi
, p

�=vri, ωri = 1,

a0
�=�B, a1

�= 1
2HiL

′
dri

, a2
�= 1

2HiL
′
qri

, a3
�=a1 − a2,

a4
�= Dbi

2Hi
, a5

�= Kdi

2Hi
, a6

�= Ldri

T ′
d0i

L′
dri

,

a7
�= Ldri − L′

dri

T ′
d0i

L′
dri

, a8
�= Lqri

T ′
q0i

L′
qri

, a9
�=

Lqri − L′
qri

T ′
q0i

L′
qri

.

In the sequel, the controller is designed by neglecting the damping
terms in the mechanical equation (a4 = a5 = 0). The purpose behind
this action is not cancel the natural nonlinear damping introduced
by the generator, and to obtain a more compact control law. The
transformation needed for the feedback linearization is given by
[49],

z =

⎡⎢⎣ x1
a0(x2 − 1)
a0(T − a1px3 sin x1 + p cos x1(a3p sin x1 − a2x4))
x4

⎤⎥⎦ (20)

with z = [ z1 z2 z3 z4 ]T , where z1 = ıir is the load angle, z2 =
ż1 = �B(ωi − 1) is the speed deviation, and z3 = ż2 = �Bω̇i = �B˛i

is the rotor acceleration. Since the z1 relative degree is equal
to three, and (19) represents a fourth-order system, then the
transformation was completed by introducing z4 = x4. The control
law linearizing the system (19) results (see Eq. (6.96) in [49]),

u = 	−1(v − 
), (21)

where 	 and 
 can be written in a short notation by using Lie
derivatives (see [49] for further details), resulting in this case,



�=L3

f z1 = a0p(a1(a6x3 − a7p cos x1) sin x1

+ a2 cos x1(a8x4 + a9p sin x1) + a0(x2 − 1)(a2x4 sin x1

+ a3p cos 2x1 − a1x3 cos x1)) (22)

	
�=LgL2

f z1 = −a0a1p sin x1. (23)

The system linearized by transformation and feedback, in the trans-
formed coordinates z, becomes,

�z1 = v, (24)

ż4 = −a8z4 − a9p sin z1. (25)
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Note that two subsystems were obtained. One of them�z1 = v relates
the variable to be controlled with an auxiliary control v in a lin-
ear way. The other, ż4 = −a8z4 − a9p sin z1, expresses the internal
dynamics remaining from the partially input–output linearized
system. The system is stable in the whole operating space when
z1 is properly controlled, since z4 is stable because a8 > 0 and the
nonlinear term depending on z1 is bounded (see Eq. (25)). In order
to control the system given by (24) the following state-feedback
law is selected,

v = −K

([
z1
z2
z3

]
−
[

z∗
1

z∗
2

z∗
3

])
= −
[

K1
K2
K3

]T [
ıir − ı∗

ir
�B(ωi − 1)
�B˛i

]
, (26)

where Ki constant gains can be designed by linear techniques
including eigenvalue assignment, optimal quadratic regulation,
pole placement, etc. A critically damped response, with poles
coinciding with real part equal to �, is obtained when K1 = 3�,
K2 = 3�2, K3 = �3 are set. This last criterion was  chosen in our
work.

3.2. Voltage regulation control

A very important specification to be satisfied by the controller
is to increase the transient stability. However, it is also needed
that the same controller presents a good terminal post-fault volt-
age regulation [50]. It must be noted that when a controller based
on the transformed states (ıir, ωi, and ˛i, see (26)) is designed,
the generator terminal voltage does not appear in an explicit way.
Generally, network topology changes when a fault occurs; thus,
in order to keep the terminal voltage value, a new load angle ref-
erence must be calculated. In order to deal with this issue (load
angle reference calculation) some solutions can be found in the
literature, see for instance references [33,14,29,16,12,39,36,37,51].
A  detailed description of different ways to obtain the new
load angle is presented in Section 4 of [52]. In our controller,
the dynamic reference technique was chosen (see Section 4.5
in [52]).

Remark 1: The proposed scheme is a decentralized controller,
because it only uses local measurements. In this way, com-
munications drawbacks among generators and distant areas are
avoided.

Remark 2: The proposed controller does not need neither infor-
mation on network topology and network impedances nor power
flow to calculate the new equilibrium point.

Remark 3: The control strategy requires the ıir load angle
and dq-axis transient EMFs e′

qi
and e′

di
to be implemented. As

it was mentioned, the load angle and transient EMFs in a gen-
erating station are generally not available. In order to obtain
these states from actual available sensors an open-loop estimator
can be built like it is described in Section 4. In order to reduce
the parameter sensitivity of open-loop estimators a closed-loop
technique could be implemented. To this end, a new proposal is
introduced in Section 5 consisting to estimate the needed states
via a nonlinear observer (a closed-loop estimator). For simplicity,
sub-index “i” indicating the ith generator will be omitted in
the sequel.

4. Open-loop static estimator

The control law (21)–(23) needs the generator internal states
[ ı e′

q e′
d ]. Nevertheless, in practice, these states are not mea-

surable. For this reason, these states must be estimated from

measurable quantities, such as [ vD vQ iD iQ ]. Equations relat-
ing both internal states and measured variables are,

[
ı̂ ê′

q ê′
d

]T =⎡⎢⎣ arccos(ˇ)

ˇ(Rsr iQ − L′
dr

iD + vQ ) +
√

1 − ˇ2
(

Rsr iD + L′
dr

iQ + vD

)
ˇ(Rsr iD + L′

qr iQ + vD) −
√

1 − ˇ2(Rsr iQ − L′
qr iD + vQ )

⎤⎥⎦ (27)

with,

ˇ
�= Rsr iQ − Lqr iD + vQ√

(Rsr iD + Lqr iQ + vD)2 + (Rsr iQ − Lqr iD + vQ )2
,

where the symbol (̂) is used to indicate an estimated value. The
transformation (27) can be obtained from Eqs. (5) and (6) and tak-
ing into account the reference frame rotations of Eqs. (10)–(13).
Also, as it is verified T ′

q0 � T ′
d0, which is equivalent to consider

the e′
d

dynamics faster than the e′
q dynamics, it is possible to

assume that the d-axis transient EMF  (e′
d
) is an algebraic state

(T ′
q0

∼= 0). Therefore, from (17) the following algebraic equation is
obtained,

0 = Lqre′
d + (Lqr − L′

qr)vr sin ı. (28)

The whole procedure is omitted for space reasons. Strategies
employing static transformations, which are similar to that pre-
sented in Eq. (27), can be found in [23,24,30,35,51].

5. Closed-loop nonlinear estimator

As mentioned, to use an open-loop static transformation is
disadvantageous from robustness point of view (i.e. performance
in the presence of uncertainties). In order to construct a more
robust estimator, an observer (closed-loop estimator) will be
used to estimate the states to be fed back. By calculating e′

d
from (28) and replacing in (14)–(16), the following model is
obtained,

ı̇ = �B(ω − ωr), (29)

2H ω̇ = Tm − Te − Dbω − Kd(ω − ωr), (30)

T ′
d0ė′

q = − Ldre′
q

L′
dr

+ (Ldr − L′
dr

)

L′
dr

vr cos ı + efd, (31)

where Te = e′
qvr sin ı

L′
dr

+ L′
dr

−Lqr

Lqr L′
dr

v2
r cos ı sin ı. Rotor speed (ω) and com-

ponents of stator current (iD and iQ) are measured. Using the
relationships (12) and (13) and Eqs. (5) and (6),  these mea-
sured variables can be written as functions of the internal states,
yielding,

iD = vrsin2ı

Lqr
+ (−e′

q + vr cos ı) cos ı

L′
dr

, (32)

iQ = (Lqre′
q + vr(L′

dr
− Lqr) cos ı) sin ı

L′
dr

Lqr
. (33)
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In a more compact notation, the system (29)–(31) and its measur-
able outputs (Eqs. (32), (33) and ω) become,

ẋ = f (x) + gu, (34)

y = h (x) , (35)

where,

x�=
[

ı ω e′
q

]T
, y�=
[

iD iQ ω
]T

, u
�=efd,

f(x)�=

⎡⎢⎢⎢⎢⎣
�B(ω − ωr)

1
2H

(Tm − Te − Kd(ω − ωr))

− Ldre′
q

T ′
d0L′

dr

+ (Ldr − L′
dr

)

T ′
d0L′

dr

vr cos ı

⎤⎥⎥⎥⎥⎦ ,

g�=
[

0 0
1

T ′
d0

]T

, h(x)�=
[

iD iQ ω
]T

.

The following Luenberger-like structure is implemented for the
proposed nonlinear observer [53] (see Eq. (A.8) in the Appendix),

˙̂x = f(x̂) + gu + ϑ−1(x̂)G(y − h(x̂)). (36)

The complete derivation of the observer equation, stability analysis,
and convergence to zero of the estimation error are provided in the
Appendix. Expanding (36) results,

[
˙̂ı
˙̂ω
˙̂e
′
q

]
=

⎡⎢⎢⎣
�B( ω̂ − ωr )

1
2H

(Tm − T̂e − Kd( ω̂ − ωr ))

−
Ldr ê′

q

T ′
d0

L′
dr

+
(Ldr − L′

dr
)

T ′
d0

L′
dr

vr cos ı̂ + efd

T ′
d0

⎤⎥⎥⎦+ ϑ−1 (x̂) g

([
iD
iQ
ω

]
−

[
îD
îQ
ω̂

])
(37)

where

ϑ (x) =

⎡⎢⎢⎢⎢⎢⎢⎣

(Lqre′
q + 2vr(L′

dr
− Lqr) cos ı) sin ı

L′
dr

Lqr
0 − cos ı

L′
dr

Lqre′
q cos ı + vr(L′

dr
− Lqr) cos 2ı

L′
dr

Lqr
0

sin ı

L′
dr

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

In Eq. (36), it is possible to distinguish two  terms. One of them f(x̂) +
gu is named prediction term, whereas the other one ϑ−1(x̂)G(y −
h(x̂)) is named correction term. The last one not only allows
to fix the transient of convergence for the estimation error, but
also it attenuates errors appearing in the prediction term due
to, either parameter uncertainties or unmodeled dynamics. For
this reason, the proposed closed-loop estimator is more robust
than usually used open-loop estimators. The attenuation is pro-
portional to the G norm; but the maximum value of the G
norm is bounded by measurement uncertainties (for instance,
measurement noise).

Finally, by implementing (37), robust estimates for the states
needed to construct the feedback linearization control law (21)
are obtained. Unlike proposals that need load angle sensors, eas-
ily available measurements are used (currents and rotor speed).
Thus, from a practical implementation point of view, the proposed
observer is very much attractive. A general block diagram show-
ing the implementation of the whole observer-based controller is
presented in Fig. 2.

Remark 1: Unmeasurable states are replaced by their estimates
when the control law (21) is built. The acceleration  ̨ (needed in
Eq. (26)) is also replaced by its estimate given by the observer. This
estimate is calculated from the right-hand side of (37) ( ˆ̨  = ˙̂ω).

Remark 2: Different from what is found in most of the literature,
this proposal maintain the advantages of controlling the load angle
ı (allowing high angle oscillation damping), while avoiding using
sensors of generator internal states.

Fig. 2. Block diagram of the proposed observer-based controller.
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Fig. 3. WECC system power flow and line impedance diagram (parameters are in p.u. on 100MVA base).

6. Performance testing

In this Section the performance of the proposed strategy is eval-
uated with two systems. One of them is the Western Electricity
Coordinating Council (WECC) system. This system presents oscil-
lating modes poorly damped [54]. Much attention has been paid
to this system since blackout occurred on 10 August 1996 and
oscillations appeared on 4 August 2000. The other system used to
show the behavior of the proposal is the IEEE 50-generator 145-bus
benchmark.

6.1. WECC system test

A schematic diagram of the WECC system is shown in Fig. 3,
where parameters and data used in tests were extracted from
Section 2.10 of the book [55], and they were also summarized in
Table 2. As mentioned, the proposed observer-based decentralized
excitation control (ODEC) is compared with a conventional PSS
control. To this end, the PSS controlling generators #2 and #3 are
replaced by controllers based on ODEC. The PSSs parameters are
equals to those given in [56], where the WECC system control was
analyzed, and PSSs were tuned by using optimal control techniques.

6.1.1. Small-signal stability analysis
The eigenvalues �i, damping ratio �, and natural frequency fn

for the main oscillation modes are indicated in Table 3. Both PSS
and ODEC controllers greatly improve the damping ratio in contrast
to maintain the field voltage constant. From Table 3, it is worth

noting that the nonlinear ODEC strategy has a better performance
for small-signal disturbances than the PSS scheme (see damping
ratios in bold font).

6.1.2. Large-signal stability analysis
The response to a 110ms short circuit (see fault #1 in Fig. 3)

and the immediate out of service of the line 5–7 is considered.
Under these circumstances, a controller performing in a good way
should provide the action needed to both reach a new equilibrium
point (because of the topology change) and damp the angle oscilla-
tions (because of the short circuit). The proposed controller satisfies
these requirements (see Fig. 4 and 5). In Fig. 4a trajectories of the
load angles of the three generators are shown. There, it can be seen
that ODEC damping is bigger than PSS damping. Fig. 4b and c illus-
trate the system trajectories in the phase-plane. Regarding load
angle and speed deviations, it can be observed that the system tran-
sient response, to reach the new equilibrium point, is better when
ODEC strategy is used.

Voltage regulation of generator #2 is presented in Fig. 5a. Note
that ODEC performs in a good way, attaining a fast stabilization
without steady state error although the network topology has
changed. Fig. 5b illustrates both PSS and ODEC control actions. The
ODEC saturation time is lesser than PSS saturation time. This is an
advantage of ODEC strategy, from both consumption energy and
actuator stress point of view.

As mentioned in Sections 4 and 5, to estimate the generator
internal states, two different open- and closed-loop techniques
can be used. In Fig. 6, state trajectories of the generator #2 (solid
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Table  3
Small-signal stability analysis of the WECC system.

{ı2, ω2} oscillatory mode {ı3, ω3} oscillatory mode

�i � fn �i � fn

Constant field −0.238 ± j8.36 0.029 1.33 −0.734 ± j12.8 0.057 2.03
PSS  −3.246 ± j7.27 0.408 1.16 −3.238 ± j10.8 0.288 1.71
ODEC −3.464 ± j6.44 0.474 1.03 −16.63 ± j9.53 0.868 1.52
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Fig. 4. Load angle evolution in the presence of the fault #1. ODEC (solid) and PSS
(dashed). (a) ıi load angle damping using PSS and ODEC schemes, (b) system trajec-
tories in the ı–ω phase-plane of the generator #2, (c) system trajectories in the ı–ω
phase-plane of the generator #3.
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Fig. 5. (a) Terminal voltage evolution of the generator #2 in the presence of the fault
#1,  (b) field voltage transient responses.
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Fig. 6. Performances of the open-loop estimator and proposed closed-loop estima-
tor. (a) Load angle estimates, (b) q-axis transient EMF  estimates.

iron-rotor type) are drawn for both estimation techniques. Note
that the load angle ı27 and transient EMF  e′

q2 estimates almost
coincide with the actual values when the proposed closed-loop
estimation is considered. On the other hand, the open-loop
estimation presents some mismatches in the transient period.

6.2. IEEE 50-generator 145-bus system test

In this Section the IEEE 50-generator 145-bus benchmark is used
to study the performance of the control strategy. Six generators are
equipped with the proposed ODEC controller in order to enhance
the power system stability and damp oscillations. A one-line dia-
gram of the study area is depicted in Fig. 7.

In Fig. 8, load angle deviations are illustrated when a fault takes
place in the bus 7 at t = 1s. Fig. 8a shows the load angle deviations
when PSSs are implemented, and in Fig. 8b when the proposed
schemes ODECs are installed. For simplicity, in Fig. 8c, the load
angles of the first ten generators are shown, with PSS (dashed lines)
and with ODEC (solid line). There, it can be seen that angle devia-
tions, when the proposed control is used, are smaller than the case
of using PSSs.

In Fig. 9a, generator frequencies are plotted for both cases PSS
and ODEC. There, it can be observed that frequency deviations are
smaller when the proposed strategy is used. On the other hand,
field voltages of the generators, controlled by the ODEC scheme,
are shown in Fig. 9b. Finally, it is noted that both angle and fre-
quency deviations are lesser when PSSs are replaced by ODEC
controllers. This allows mechanical states (ı, ω)  to move away less
consequently, to increase the stability margin against short circuits.



Author's personal copy

212 A.E. Leon et al. / Electric Power Systems Research 89 (2012) 204– 214

Fig. 7. IEEE 50-generator 145-bus system: a one-line diagram of the study area.
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Fig. 8. Load angle deviations against a short circuit. (a) Load angle deviations with
PSS, (b) load angle deviations with the proposed strategy, (c) load angle deviations
with PSS and the proposed strategy (only first ten generators).
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Fig. 9. (a) Generator frequencies with PSS and ODEC, (b) field voltages of the con-
trolled generators.

7. Conclusions

An observer-based decentralized excitation control for multi-
machine power systems has been introduced. The main goal of the
control strategy is to increase the transient stability and to obtain
a good post-fault voltage regulation in spite of large disturbances
and network changes.

A nonlinear observer was proposed to obtain the generator
internal states from speed and current sensors. Consequently, load
angle information is not needed. In addition, the controller is robust
against parameter uncertainties, fault localization and network
topology changes. Many tests have shown that a better transient
response is obtained when PSS schemes are replaced by the pro-
posed control law. Moreover, different to other nonlinear control
approaches the strategy presents an important feature favoring
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its implementation, since only easily measurable quantities are
used.
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Appendix A.

In the following lines, the procedure to design the nonlin-
ear observer and to guarantee the error convergence to zero is
introduced. The nonlinear system given by Eqs. (34) and (35)
is considered. Firstly, define w, a smooth transformation, as
follows:

w = h(x) =
[

iD iQ ω
]T

. (A.1)

Then, differentiating w with respect to time, it results,

ẇ = ∂h
∂x

ẋ�=ϑ(x)ẋ, (A.2)

where the matrix ϑ(x) has been defined, and it represents the non-
linear observability matrix. Considering the state transformation
(A.1) and (A.2), the system (34) in the x domain can be rewritten in
the w domain, yielding,

ϑ−1(x)ẇ = f(h−1(w)) + gu. (A.3)

Then, defining the following variables,

�̃(w)�=ϑ(x)f(h−1(w)), (A.4)

�̃(w)�=ϑ(x)g, (A.5)

it is possible to obtain from (A.3) the below transformed system,

ẇ = �̃(w) + �̃(w)u. (A.6)

The system (A.6), in the w domain, presents the important charac-
teristic that its state variables w are all measurable. It allows that
a Luenberger-like structure will be implemented for the proposed
nonlinear observer [53,57]. Therefore,

˙̂w = �̃(ŵ) + �̃(ŵ)u + G(y − ŵ). (A.7)

Finally, the nonlinear observer (A.7) in the w domain has to be
transformed back to the x domain applying the inverse transfor-
mation of (A.1). Consequently,

˙̂x = f(x̂) + gu + ϑ−1(x̂)G(y − h(x̂)). (A.8)

Since all estimated states have the same value, then equal gains
are chosen for each state to be estimated (same convergence rate).
Therefore, it is set G = gI (with I the identity matrix). The nonlinear
observer (A.8) was used in the estimation of the generator internal
states in Section 5.

Now, the convergence to zero of the estimation error is proved.
The estimation error is defined as,

e = w − ŵ. (A.9)

Then, the estimation-error dynamics will be given by subtracting
Eq. (A.7) from (A.6), resulting,

ė = ẇ − ˙̂w = −ge + ��̃  + � �̃u, (A.10)

where it was defined,

��̃
�=�̃(w) − �̃(ŵ), (A.11)

� �̃
�= �̃(w) − �̃(ŵ). (A.12)

It is possible to find a bound to �̃ and �̃ given by,

‖��̃‖ = ‖�̃(w) − �̃(ŵ)‖ ≤ L
‖w − ŵ‖ = L
‖e‖, (A.13)

‖� �̃‖ = ‖ �̃(w) − �̃(ŵ)‖ ≤ L�‖w − ŵ‖ = L�‖e‖, (A.14)

where L
 and L� are �̃ and �̃ Lipschitz constants, respectively. These
constants can be calculated using, for example, the mean value the-
orem for multivariable functions or other real analysis tools. The
reader interested in this subject is referred to [49,53].

In order to prove the estimation error convergence to zero, the
following Lyapunov candidate function is proposed,

V = eT Pe, (A.15)

where P is a positive-definite matrix. Then, taking the time deriva-
tive of the function V, and after some algebraic arrangement, it is
obtained,

V̇ = ėT Pe + eT Pė,

= −2geT Pe + 2(��̃T + � �̃T u)Pe,
(A.16)

where Eq. (A.10) was  used.
Since �̃ and �̃ are bounded by the Lipschitz constants indicated

in (A.13) and (A.14) and the input control is assumed bounded by
‖u ‖ ≤ Umax, then a bound to the time derivative of the Lyapunov
function can be calculated as,

V̇ ≤ −2g�P
min‖e‖2 + 2�P

max‖e‖‖��̃T + ��̃T u‖
≤ −2g�P

min‖e‖2 + 2�P
max‖e‖(L
‖e‖ + L�‖e‖Umax)

≤ 2(�P
max(L
 + L� Umax) − g�P

min)‖e‖2,

(A.17)

where �P
min and �P

max are the minimum and maximum eigenval-
ues of the P matrix, respectively. Then, from the Lyapunov stability
theory, the estimation error will be asymptotically stable at the ori-
gin, if g is chosen to guarantee a negative value of the right-hand
side in (A.17).  As a consequence, the following inequality must be
satisfied,

g ≥ (L
 + L� Umax)
�P

max

�P
min

. (A.18)

Note that, the proposed strategy is a nonlinear law where esti-
mated values provided by the previously designed observer are
included. In the linear case, closed-loop stability (observer-based
controller plus plant) is guaranteed by using the separation the-
orem. Consequently, the control law and observer convergence
rate can be fixed independently. As the separation theorem does
not apply in the nonlinear case, when choosing the observer gains
some conditions should be considered to guarantee stability. Some
researches establish sufficient conditions to guarantee asymptotic
convergence in the nonlinear case (see for instance [58–60]). Our
observer is designed as follows: the nonlinear control strategy is
calculated by assuming that the true states are available; then,
observer gains are selected satisfying the conditions presented in
[60]. These conditions establish how fast the observer convergence
must be to guarantee closed-loop stability.
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