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Abstract
We study possible charge instabilities in doped Mott insulators by employing the
two-dimensional t-J model with a positive value of the next nearest-neighbor
hopping integral ′t on a square lattice, which is applicable to electron-doped
cuprates. Although the d-wave charge density wave (flux phase) and d-wave
Pomeranchuk instability (nematic order) are dominant instabilities for a negative
′t that corresponds to hole-doped cuprates, we find that those instabilities are
strongly suppressed and become relevant only rather close to half filling. Instead,
various types of bond orders with modulation vectors close to π π( , ) are
dominant in a moderate doping region. Phase separation is also enhanced, but it
can be suppressed substantially by the nearest-neighbor Coulomb repulsion
without affecting the aforementioned charge instabilities.

Keywords: electron- and hole-doped cuprates, pseudogap, charge orders

1. Introduction

High-temperature cuprate superconductors are realized by carrier doping into antiferromagnetic
Mott insulators, and superconductivity is characterized by d-wave symmetry. The cuprate
superconductors are layered materials; and the electronic properties in the CuO2 plane, where
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Cu sites form a square lattice, hold the key to high-temperature superconductivity. Its essential
physics is believed to be contained in the two-dimensional t-J and Hubbard models on a square
lattice [1, 2]. Despite these common views, the underlying physics of cuprate superconductivity
remains highly elusive.

One of the notorious puzzles in hole-doped cuprates (h-cuprates) concerns the pseudogap
(PG) [3, 4], a gap-like feature in the normal phase even far above the superconducting onset
temperature (Tsc). There are two major scenarios for the origin of the PG. One scenario invokes
fluctuations of Cooper pairs above Tsc [5–7], whereas the other invokes some order competing
with superconductivity. Recent angle-resolved photoemission spectroscopy [8–11] observes the
two-gap feature in the electronic band dispersion, in favor of the latter scenario for the PG.
However, it is a matter of considerable debate what kind of order actually develops in the PG.
The so-called YRZ model [12] exploits the concept of the resonating-valence-bond theory
[13, 14] and successfully captures some features of the PG. On the other hand, various
experimental observations in the PG state are also well captured in terms of charge instabilities
such as d-wave charge density wave (dCDW) [15–19], a loop current order [20, 21], d-wave
Pomeranchuk instability (dPI) [22–24], conventional charge density wave (CDW) [25–28]
including stripes [29, 30], and phase separation (PS) [25, 26, 31].

Quite recently a charge-order instability was observed by X-rays in two different
h-cuprates, Y-based [32–34] and Bi-based [35, 36] cuprates. This charge order is not
accompanied by a magnetic order, in sharp contrast with the spin-charge stripes [37] discussed
extensively in La-based cuprates [29]. Thus, charge-order instabilities in cuprates have attracted
renewed interest. A comprehensive study [38] about possible charge orders in the t-J model
showed that doped Mott insulators exhibit strong tendencies toward the dCDW and dPI. In
particular, the incommensurate dPI [38–45] attracts much interest. However, its modulation
vector is not consistent with the experiments [32–36], requiring further study both theoretically
and experimentally.

Electrons can also be doped into the parent compound of cuprates. Electron-doped
cuprates (e-cuprates) [46], however, look very different from h-cuprates. A PG similar to that
found in h-cuprates is not clearly observed. If the PG indeed originates from some charge order,
as discussed regarding h-cuprates, it seems natural to assume that charge-order tendencies are
strongly suppressed in e-cuprates. On the other hand, a recent finding of collective excitations in
optimal e-cuprates [47] suggests that a charge-order tendency can be present.

Electron-doped cuprates have often been discussed via a comparison with h-cuprates,
focusing on specific aspects, e.g., pairing properties [48, 49], magnetic properties [50, 51],
stability of charge stripes but with different conclusions [48, 52], and optical conductivity [53].
A recent comprehensive study using variational Monte Carlo [54] showed that super-
conductivity is enhanced but antiferromagnetism is suppressed in h-cuprates, whereas the
opposite occurs in e-cuprates, nicely demonstrating the experimental fact. In spite of these
works, charge-order tendencies in e-cuprates have not been clarified.

In this paper, we study all possible charge instabilities in e-cuprates in the framework of
the two-dimensional t- ′t -J model. We employ a similar theoretical framework in which charge-
order tendencies have been studied comprehensively for h-cuprates [38]. In this sense, the
current work is a complement to [38] and is expected to clarify charge-order tendencies in
e-cuprates in the most comprehensive way through a comparison with those in h-cuprates. We
find that charge-order tendencies exhibit a very strong particle-hole asymmetry. Although
h-cuprates have strong tendencies toward the dCDW and dPI [38], these orders are substantially
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suppressed in e-cuprates. Instead, various bond orders with large momenta near π π( , ) are
favored in a moderated doping region. In section 2, we define our model and explain our
methods. Numerical results are presented in section 3. We discuss possible charge instabilities
and the PG in e-cuprates in section 4, followed by conclusions in section 5.

2. Model and formalism

We study charge instabilities in the two-dimensional t- ′t -J model by including the nearest-
neighbor Coulomb interaction V,

∑ ∑ ∑= − + ⃗ ⃗ − +
σ

σ σ ⎜ ⎟⎛
⎝

⎞
⎠H t c c J S S n n V n n˜ ˜ ·

1
4

. (1)
i j

ij i j

i j

i j i j

i j

i j

, ,

†

, ,

=t tij ′t( ) is the hopping integral between the first (second) nearest-neighbor sites on a square
lattice; J and V are the exchange interaction and the Coulomb repulsion, respectively, between
the nearest-neighbor sites. 〈 〉i j, indicates a nearest-neighbor pair. σc̃i

† and σc̃i are the creation and
annihilation operators of electrons with spin σ (σ = ↓ ↑, ), respectively, in Fock space without
any double occupancy. = ∑σ σ σn c c˜ ˜i i i

† is the electron density operator and ⃗Si is the spin operator
in that space. Although the V term is usually neglected in the analysis of the t-J model, its
presence is natural, as seen in the derivation of the t-J model from the generalized Hubbard
model [55]. We found that a role of the V term in the current study is to suppress the strong
tendency toward PS (see section 3.2) and does not affect the charge instabilities originating
from the J term (see section 3.3). There are higher-order corrections to the t-J model, such as
correlated hopping terms [55, 56]. We expect that those corrections do not blur our principal
physics originating from the J term as well as the strong correlation effect contained in (1). We
thus discard them in the current study.

We study the Hamiltonian (1) in a large-N technique formulated in a path integral
representation of the Hubbard X operators [38, 57]. Because details of the formalism were
presented in [38], we provide a simple sketch of that here.

We first write the Hamiltonian (1) in terms of Hubbard operators [58] via =σ
σc X˜i i

† 0,
=σ

σc X˜i i
0 , =+ ↑↓S Xi i , =− ↓↑S Xi i , = −↑↑ ↓↓S X X( ) 2i

z
i i , and = +↑↑ ↓↓n X Xi i i ; Xi

00 will also be
introduced later (see (4)). We then extend the spin degree of freedom to N channels and obtain
the Hamiltonian in the large-N formalism,
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The spin index σ is extended to a new index p, which runs from 1 to N. To obtain a finite theory
in the N-infinite limit, t, ′t , J, and V are rescaled as t N , ′t N , J N , and V N , respectively. The
chemical potential μ is introduced in (2).

The Hamiltonian (2) can be formulated in a path integral representation [57]. Our
Euclidean Lagrangian then reads
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with the following two additional constraints,
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which are imposed on the path integral via two δ-functions. In (3), = ∂τX X˙i
p

i
p0 0 and τ is the

Euclidean time, namely τ = ti .
We first write Xi

pp in the Hamiltonian (2) in terms of Xi
00 by using (4). This ensures that

the V term vanishes at half filling due to strong correlation effects in the Mott insulator. The
completeness condition (4) imposed by the δ function is now described by introducing
Lagrange multipliers λi. We describe Xi

00 and λi in terms of static mean-field values, r0 and λ0,
and fluctuation fields, δRi and δλi:

δ
λ λ δλ

= +
= +
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i i

i i
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From the completeness condition (4), r0 is equal to δ 2, where δ is the doping rate away from
half filling. We then eliminate ′X pp by implementing the δ-function associated with (5). This
procedure creates interaction terms such as ′ ′X X X Xi

p
i

p
j
p

j
p0 0 0 0 , which are decoupled through a

Hubbard-Stratonovich transformation by introducing a field associated with a bond variable,
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The field Δij is parameterized by

Δ Δ= + +η η η( )r A1 i , (8)i i i

where ηri and ηAi correspond to the real and imaginary parts of the fluctuations of the bond
variable, respectively, and Δ is a static mean-field value. The index η takes two values
associated with the bond directions η = (1, 0)1 and η = (0, 1)2 on a square lattice. After
expanding δ+ R1 (1 ) in powers of δR, we obtain an effective Lagrangian, which can be written
in terms of a six-component bosonic field

δ δ δλ= η η η ηX R r r A A( , , , , , ), (9)a 1 2 1 2

the fermionic fields X p0 and X p0, and their interactions. Any physical quantity can then be
calculated at a given order by counting powers of N1 in a corresponding Feynman diagram,
providing a controllable scheme. The Feynman rules are given in figure 1 in [57].

Because the bosonic field has six components (see (9)), its bare propagator ωD q( , i )ab n
(0) is

given by a 6 × 6 matrix; q and ωi n are the momentum and bosonic Matsubara frequency,
respectively. The quantity ωD q( , i )ab n

(0) describes all possible types of bare charge
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susceptibilities. From the Dyson equation, the dressed propagator is given by

ω ω Π ω= −− −⎡⎣ ⎤⎦( ) ( ) ( )D Dq q q, i , i , i . (10)ab n ab n ab n
1 (0) 1

The bosonic propagator acquires the self-energy Π ωq( , i )ab n already at the leading order (see
equations (15)–(18) in [38] for the explicit expression of ω−D q( , i )ab n

1 ). As a result, an
eigenvalue of D q( , 0)ab can diverge, leading to a charge instability with a modulation vector q.

From the N-extended completeness condition (4), we see that the charge operator X00 is O
(N), whereas the operators Xpp are O (1). Consequently, the N1 approach emphasizes the
effective charge interactions. In fact, collective effects enter the spin susceptibilities in the next-
to-leading order. This is also the case for superconductivity [16]. Hence instabilities of the
paramagnetic phase are expected only, in the leading order, in the charge sector. This is an
advantage of our method and allows us to explore all possible charge instabilities exclusively.
We therefore retain our approximation at the leading order. In the leading order theory,
however, we cannot address the ground state, which likely exhibits superconductivity. Hence
our results should be interpreted as microscopic indications of what kind of charge instabilities
become relevant in a parameter region where magnetism and superconductivity are absent.

In the leading order, our formalism agrees with the N1 slave-boson formalism [59] as well
as results in another formalism of the N1 expansion [16]. Our formalism was also verified, in the
next-to-leading order, to yield results consistent with exact diagonalization [60, 61]. In the next
section, we will also pay attention to the consistency between our results and existing literature.

3. Results

The t- ′t -J model with ′ <t 0 has been extensively studied in the context of h-cuprates. Because
the model is defined in Fock space without any double occupancy, we perform a particle-hole
transformation [50] for studying e-cuprates. This is implemented by taking a positive value of ′t
[48–53].

In the following, we set t = 1, and all quantities with the dimension of energy are in units
of t except for figure 6. A typical value of t in cuprates is estimated to be around 500meV [62].

3.1. Possible charge instabilities in e-cuprates

We compute the static charge susceptibilities D q( , 0)ab from (10), which are given by a 6 × 6
matrix, at the leading order of the large-N expansion. When an eigenvalue of the inverse of the
matrix, namely −D q( , 0)ab

1 , crosses zero at a given doping rate δ, temperature T, and q, a charge
instability with a modulation vector q occurs and the ordering pattern is determined by the
corresponding eigenvector Va. The eigenvectors that we have found are the same as those in
[38], although we employ the opposite sign of ′t here. We explain these eigenvectors one by one
in the following paragraphs.

(i) ∝ −V (0, 0, 0, 0, 1, 1)a , which corresponds to the dCDW (flux phase) with π π=q ( , )
[16, 57, 59, 63, 64]. In this phase, currents flow in each plaquette as shown in figure 1(a).

(ii) ∝ −V (0, 0, 1, 1, 0, 0)a , which corresponds to a dPI with =q (0, 0) (commensurate) [65–
67] or close to it (incommensurate) [38–45]. The dPI leads to the electronic nematic state
as an instability of the paramagnetic state. The commensurate and the incommensurate dPI
are shown in figures 1(b) and (c), respectively.

5
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(iii) ∝V (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 1, 1, 0, 0)a , and −(0, 0, 1, 1, 0, 0), which
correspond to the bond-order phase (BOP) [16, 57, 59] with π π=q ( , ) or close to it, with
four different patterns: BOPx, BOPy, BOPxy, and BOP xȳ, respectively (see figures 2(a)–
(d)). BOP x y( ) is a phase that has a bond amplitude modulated only along the x(y) direction,
whereas BOP xy xy( ¯) with π π( , ) has a bond amplitude modulated along both the x and y
directions, and its relative phase is inphase (antiphase). Because the dPI and BOP xȳ belong
to the same eigenvector −(0, 0, 1, 1, 0, 0), the dPI with π π≈q ( , ) is equivalent to the
BOP xȳ. However, the term of the dPI makes sense only for a small q, and thus we use the
term BOP xȳ when q is no longer close to (0, 0). We also sketch BOP xȳ with

π π=q (3 4, 3 4) in figure 2(e). Such an order can occur for a large ′t (see figure 5).
(iv) ∝V (1, 0, 0, 0, 0, 0)a , which corresponds to a PS with =q (0, 0). Conventional CDW

including charge stripes also belongs to the same eigenvector, but with a finite q. Such an

Figure 1. Sketch of (a) dCDW with π π=q ( , ), (b) dPI with =q (0, 0), and (c) dPI
with π=q ( 4, 0). The black lines in (b) and (c) denote a stronger (solid line) and
weaker (dotted line) bond relative to the mean-field bond variable (gray line), namely
the constant term on the right-hand side of (8). The width of the lines in (c) indicates the
modulation amplitude.

Figure 2. Sketch of (a) BOPx, (b) BOPy, (c) BOPxy, and (d) BOP xȳ for π π=q ( , ); (e)
BOP xȳ with π π=q (3 4, 3 4). Gray, solid, and dotted lines are explained in figure 1.
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instability was not found in the current study. This work is in favor of [48] more than [52]
regarding the stability of charge stripes.

In the following, we will specify a parameter region where each charge instability can
occur by varying doping rate δ, temperature T, and the next-nearest neighbor hopping ′t .
Because we determine critical lines of charge instabilities by studying susceptibility, the
transition is always continuous and a possible first-order transition is not considered in the
current study.

Before presenting our results, we emphasize that our general susceptibility (10) considers
all possible charge instabilities. As mentioned in the Introduction, various charge instabilities
are discussed in the context of the PG, and most of them are indeed found in this work except
for conventional CDW including stripes; the loop current order is beyond the scope of the one-
band t-J model. A bond-order modulated flux phase was discussed in variational Monte Carlo in
the t-J model at zero temperature [68, 69]. Such a state is described by the mixture of two
eigenvectors, −(0, 0, 0, 0, 1, 1) and (0, 0, 1, 1, 0, 0), in the current theory but is not found
here. This suggests that such a state may not occur as an instability from the normal phase but
may occur as an additional instability inside the symmetry broken phase characterized by either
eigenvector. This possibility cannot be addressed in the current theory because we perform the
stability analysis of the normal phase in terms of susceptibility.

3.2. Phase separation

We first discuss PS. As seen in the literature [49, 51, 70], PS is strongly enhanced for a positive
′t . Figure 3(a) shows PS in the plane of ′t and δ at = =V T 0 for J = 0 and 0.3; δ = 0
corresponds to half filling, and δ denotes the electron (hole) doping rate for ′ > <t 0( 0). As
seen from the large slope at ′ ≈ −t 0.1 for J = 0.3, PS is rapidly stabilized with increasing

Figure 3. (a) Phase separation in the plane of ′t and δ for J = 0 and 0.3 at = =V T 0. (b)
Phase separation in the plane of δ and T for various V at J = 0.3 and ′ =t 0.3.
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′ > −t ( 0.1) and extends to 15% doping already around ′ ≈t 0.1. PS is monotonically enhanced
up to ′ ≈t 1 and is suppressed for ′ >t 1. A similar result was also obtained by exact
diagonalization [49]. Although PS is enhanced by the J term, the ′t dependence of PS is well
captured by the result of J = 0. Although one might assume that a finite J is necessary to obtain
PS, the kinetic term in the t-J model (first term in the Hamiltonian (1) and (2)) is not a usual
non-interacting term but already contains strong correlation effects coming from the local
constraints (4) and (5). Figure 3 thus clearly demonstrates that PS originates from strong
correlation effects, in line with the result obtained by the dynamical cluster approximation in the
strong coupling Hubbard model [70].

Figure 3(b) shows the region of PS in the plane of δ and T for several choices of V at
J = 0.3 and ′ =t 0.3. PS occurs on the left side of the critical line. As expected, PS is
substantially suppressed by increasing V. We verified that no additional CDW instability was
triggered for the current values of V. The doping region of PS shrinks at low and high T.
Because of such reentrant behavior, PS can be stabilized at a finite T even if it does not occur at
T = 0. A result similar to figure 3(b) was also obtained in the Hubbard model in strong coupling
[71]. We, however, note that our PS is not a pure PS especially for high T. Although the
eigenvector of PS contains the component of (1, 0, 0, 0, 0, 0) almost 100% close to zero
temperature, the weight from other components, especially from (0, 0, 1, 1, 0, 0), increases
with increasing T. For example, the weight of the (1, 0, 0, 0, 0, 0) component is reduced to
about 80% (50%) at =T 0.1(0.2) for V = 1.0; such a reduction occurs at a higher temperature
for a smaller V.

Given that PS tendencies found here are consistent with results obtained in other methods
[49, 51, 70, 71] we believe that PS is a genuine feature of the t-J model. However, when PS
occurs, charge accumulates in one region more than in the other region. In this case, it is readily
expected that long-range Coulomb interaction, which is not considered in the t-J model, may
stabilize an inhomogeneous state. This possibility is worth exploring further.

3.3. Charge instabilities from the J term

We now study all the other possible charge instabilities and fix J = 0.3, which is believed to be
appropriate to cuprates [50, 51, 62]. We choose V = 1 to suppress PS, but charge instabilities
from the J term turn out to be rather insensitive to the choice of V. The latter aspect of the V
term might be surprising from the point of view of weak coupling theory. However, as seen in
our formalism in section 2, the V term vanishes at half filling and the current theory belongs to a
strong coupling theory formulated in terms of the Hubbard X operators. The value of ′t is
estimated to be around ′ = ∼t 0.2 0.4 for e-cuprates [50, 51, 62]. Because a realistic value of t
is around 500meV in cuprates [62], the temperature range we are interested in is below
T = 0.04–0.02, which corresponds to a region below 200–100K.

Figure 4 shows a phase diagram in the plane of δ and T. It extends the information we
obtained in figure 2 of [38] for h-cuprates by showing the effect of a positive ′t appropriate for
e-cuprates. As already seen in figure 3(b), PS occurs on the side of half filling and is enhanced
at high T. In contrast with PS, other charge instabilities are driven by the J term. In figure 4(a),
they occur at lower temperatures ( < <T0 0.04) below δ ≈ 0.14. This region is actually what
we are interested in, in the context of e-cuprates. We obtain three different types of charge
instabilities: dCDW with π π=q ( , ), dPI with =q (0, 0), and various BOPs such as BOP x y( ) ,
BOPxy, and BOP xȳ with π π≈q ( , ). The dPI is suppressed most strongly and is stabilized only
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rather close to half filling. Although the dCDW is the leading instability in δ ≲ 0.1, BOP x y( ) ,
BOPxy, and BOP xȳ become dominant in the region δ⩽ ⩽0.1 0.14 and show instabilities almost
simultaneously. As ′t increases, charge instabilities except for PS are suppressed and stabilized
closer to half filling, as seen in figures 4(b) and (c). Among various BOPs, BOP xȳ becomes the
leading instability at low T in a moderate doping region with increasing ′t . We verified that the
results of figure 4, except for PS, do not depend on a precise choice of the value of V. Because
we compute the general susceptibility in the paramagnetic state, figure 4 should be interpreted
as a hierarchy of different charge instabilities. For instance, in figure 4(c) at δ = 0.08, dCDW
and BOP xȳ are the leading and next-to-leading instabilities, respectively. BOP x y( ) and BOPxy
are degenerate and the third-to-leading instability.

Figure 4. Doping dependence on critical temperatures Tc of dCDW, dPI, BOPxȳ,
BOPx y( ) , BOPxy, and PS for J = 0.3 and V = 1; (a) ′ =t 0.2, (b) 0.3, and (c) 0.4. The
instability occurs below the corresponding critical line except for PS, which is stabilized
on the left side of the critical line.
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Although the dPI and dCDW instabilities always occur at =q (0, 0) and π π( , ),
respectively, the modulation vectors of BOPxy and BOP x y( ) show the instabilities at π π=q ( , )
and shift at very low ≲T ( 0.005) slightly toward the direction π π( , )– π( , 0) for BOPxy and
BOPx and the direction π π( , )– π(0, ) for BOPy. The modulation vector of BOP xȳ is shown in
figure 5 along its critical line in figures 4(a)–(c); hence the doping rate also changes with
changing Tc. In contrast with the case of BOPxy and BOP x y( ) , the charge susceptibility
corresponding to BOP xȳ is rather flat in momentum space. We thus plot the modulation vectors
where the inverse of the charge susceptibility is less than 10−4. The width of such a q region at a
fixed temperature indicates how sharp the susceptibility is in momentum space. The modulation
vector does not extend to the side of the π π( , )– π( , 0) direction because the eigenvector there
changes to BOPx. As T decreases, the susceptibility becomes sharper. The modulation vector
then becomes π π=q ( , ) for ′ =t 0.2 and shifts toward the diagonal direction along π π( , )–
(0, 0) for a larger ′t .

Compared with the results for ′ <t 0 obtained in [38], charge instabilities, except for PS,
show a much weaker dependence on ′t for ′ >t 0. To show explicitly the strong particle-hole
asymmetry of charge instabilities, we compare in figure 6 the current results for ′ =t 0.3 with
our previous results for h-cuprates obtained in [38] for the same parameter set except for the
sign of ′t . Although the tendencies of BOPs are even weaker than those of the dPI and dCDW
for ′ <t 0, various BOPs extend to a moderate doping for ′ >t 0 and become dominant there.
Both the dCDW and the dPI are strongly suppressed for e-cuprates compared with h-cuprates.

Figure 5. Modulation vectors of BOP xȳ along the corresponding critical lines in
figure 4.

Figure 6. Comparison between the current results for e-cuprates (left panel), which is
the same as figure 4(b), and the previous results [38] for h-cuprates (right panel). Using
t = 500meV, the temperature scale is given in K for easy comparison with experiments.
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Whereas the dCDW can be still a relevant instability in e-cuprates, the tendency toward the dPI
becomes the weakest when the sign of ′t is reversed. To understand such a drastic change for the
dPI, we closely study how the modulation vector of the dPI evolves by changing ′t . In the left-
hand panels in figure 7, we show the eigenvalue of the inverse of the susceptibility for the
eigenvector −(0, 0, 1, 1, 0, 0) at Tc = 0.008 and 0.0001 for a sequence of ′t . In the right-hand
panels, the corresponding modulation vector q is summarized by determining the momentum q
at which the eigenvalue becomes less than 10−4 at each temperature. For ′ = −t 0.2 (figures 7(a)
and (f)) the dPI occurs at =q (0, 0) and slightly away from it at very low T. For ′ =t 0
(figures 7(b) and (g)) the susceptibility of the dPI becomes flat along the direction (0, 0)– π π( , ),
but eventually an incommensurate q is favored along the direction (0, 0)– π( , 0) at low T. The
flat feature is a special aspect of the dPI susceptibility, which becomes exactly flat along the
(0, 0)– π π( , ) direction for any T and δ for ′ =t 0 [38]. With the inclusion of a tiny ′ =t ( 0.01)
(figure 7(c)), the flat structure is slightly slanted and the eigenvalue at π π=q ( , ) becomes
smaller than that at (0, 0). As a result, the instability occurs at π π=q ( , ) at high T, which is
equivalent to BOP xȳ. Although the flat feature still remains at low T (figure 7(c)), an
incommensurate dPI develops along the direction of (0, 0)– π( , 0), similar to the results for
′ =t 0. A value of ′ ⩾t 0.10 is sufficient to completely destroy the dPI with a small q and
stabilizes BOP xȳ with π π≈q ( , ) in the entire temperature region (figures 7(i) and (j)). The
eigenvalue1, however, still has a local minimum along (0, 0)– π( , 0) (figures 7(d) and (e)). These
results, therefore, imply that the reason why the stabilization of the dPI changes rapidly by
changing the sign of ′t lies in the special feature of the dPI susceptibility, which exhibits an
exactly flat structure along the (0, 0)– π π( , ) direction for ′ =t 0.

Figure 7. (a)–(e) q dependence on the eigenvalue corresponding to the eigenvector
−(0, 0, 1, 1, 0, 0) at the critical temperatures Tc = 0.008 and 0.0001 for a sequence of

′t . The instability occurs when the eigenvalue crosses zero. (f)–(j) Tc dependence of the
modulation vector q of the charge instability with the eigenvector −(0, 0, 1, 1, 0, 0).
The result (j) is the same as figure 5 for ′ =t 0.3 in a low-temperature region.

1 When q changes from (0, 0) to the direction of π( , 0) in figures 7(d) and (e), other components start to mix
maximally 5% with the eigenvector −(0, 0, 1, 1, 0, 0).
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4. Discussions

The e-cuprates are characterized by a positive ′t in the t- ′t -J model [48–53]. We first consider
possible effects of superconductivity and antiferromagnetism on our phase diagram, which are
not taken into account in our leading order theory. Typically, superconductivity in e-cuprates
occurs below 25K [46], which is around t0.004 in the current theory for ∼t 500 meV [62].
Because our charge-order instabilities occur higher than this temperature, a major part of our
results could not be affected by superconductivity, although charge orders or their tendencies
would be suppressed inside the superconducting state. On the other hand, antiferromagnetism
extends to the region of 11–14% doping in e-cuprates [46]. Because charge orders occur below
13–14% in our phase diagram, most of the charge orders that we have found could be masked
by antiferromagnetism; yet they can be observed in Pr1-xLaCexCuO4, which has a lower critical
doping rate of antiferromagnetism. The most relevant charge orders in a moderate doping
region are various BOPs with q close to π π( , ), which become dominant below T∼ 0.01t ∼
50K, as seen in figure 4. Figure 4 also implies that the dCDW can become relevant to e-
cuprates if the critical temperature of antiferromagnetism becomes lower than Tc of the dCDW
in a certain doping region. At present, experimental evidence of neither BOP nor dCDW is
obtained in e-cuprates. However, given that evidence of some order competing with
superconductivity was obtained quite recently in e-cuprates [72] and that a new type of charge
order was also found quite recently in h-cuprates [32–36], it may be too early to reach a
conclusion about a possible charge instability in e-cuprates. In particular, BOPs with q close to
(π, π) are not reported in h-cuprates, and thus in this sense e-cuprates are attractive for exploring
a new type of charge order in cuprates. Even if charge-order instability does not occur, its
fluctuation effect can be observed as collective excitations. It is interesting to explore a possible
connection with the new collective mode recently found in optimal e-cuprates by resonant
inelastic X-ray scattering [47].

There is growing evidence that the PG is related to some charge order or its fluctuations in
h-cuprates [8–11, 73, 74]. In particular, the dCDW [15, 17–19] and dPI [22–24] are candidates.
If the charge order is indeed responsible for the PG, the current theory suggests that the property
of the PG should be different between hole doping and electron doping because of the strong
particle-hole asymmetry of charge-order instabilities. Although a PG was reported in the optical
conductivity spectra in the non-superconducting crystals of e-cuprates [75], the PG
corresponding to the PG observed in h-cuprates, namely in a doping region where the
superconducting phase occurs at low T, seems to be missing or at least much weaker. It is quite
interesting to study whether other scenarios of the PG such as fluctuations associated with
Cooper pairing and antiferromagnetism can provide a natural explanation of the asymmetry of
the PG between hole-doped and electron-doped cuprate superconductors.

5. Conclusions

We have performed a stability analysis of the paramagnetic phase in the two-dimensional ′t t J- -
model by employing a leading order theory formulated in a large-N expansion scheme. Our
theoretical framework has the advantage of taking into account all possible charge instabilities
on equal footing and of allowing us to perform a comprehensive study of charge instabilities in
a controllable scheme. We have taken a positive value of ′t and our results can be relevant to e-
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cuprates. To the best of our knowledge, no systematic studies of charge instabilities have been
performed for e-cuprates, even in the large-N expansion. We have found that the dCDW and
dPI become relevant rather close to half filling and that various types of BOPs with q close to
(π, π) are dominant in a moderate doping region. PS is also enhanced but can be suppressed
substantially by the nearest-neighbor Coulomb repulsion V, although the instabilities associated
with BOPs, the dCDW, and the dPI are almost intact even in the presence of large V.

The charge order tendencies we have found for ′ >t 0 are very different from those for
′ <t 0 [38]. This strong particle-hole asymmetry implies that charge orders are less favorable in
e-cuprates, although they can still occur. Furthermore, if charge orders are responsible for the
PG, the current theory may naturally explain the reason why the PG phenomenon is very
different between e-cuprates and h-cuprates.
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