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This work formulates our previously reported partitionings of the first-order reduced density matrix and the
molecular electronic energy using for both quantities an identical mathematical framework. The procedure
provides a consistent and rigorous scheme for extending our algorithms to unions of atomic domains, in
order to describe molecular fragments which can be identified as functional groups. Numerical determinations,
performed in several series of organic compounds and clusters, support the reliability of our methodology to
describe properties of atomic groups.

1. Introduction

The idea of expressing a molecular property as a sum of
atomic contributions has aroused the interest of many chemists
during decades. Partitionings of the number of molecular
electrons N, the spin 〈 Ŝ2〉 , the molecular electronic energy E
and other properties have been extensively studied through
various approaches and procedures.1-18 The use of these
techniques provides a fruitful chemical information, i.e., very
useful and popular concepts in chemistry such as bond order,
valence, charge density, local spin, etc. can be directly obtained
and visualized from these treatments. The splitting of molecular
electronic energy into one-center and two-center terms presents
a double interest. The one-center terms provide information
about the gain or loss of energy of the atoms within a molecule
with respect to the free atoms, whereas the two-center ones
evaluate the strength of the bondings within the system.

In previous works, we have performed partitionings of the
first-order reduced density matrix19,20 and the molecular
energy,17,21,22 corresponding to a determined state of an N-
electron system, into first-order reduced density matrices and
energies associated with the atomic domains defined in Bader’s
theory of atoms in molecules.23 The matrix type methodology
used in these decompositions is numerically more precise and
computationally less expensive than other alternative direct
integration treatments.17 An appropriate management of these
tools has allowed us to describe and to identify electronic
populations, energies associated with each atomic domain and
bonding energies between these domains,17,19-21 achieving
results in good agreement with the genuine chemical knowledge.
Dealing with fragments arising from chemically meaningful
partitionings, their corresponding associated reduced density
matrices define electron densities which turns out to be near
invariant in different molecular environments.24 Consequently,
these kinds of matrices constitute appropriate tools to describe
the transferability of functional groups in the organic compound
series.25-28

The main aim of this work is to extend our methodogy17,19,21

to the study of molecular partitionings in terms of groupings of
Bader’s domains. In previous works we have showed the
appropriate behavior of our models concerning basis set
dependence, influence of electronic correlation and trend of the
theoretical results to the experimental ones. In the present work
we focus attention in the study of the relationship between the
energy and the electronic distribution. In this sense, we propose
a complete study of molecular fragments involving both electron
density and energy analyses that is performed consistently, i.e.
sharing both analyses identical partitioning scheme and identical
mathematical framework. Our treatment provides suitable
determinations of atomic and group densities, group energies,
bonding energies between two domains inside a determined
functional group as well as bonding energies between a group
and its molecular environment, which is of great chemical
interest. This task has been performed by means of domain-
restricted first-order reduced density matrices (reduced density
matrices associated with Bader’s domains and their unions),
domain-restricted energies (their counterpart concepts in energy
terms), and bonding energies between domains.

The organization of this article is as follows. The second
section summarizes the decomposition of the first-order reduced
density matrix into its domain-restricted matrix components and
describes the splitting of the total electronic energy into one-
center and two-center domain-restricted energies for any
arbitrary wave function. A unified formulation for both decom-
positions is also presented in that section. The third section
describes a procedure to determine functional group density
matrices, energies of functional groups and bonding energies
between a functional group and its environment. The fourth
section reports the computational details, the results found in
selected molecules and clusters as well as their corresponding
discussion. Finally, the last section points out the conclusions
of this work.

2. Partitionings of the First-Order Reduced Density
Matrix and the Electronic Energy: A Unified Treatment

In ref 19, we have reported a topological partitioning of the
spin-free first-order reduced matrix elements 1Dj

i, corresponding
to an N-electron system described by a wave function Ψ as
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where i, j, ... are a set of orthonormal orbitals, σ is the spin
coordinate (R or �), and (1D1/2)kσ

iσ and (1D1/2)jσ
lσ mean the elements

of the positive square root matrix arising from the first-order
reduced density matrix. Sl

k(Ω) ) 〈k|l〉Ω are the overlap integrals
over Bader domains Ω.23 According to Bader’s theory, the
whole real space ∪Ω, is partitioned into the domains Ω holding
Ω ∩ Ω′ ) Ø.

The elements 1Dj
i(Ω) in eq 2 define a domain-restricted first-

order reduced density matrix whose properties and foundations
have been described in refs 19 and 29. For singlets and other
spin symmetry states having Sz ) 0 the elements of the spin-
free first-order reduced density matrix associated with the region
Ω can be calculated as19
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so that the spin coordinate σ can be ignored.
On the other hand, the nonrelativistic electronic energy of

an N-electron system with clamped nuclei corresponding to a
determined state, Ψ, has been expressed by means of a sum of
one-center and two-center terms as17,21
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EΩA and EΩAΩB have been denominated domain-restricted
energies and bonding energies between domains, respectively.
In eqs 5 and 6, A, B, ... are the nuclei of the system, RAB the
distance between those nuclei and ZA, ZB, ... are the correspond-
ing nuclear charges. T and AV are the operators (-1/2∇ 2) and
(ZA/rA) respectively. The quantity C is defined by its matrix
elements Cjl

ik ) 〈ik|jl〉 which are the standard two-electron
integrals in the (12|12) convention. Λjl

ik stands for the spin-free
density cumulant term of the second-order reduced density
matrix, 2D, corresponding to the state Ψ and 2Fjl

ik ) 2Djl
ik - 1/2Λjl

ik

) 1/2
1Dj

i 1Dl
k - 1/4

1Dl
i1Dj

k.30 Equations 4-6 define a topological
partitioning of the electronic energy E as a function of the nuclei
A, B, ... and their corresponding atomic domains ΩA, ΩB, ..., so
that eqs 5 and 6 can be interpreted as the energies of the atomic
domains ΩA and the bond energies between the atomic domains
ΩA and ΩB, respectively (cf. refs 17 and 21) for closed shell
systems. In the open shell case, the spin effects that appear in
the density cumulant must be considered in the treatment of
this term.31

As has been pointed out in the Introduction, one of the
purposes of this work is to describe a unique mathematical
framework which allows us to deal with both quantities, domain-
restricted first-order reduced density matrices and domain-
restricted energies. Consequently, we rewrite eqs 5 and 6 in an
equivalent symmetric way according to the procedure carried
out in the partitioning of the first-order reduced density matrix
expressed by formula (3), that is
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In this way, energy and density expressions (eqs 7, 8, and 3)
share identical mathematical structure, which provides a rigorous
scheme for interpretation and comparative analysis of results
concerning both quantities. This formulation can be extended
to groupings of domains which correspond to molecular
fragments of chemical interest. This extension is performed in
the next section. Although the matrices defining the energy
components in eqs 7 and 8 may become singular and conse-
quently they might not be diagonalized to obtain the square root,
this problem can be overcome using Jordan normal forms.32

3. Determination of Functional Group Energies

In order to apply our partitioning scheme to describe
electronic densities of molecular fragments, in ref 19, we
extended eq 3 to unions of Bader domains ΩA through a simple
manipulation of the overlap integrals, so that

1Dj
i(∪ AΩA))∑
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(1D1/2)k

i
Sl

k(∪ AΩA)(1D1/2)j
l

(9)

where

Sl
k(∪ AΩA)) 〈k|l〉 ∪ AΩA )∑

ΩA

′Sl
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and the sum ∑ΩA′ is restricted to the ΩA atomic domains that
are included in the union set ∪AΩA. Obviously, if ∪AΩA is the
whole space 1Dj

i(∪AΩA) ) 1Dj
i.

According to that procedure, eq 7 can now be formulated in
terms of unions of Bader domains leading to
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in which the sum ∑′B refers to identical domains than ∪AΩA.
The corresponding extension of eq 8 is
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where ∑′A and ∑′B contain identical domains than ∪AΩA and
∪BΩB, respectively, and (∪AΩA)∩(∪BΩB) ) Ø.

Equation 11 determines the energy of the molecular fragment
∪A ΩA, whereas eq 12 describes bonding energies between the
two molecular fragments corresponding to the unions of Bader
regions ∪AΩA and ∪BΩB, respectively. Obviously if ∪AΩA )
ΩA and ∪BΩB ) ΩB, eqs 11 and 12 revert to eqs 7 and 8,
respectively. Besides, if ∪AΩA is the whole space, ∪BΩB ) Ø,
E∪A ΩA ) E and eq 12 vanishes. It is worthy to note that both
the energy and the first-order reduced density matrix decom-
positions in terms of molecular fragments preserve the structure
of the decomposition in terms of atomic domains, showing that
this methodology constitutes a suitable extension to incorporate
more general domains to the energy decomposition treatment.

As has been pointed out above, the main aim of this paper is
to study the quantities 1D(∪AΩA), E∪AΩA and E∪AΩA,∪BΩB to check
their capability to describe chemically meaningful molecular
fragments, i.e, atoms, groups of atoms, functional groups, etc.
The results are reported in the next section.

4. Results and Discussion

Several series of compounds (most of them organic), in their
ground state, have been chosen to test the reliability of our
methodology to describe properties of atomic groups and
interfragment bonding energies. Tables 1-3 report the values
of group energies (arising from eq 11) and interfragment
bonding energies (arising from eq 12) for the functional groups
methyl, methylene, hydroxyl, amine, and carbonyl, within
different molecular environments. These tables also report the
values of the electronic populations N∪AΩA corresponding to each
fragment ∪AΩA, known as Bader’s charge, which are the traces
of the matrices 1D(∪AΩA) (see eq 9). In Table 4, we present
nonclassical systems whose structural study is of interest to
materials scientists due to their importance in science and
technology. We describe the isomers of the neutral clusters
Si6O2, Si6O3, Si6O4 and Si6O5 corresponding to the structures
(c), (c), (a), and (b), respectively, shown in Figure 1 of ref 33,
all of them containing the characteristic unit Si2O2. Table 5
shows results of electronic population analyses arising from first-

order reduced density matrices corresponding to the mentioned
functional groups and the unit Si2O2. For the sake of brevity,
we have included in this Table only two compounds for each
functional group (those providing the largest and lowest group
energy) and two clusters (those having the lowest and largest
size). The results corresponding to the other reported compounds
are available upon request. The Table describes the total
electronic population of the fragment N∪AΩA, the orbital type,
the orbital population νi(∪AΩA), the degeneracy (in population)
and, in the case of conventional groups, the ionicity (as a
percentage)19 for each significant molecular orbital i of the
functional group in the localized isopynic picture.19,34 These
results allow us to relate the energies in Tables 1-4 with the
reordering of the electron cloud provided by the group environ-
ment. The one-electron integrals Tj

i and AVj
i, and the two-electron

ones Cjl
ik were computed with a modified version of GAMESS35

program whereas the reduced density matrix elements were
generated using Gaussian 03.36 The overlap matrices S(Ω) were
evaluated with Gaussian 03 and PROAIM37 codes. In a
subsequent step, these matrices were subjected to the proposed

TABLE 1: Calculated Energies of the Methyl Group and Its
Bonding Energies (a.u.) with Different Molecular
Environments in the 6-31G(d,p) Basis Set at SCF Level

system group NCH3
a

group
energy bonding

group-fragment
bonding
energy

CH3F CH3 8.257 -39.2479 CH3-F -0.5930
CH3OH CH3 8.351 -39.3176 CH3-OH -0.5565
CH3NH2 CH3 8.553 -39.4370 CH3-NH2 -0.3441
CH4 CH3 8.937 -39.5495 CH3-H -0.1198
CH3CH3 CH3 8.997 -39.5484 CH3-CH3 -0.1384
CH3CH2F CH3 8.941 -39.5283 CH3-CH2 -0.1075

CH3-F -0.0505
CH3CH2OH CH3 8.953 -39.5345 CH3-CH2 -0.1109

CH3-OH -0.0414
CH3CH2NH2 CH3 9.039 -39.5433 CH3-CH2 -0.1406

CH3-NH2 -0.0127
CH3CH2CH3 CH3 9.017 -39.5520 CH3-CH2 -0.1485

CH3-CH3 0.0050
CH3CH2CHO CH3 8.931 -39.5396 CH3-CH2 -0.1440

CH3-CO 0.0024
CH3-H 0.0000

CH3CHO CH3 8.915 -39.5249 CH3-CO -0.1564
CH3-H 0.0003

CH3COCH3 CH3 8.933 -39.5239 CH3-CO -0.1637
CH3-CH3 0.0066

a Bader’s charge corresponding to the methyl group.

TABLE 2: Calculated Energies of the Methylene Group and
its Bonding Energies (a.u.) with Different Molecular
Environments in the 6-31G(d,p) Basis Set at the SCF Level

system group NCH2
a

group
energy bonding

group-fragment
bonding
energy

CH4 CH2 7.875 -38.8942 CH2-H2 -0.2469
CH3CH2F CH2 7.309 -38.6355 CH2-CH3 -0.1075

CH2-F -0.5582
CH3CH2OH CH2 7.387 -38.6886 CH2-CH3 -0.1109

CH2-OH -0.5379
CH3CH2NH2 CH2 7.493 -38.7700 CH2-CH3 -0.1406

CH2-NH2 -0.3618
CH3CH2CHO CH2 7.957 -38.8663 CH2-CH3 -0.1440

CH2-CO -0.1662
CH2-H 0.0006

CH3CH2CH3 CH2 7.959 -38.8787 CH2-CH3 -0.1485

a Bader’s charge corresponding to the methylene group.
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formulas using our own codes. Our treatments can be applied
at any level of theory. However, in this work we have limited
ourselves to the Hartree-Fock level [self-consistent field (SCF)].
The results reported for the classical functional groups have
been obtained with the basis sets 6-31G(d,p), and those
corresponding to the clusters have been calculated with the basis
sets 6-31G.

The results gathered in Table 1 allow us to relate the values
of NCH3 with the energies ECH3 and the interfragment bonding
energies ECH3-X in different molecular environments. Let us start
with the sequence CH3-X (X ) F, OH, NH2, H, CH3). As can
be observed, these group energies ECH3 and their electronic
populations NCH3 vary in good agreement with the polarity of
the corresponding bond C-X. The highest values of the energy
of group (in absolute value) correspond to the highest values
of the Bader’s charge as expected (the difference E CH3

methane-E CH3
ethane

) 0.0011 a.u. is not significant). The tendency of the interfrag-
ment bonding energies ECH3-X in that series is also reasonable
according to the chemical nature of the environment X. In the
set of chemical compounds CH3CH2F, CH3CH2OH,
CH3CH2NH2, CH3CH2CH3, and CH3CH2CHO, the methyl group
is situated further from the polar group X than in the former
series, which is reflected in the energies ECH3 found; all of them
are quite similar. Near-invariant character of the ECH3 quantity
can also be observed in the compounds CH3CHO and
CH3COCH3; in these systems the close values found can be

explained by the fact that the methyl group neighbors the
carbonyl group in both compounds and consequently, the
interactions group-environment are again very similar in both.

TABLE 3: Calculated Energies of the Groups Hydroxyl,
Amine and Carbonyl, and Their Bonding Energies (a.u.)
with Different Molecular Environments in the 6-31G(d,p)
Basis Set at the SCF Level

system group NX
a

group
energy bonding

group-fragment
bonding
energy

H2O OH 9.620 -75.2816 OH-H -0.4302
CH3OH OH 9.648 -75.1721 OH-CH3 -0.5565
CH3CH2OH OH 9.656 -75.1744 OH-CH2 -0.5379

OH-CH3 -0.0414
C6H5OH OH 9.670 -75.1123 OH-C6H5 -0.6981
NH3 NH2 9.373 -55.5100 NH2-H -0.2049
CH3NH2 NH2 9.446 -55.4407 NH2-CH3 -0.3441
CH3CH2NH2 NH2 9.462 -55.4317 NH2-CH2 -0.3618

NH2-CH3 -0.0127
C6H5NH2 NH2 9.513 -55.3434 NH2-C6H5 -0.5579
CH2O CO 13.934 -112.5802 CO-H2 -0.2736
CH3CHO CO 14.035 -112.5942 CO-CH3 -0.1564

CO-H -0.1441
CH3CH2CHO CO 14.056 -112.5979 CO-CH2 -0.1662

CO-H -0.1455
CO-CH3 0.0024

CH3COCH3 CO 14.131 -112.6034 CO-CH3 -0.1637

a Bader’s charge corresponding to the groups X (X ) OH, NH2,
CO).

TABLE 4: Calculated Energies of the Si2O2 Unit and Its
Bonding Energies (a.u.) with the Remainder of the
Corresponding Cluster in the 6-31G Basis Set at the SCF
Level

cluster group NSi2O2
a

group
energy bonding

group-fragment
bonding
energy

Si6O2 Si2O2 44.209 -727.4230 Si2O2-Si4 -0.0785
Si6O3 Si2O2 43.193 -727.1143 Si2O2-Si4O -0.6544
Si6O4 Si2O2 42.403 -726.5897 Si2O2-Si4O2 -1.5814
Si6O5 Si2O2 42.354 -726.5504 Si2O2-Si4O3 -1.6956

a Bader’s charge corresponding to the Si2O2 unit.

TABLE 5: Bader’s Charge N∪AΩA, Eigenvalues νi(∪AΩA)
(Orbital Populations), Degeneracies, Assigned Localized
Eigenvectors, and Orbital Ionicity from the First-Order
Reduced Density Matrices for Functional Groups in Several
Molecular Environments in the SCF Treatmenta

system
fragment
(∪AΩA) N∪AΩA

νi

(∪AΩA) degeneracy assignment ionicity

CH3F CH3 8.257 1.999 1 1sC
1.954 3 σCH
0.328 1 σCF 67.2

CH3CH2CH3 CH3 9.017 2.000 1 1sC
1.970 2 σCH
1.972 1 σCH
1.016 1 σCC 2.5

CH3CH2F CH2 7.309 2.000 1 1sC
1.931 2 σCH
0.997 1 σCC 1.2
0.321 1 σCF 67.9

CH3CH2CH3 CH2 7.959 2.000 1 1sC
1.946 2 σCH
0.967 2 σCC 2.5

system
fragment
(∪AΩA) N∪AΩA

νi

(∪AΩA) degeneracy assignment ionicity

H2O OH 9.620 2.000 1 1sO
1.996 2 σ-lone pair;

σOH (inner H)
1.991 1 π-lone pair
1.638 1 σOH (outer H) 62.3

C6H5OH OH 9.670 2.000 1 1sO
1.986 1 σ-lone pair
1.973 1 σOH
1.922 1 π-lone pair
1.626 1 σCO 62.5

NH3 NH2 9.373 2.000 1 1sN
1.985 1 lone pair
1.990 2 σNH (inner H)
1.408 1 σNH (outer H) 40.7

C6H5NH2 NH2 9.513 2.000 1 1sN
1.919 1 lone pair
1.974 2 σNH
1.495 1 σNC 51.4

system
fragment
(∪AΩA) N∪AΩA

νi

(∪AΩA) degeneracy assignment ionicity

CH2O CO 13.934 2.000 3 1sC; 1sO
σO-lone pair

0.998 2 σCH 0.5
1.979 1 πO-lone pair
1.989 1 σCO
1.970 1 πCO

CH3COCH3 CO 14.131 2.000 2 1sC; 1sO
1.999 1 σO-lone pair
1.013 2 σCC 1.6
1.971 1 πO-lone pair
1.987 1 σCO
1.959 1 πCO

system
fragment
(∪AΩA) N∪AΩA

νi

(∪AΩA) degeneracy assignment ionicity

Si6O2 Si2O2 44.209 1.998 1 σSi2-lone pair
1.996 2 σSi2O
1.999 2 σO-lone pair
1.994 2 πO-lone pair
1.987 2 σSi1O
1.222 1 σSi3Si1Si3

0.749 1 πSi3Si1Si3

Si6O5 Si2O2 42.354 1.998 1 σSi2-lone pair
1.992 2 σSi2O
1.998 2 σO-lone pair
1.982 2 πO-lone pair
1.966 2 σSi1O
0.191 1 σSi1O
0.183 1 σSi1O

a Superscripts are as follows: 1, silicon atom directly bonded to
the remaining fragment; 2, Silicon atom nondirectly bonded to the
remaining fragment; 3, Silicon atom in the remaining fragment.
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We must highlight that our procedure predicts very low or
negligible values of ECH3-X in all situations in which the methyl
and X groups are not directly bonded such as CH3-F in the
CH3CH2F molecule, CH3-OH in the CH3CH2OH alcohol,
CH3-NH2 in the ethylamine, CH3-H in both aldheydes,
and CH3-CH3 in the propane and in the acetone. The
compounds CH3CH2CH3 and CH3F present the largest difference
in the ECH3 values (-0.3 a.u.). Table 5 shows that the electron
rearrangement in the CH3 group in these compounds is only
significant at the single bond that connect that group with the
environment X. The molecules CH3CH2CH3 and CH3F exhibit
a pure covalent CC bond (2.5% ionicity) and a highly polarized
CF bond (67.2% ionicity), respectively. The difference between
the total electron population of the group NCH3 in both systems
indicates a flux of charge from the localized molecular orbital
assigned to the single CF bond of the corresponding CH3

fragment to the environment F.
The results concerning the fragment CH2 (the methylene

group) are shown in Table 2. Regarding the sequence
CH3-CH2-X (X ) F, OH, NH2, CO, CH3) the differences
between the values of the ECH2 can be interpreted in terms of
the polarity of the bond CH2-X. The value ECH2 ) -38.8942
a.u. in the methane molecule, which does not belong to that
series, is slightly lower but close to that in propane (-38.8787
a.u.) in which the methylene group has a similar environment.
As in the previous Table, the energy ECH2-H in the propanald-
heyde is negligible since it refers to nonbonded groups. The
results for this group in the CH3CH2F and CH3CH2CH3

molecules reported in Table 5 suggest similar comments to those
discussed for the CH3 fragment. The results collected in Table
3 correspond to the functional groups hydroxyl, amine, and
carbonyl. They deserve very similar comments to those men-
tioned for the methyl and methylene groups. The main difference
found for the OH group energy is EOH

water - EOH
phenol ) 0.1693 a.u.

which corresponds to markedly different chemical compounds.
Similarly, the counterpart compounds for the NH2 group present
the highest difference ENH2

ammonia - ENH2
aniline ) 0.1666 a.u. Both the

OH group and the NH2 one are bonded in these cases to very
different groups H and C6H5. Despite the energy differences,
Table 5 shows similar inner structures for OH group in phenol
and H2O as well as for the group NH2 in aniline and ammonia
and the ionicity values point out the electronegative character
of oxygen and nitrogen atoms. In the compound sequence
reported for the carbonyl group, the differences are even lower
as correspond to identical functional group, being ECO

acetone -
ECO

formaldheyde ) 0.0232 a.u. the highest one. Table 5 reveals the
similar structure of the CO group in both systems according to
their chemically similar environments. According to the above-
reported observations, this methodology is able to provide a
right picture of the fragments and the fragment-environment
interactions, in total agreement with the genuine chemical
knowledge.

Table 4 reports preliminary results on the rhombic unit Si2O2

in the above-mentioned clusters. One of the silicon atoms of
this unit is directly bonded to two silicon atoms of the remaining
fragment in the cluster Si6O2, to a silicon atom and an oxygen
atom in the Si6O3 one and to two oxygen atoms in the Si6O4

and Si6O5 compounds. The obtained numerical values show that
the electronic population NSi2O2, the energy ESi2O2 and the Si2O2

unit-remaining cluster fragment bonding energy ESi2O2-X also
vary according to the polarity of the Si2O2-X bondings in these
compounds. In this sense, it can be observed a low charge
transference from the Si4 fragment to the Si2O2 unit in the Si6O2

cluster which exhibits the highest NSi2O2 value. However, when

the unit Si2O2 is directly bonded to oxygen atoms of the
remaining fragment the charge is transferred in opposite sense.
Consequently, the NSi2O2 values found in the clusters Si6O4 and
Si6O5 are similar but lower than in the Si6O2 one; in the Si6O3

cluster that quantity takes an intermediate value. The highest
values for the energy of Si2O2 unit and the lowest values for
the unit-remaining fragment bonding energy (both in absolute
value), correspond to the highest Bader’s charge NSi2O2. These
results agree with those reported in ref 33 which have been
obtained through a quite different procedure. At the end of Table
5, we show the results arising from the electronic population
analyses, limited to the valence shells, for the Si2O2 unit in the
clusters Si6O2 and Si6O5 (according to the obtained values, the
core shells turn out to be completely occupied). Our analysis
detects the presence of three-center delocalized bonding orbitals
involving three silicon atoms, one of them belonging to the Si2O2

unit and the other two to the remaining fragment in the Si6O2

cluster. The nature of these multicenter bondings prevents the
calculation of ionization indices. More classical patterns have
been found in the Si6O5 cluster. The low electronic population
values of the orbitals σSiO in the Si6O5 cluster can be interpreted
as high accumulation of electronic charge on the oxygen atoms
of the fragment Si4O3.

5. Concluding Remarks

In this work, we have performed a reformulation of our
previously reported partitioning of the electronic energy of an
N-electron system in terms of domain-restricted energies and
bonding energies between domains. The used procedure, which
has been developed in the framework of the theory of atoms in
molecules, is similar to that described in the formulation of
domain-restricted reduced density matrices previously proposed
by some of us. This provides a consistent and rigorous scheme
to treat jointly both density and energy quantities. The extension
of this procedure to describe molecular fragments has allowed
us to evaluate consistently energies and densities corresponding
to groups of atoms with chemical meaning as well as bonding
energies between these groups. The results show reasonable
values for the group energies, that vary according to the nature
of the molecule in which the group is immersed. Likewise, the
calculated bonding energies between two determined groups
show similar values for chemically bonded groups within not
too different environments, and very small or negligible values
for not directly bonded fragments. The density analyses indicate
that the inner structure of the groups remain unchanged; the
only found changes refer to the bonds that connect the groups
with the rest of the molecule in agreement with the energy
results. All these results indicate that the domain-restricted tools
(energies and reduced density matrices) are suitable devices to
describe functional groups and to formulate their transferability.
We point out that these treatments are able to describe as
conventional molecules as more complex systems like clusters
or aggregates.

We must also highlight that this methodology is independent
of the quality of the wave function used to obtain the first- and
second-order reduced density matrices; that is, it is valid for
both variational (Hartree-Fock, configuration-interaction or
multiconfigurational) and diagrammatic (coupled cluster) wave
functions as well as for the methods in which the reduced density
matrices are directly computed without using wave functions.38

The proposed treatment can be implemented for any general
partitioning of the three-dimensional space into overlaping
domains (as those of “fuzzy” atoms type3) or nonoverlaping
domains (as those of Bader and electron localization function
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type.7 Moreover, the fragment properties determined by our
treatment could be used to predict total properties of larger
systems, by addition of molecular fragments. Work in this
direction is currently being carried out in our laboratories.
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