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Abstract

We study spherically symmetric thin-shell wormholes in a string cloud back-
ground in (3+1)-dimensional spacetime. The amount of exotic matter required
for the construction, the traversability and the stability under radial pertur-
bations, are analyzed as functions of the parameters of the model. Besides, in
the Appendices a non perturbative approach to the dynamics and a possible
extension of the analysis to a related model are briefly discussed.

1 Introduction

After the well known leading paper by Morris and Thorne [1], considerable attention

has been devoted to the study of traversable Lorentzian wormholes [2]. Such kind

of geometries would connect two regions of the same universe, or of two universes,

by a traversable throat. If they actually exist, they would present some features

of particular interest as, for example, the possibility of using them for time travel

[3, 4]. However, the flare-out condition [5] to be satisfied at the throat requires the

presence of exotic matter, that is, matter which violates the null energy condition

(NEC) [1, 2, 5, 6]. However, it was shown in Ref. [7] that the amount of exotic

matter necessary for the existence of a wormhole can be made infinitesimally small

by suitably choosing the geometry. After this, special attention has been devoted

to quantifying the amount of exotic matter [8, 9]; in particular, this amount has

been pointed as an indicator of the physical viability of a traversable wormhole [10].

Besides, for a wormhole to be considered traversable, the geometry must be such that

the magnitude of tidal forces are admissible for an hypothetic traveller; this has also

been analyzed for most physically meaningful configurations studied in the literature.

∗E-mail: csimeone@df.uba.ar.

1

http://arXiv.org/abs/0711.2297v1


Of course, no unstable solution of the equations of gravitation could be of interest

as a candidate for a traversable wormhole. Thus, besides the characterization of static

solutions, their stability under perturbations must always be explored. In particular,

this has been thoroughly studied for the case of small perturbations preserving the

symmetry of the original configuration. A class of wormholes for which Poisson and

Visser [11] developed a straightforward approach for analyzing this aspect are thin-

shell ones, that is, wormholes which are mathematically constructed by cutting and

pasting two manifolds to obtain a geodesically complete new manifold [12]. In these

wormhole configurations the exotic matter lies in a shell placed at the joining surface;

so the theoretical framework for dealing with them is the Darmois–Israel formalism,

which leads to the Lanczos equations, that is, the Einstein’s equations projected on

the joining surface [13, 14]. Once an equation of state for the exotic matter in the shell

is provided, the solution of the Lanczos equations gives the dynamical evolution of

the wormhole. Such a procedure has been subsequently followed to study the stability

of more general spherically symmetric configurations (see, for example, Refs. [15]).

According to present day theoretical developments, a scenario in which the funda-

mental building blocks of nature are extended objects instead of point objects should

be considered quite seriously. In particular, 1–dimensional objects (strings) are the

most popular candidate for such fundamental objects. The study of the gravitational

effects of matter in the form of clouds of both cosmic and fundamental strings has

then deserved considerable attention; see for example Refs. [16]. We are interested

in the viability of wormholes; so within this framework any reasonable configuration

including more parameters and thus allowing for improving its features as: amount

of exotic matter, pressure, traversability and stability, deserves to be analyzed. In

the present work we start from the metric proposed in the leading paper by Lete-

lier [17] to address the study of thin-shell wormholes associated to a string cloud

(and also a global monopole; see below). We study in detail the amount of exotic

matter required for the construction, the traversability and also the stability of the

configuration under perturbations preserving the original symmetry. As we shall see,

comparing with the Schwarzschild case, the string cloud allows for more freedom in

the choice of the configurations to be stable, and also allows to reduce the amount of

exotic matter without increasing the pressure. Because recently certain attention was

devoted to exotic matter fulfilling the Chaplygin gas equation of state, in Appendix

A we explicitly impose it on the shell matter to obtain its time evolution beyond a

perturbative approach. In Appendix B we discuss a possible extension of the analysis

to a related geometry. Throughout the paper we set units so that c = G = 1.

2



2 Wormholes in a string cloud with spherical sym-

metry

2.1 The string cloud

The action of a string evolving in spacetime is given by

S =

∫

L dλ0 dλ1, L = m
√
−γ, (1)

where m is a constant characterizing each string, λ0, λ1 are a timelike and a spacelike

parameter, and γ is the determinant of the induced metric on the string world sheet:

γ = det γAB, γAB = gµν(x)
∂xµ

∂λA

∂xν

∂λB
. (2)

Introducing the bivector

Σµν = ǫAB ∂xµ

∂λA

∂xν

∂λB
(3)

with ǫAB the two-dimensional Levi–Civita symbol, the Lagrangian density L can be

put as

L = m

(

−1

2
ΣαβΣαβ

)1/2

. (4)

With this notation, a cloud of strings is described by the energy-momentum tensor

T µν = ρ0Σ
µβΣν

β(−γ)−1/2, (5)

where ρ0 is the proper density of the cloud. The quantity ρ0(−γ)1/2 is gauge invariant,

and is called the gauge invariant density of the cloud [17]. In the case of a static

spherically symmetric cloud, we have

ρ0(−γ)1/2 =
a

r2
(6)

with a a positive constant.

The general solution to Einstein’s equations for a string cloud with spherical sym-

metry in (3+1)-dimensional spacetime, that is with density given by (6), takes the

form [17]

ds2 = −f(r) dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θdϕ2) (7)

where

f(r) = 1 − a − 2M

r
. (8)

This metric represents the spacetime associated with a spherical mass M centered at

the origin of the system of coordinates, surrounded by a spherical cloud of strings.

3



Besides, it can also be understood as the metric associated to a global monopole,

which increases the interest of starting from it to construct a wormhole (for the

details see Refs. [18, 19], and for a related work involving a traversable wormhole see

Ref. [20]). The event horizon of this metric is placed at

rhor =
2M

1 − a
(9)

where a 6= 1. If a is less than unity we have that the cloud of strings enlarges the

Schwarzschild radius of the mass by the factor 1/(1 − a). When a > 1 the metric

represents a homogenous spacetime. The cloud of strings alone (M = 0) does not

have horizon; it only presents a naked singularity at r = 0. In Fig. 1 we show where

the event horizon is located and how this changes with the parameter a. When a = 0

we recover the Schwarzschild radius and for a close to unity the event horizon radius

tends to infinity.
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Figure 1: The function f(r) is shown. We can see how the position of the event
horizon changes when the parameter a varies within the range [0, 1)
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2.2 Wormhole construction

Now we build a spherically symmetric thin-shell wormhole starting from the generic

geometry (7) (see Fig. 2). We take two copies of the string cloud spacetime and

remove from each manifold the four-dimensional regions described by

M1,2 = {r1,2 ≤ b|b > rhor} . (10)

The resulting manifolds have boundaries given by the timelike hypersurfaces

Σ ≡ Σ1,2 = {r1,2 = b|b > rhor} . (11)

Then we paste or identify these two timelike hypersurfaces to obtain a geodesically

complete new manifold M with a matter shell at the surface r = b, where the throat

of the wormhole is located. This manifold is constituted by two asymptotically locally

flat1 regions connected by a traversable Lorentzian wormhole.

Figure 2: We show two copies of the geometry represented by Eq. (1), with θ = π/2
and t = const., for r > rhor when a = 0. After the boundaries are identified we get a
geodesically complete new manifold with a matter shell at r = b.

To study this class of wormhole we use the standard Darmois–Israel formalism

[13, 14]. The wormhole throat is placed at the surface Σ. This is a synchronous

1The spacetime presents a deficit solid angle; see Ref. [19].
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timelike hypersurface. We can introduce coordinates ξi = (τ, θ, ϕ) in Σ, with τ the

proper time on the throat. In order to be able to perform a quite general analysis

(for example, to study the mechanical stability of the configuration; see below), we

allow the radius of the throat be a function of the proper time, b = b(τ). This is

strictly right because the existence of a generalized Birkhoff theorem for the string

cloud [17] ensures that the metric of the embedding remains the same independently

of the motion of the throat, as long as the spherical symmetry is preserved. So, the

boundary hypersurface reads:

Σ : F(r, τ) = r − b(τ) = 0. (12)

The second fundamental form (extrinsic curvature) at the two sides of the throat is

given by

K±

il = −n±
γ

(

∂2Xγ

∂ξi∂ξl
+ Γγ

αβ

∂Xα

∂ξi

∂Xβ

∂ξl

)

(13)

where n±
γ are the unit normals (nγn

γ = 1) to the surface Σ in M. Defining the jump

in the extrinsic curvature as [Kil] = K+
il − K−

il and its trace as K = Tr([Kil]) we

obtain the so-called Lanczos equations:

− [Kil] + Kgil = 8πSil (14)

where Sil is the surface stress-energy tensor of the shell placed at the throat. The

non vanishing components of the extrinsic curvature are:

K±
ττ = ± b̈ + f

′

(b)/2
√

f(b) + ḃ2

, (15)

K±

θθ = K±
ϕϕ = ±2

b

√

f(b) + ḃ2, (16)

where the dot means derivation with respect to the proper time τ , and a prime stands

for a derivative with respect to r. Then, from Eqs. (8), (9) and (10) we get a formal

expression for the pressure p = Sθ
θ = Sϕ

ϕ and the energy density σ = −Sτ
τ in terms

of b(τ), first and second derivatives of b(τ), and the function f which depends on the

parameters of the system (a, M):

σ = − 1

2πb

√

f(b) + ḃ2, (17)

p = −1

2
σ +

1

8π

b̈ + f
′

(b)/2
√

f(b) + ḃ2

, (18)

6



where the prime means derivation with respect to r. As it was to be expected, the

energy density is negative, indicating the existence of exotic matter at the shell. We

shall focus on this aspect of the wormhole in the next Section. It is easy to see from

Eqs. (11) and (12) that the energy conservation equation is fulfilled:

d(Aσ)

dτ
+ p

dA

dτ
= 0, (19)

where A is the area of the wormhole throat. The first term in Eq. (13) represents the

internal energy change of the shell and the second the work by internal forces of the

shell. The dynamical evolution of the wormhole throat is governed by the Lanczos

equations and to close the system we must supply an equation of state p = p(σ) that

relates p and σ. In Section 4 we shall develop this point in a perturbative approach,

while in the Appendix we shall obtain the dynamical evolution of the throat for a

particular equation of state.

3 Characterization of the construction

3.1 Amount of exotic matter

Many authors (see for instance Refs. [9, 10, 21, 22]) have proposed to quantify the

amount of exotic matter as a way to characterize the viability of a traversable worm-

hole. Here we shall analyze the energy conditions and evaluate the total amount of

exotic matter for the wormholes built in Section 2, in the case of static configurations,

i.e., b = b0. In this case, the energy density and pressure are

σ0 = − 1

2πb0

√

1 − a − 2M

b0
, (20)

p0 =
1

4πb0

√

1 − a − 2M

b0
+

M

8πb2
0

1
√

1 − a − 2M
b0

. (21)

The weak energy condition (WEC) states that for any timelike vector Uµ it must be

TµνU
µUν ≥ 0; the WEC also implies, by continuity, the null energy condition (NEC),

which means that for any null vector kµ it mus be Tµνk
µkν ≥ 0 [2]. In an orthonormal

basis the WEC reads ρ ≥ 0, ρ+pl ≥ 0 ∀ l, while the NEC takes the form ρ+pl ≥ 0 ∀ l.

In the case of the wormhole constructed in Section 2 we have that the radial pressure

is zero, pr = 0, and the energy density verifies σ < 0, so that both energy conditions

are violated. The transverse pressure is pt = p and the sign of σ + pt is not fixed by

this conditions, but it depends on the values of the parameters of the system.
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There have been several proposals for quantifying the amount of exotic matter in

wormholes. In order to allow for an immediate comparison with the results of other

works, we shall adopt the most usual choice, which is the integral over space including

the pressure associated to the violation of the energy conditions:

Ω =

∫

(ρ + pr)
√
−g d3x, (22)

where g is the determinant of the metric tensor. The advantages of this quantifier,

compared with others including other measures as
∫

(ρ+pr) d3x or
∫

(ρ+pr)
√

− 3g d3x,

have been carefully discussed in [9]. Besides, this choice is consistent with previous

proposals for covariant conservation laws in General Relativity (see [23]).

We introduce a new radial coordinate R = ±(r − b0) with ± corresponding to

each side of the shell. In our construction the shell does not exert radial pressure,

and the energy density is located on the surface so the energy density can then be

written as ρ = δ(R) σ0. This yields the following formula for the amount of exotic

matter:

Ω =

∫ 2π

0

∫ π

0

∫ +∞

−∞

δ(R) σ0

√
−g dR dθ dϕ = 4πσ0b

2
0. (23)

Replacing the explicit form of σ0 we obtain the exotic matter amount as a function

of the parameters (a, M, b0) that characterize the configurations:

Ω = −2b0

√

1 − a − 2M

b0
. (24)

The amount of exotic matter is thus always smaller than in the Schwarzschild case

a = 0. In Fig. 3 we show Ω/M as a fuction of b0/M for different values of a. Note

that for b0 ≫ M the amount Ω becomes linear in b0: Ω ≃ −2b0

√
1 − a.

A natural question is which conditions allow to reduce Ω. Since Ω ∝ σ0 and

σ0 → 0 as b0 → rhor, we shall investige this limit more carefully. For b0 near the event

horizon rhor, the transverse pressure and the surface density energy behave as

σ0 = − 1

2πrhor

√

f ′(rhor)
√

b0 − rhor + O[(b0 − rhor)
3/2], (25)

p0 =
1

8π

√

f ′(rhor)√
b0 − rhor

+ O[(b0 − rhor)
1/2], (26)

where f
′

(rhor) 6= 0. Then, when we take the limit b0 → rhor the surface energy density

goes to zero but the transerve pressure tends to infinity (see Ref. [22] for a similar

behaviour).
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Figure 3: The exotic matter amount is shown as a function of b0, for given values of
the parameter a.

We can also consider the case when the wormhole radius b0 is fixed and fulfils

b0 ≫ rhor, and the exotic matter amount is taken as a function of the parameter

a ∈ [0, 1). In this case Ω can be reduced by increasing the value of the parameter

a (see Fig. 4), while the energy density and the pressure remain under control (see

Figs. 5 and 6): in this limit we have

p0 ≃
1

4πb0

(√
1 − a +

M

2b0

√
1 − a

)

, (27)

where the second term is kept finite even if a → 1 precisely because the condition b0 ≫
rhor implies M/(2b0

√
1 − a) <

√
1 − a/4. In fact, under these conditions the amount

of exotic matter can be reduced without increasing the pressure, which constitutes a

remarkable feature for a wormhole construction (in the pure Schwarzschild case and

in the same limit b0 ≫ rhor, the amount Ω can only be reduced by reducing b0, which

leads to an increase of the pressure). This is shown in Figs. 5 and 6.

3.2 Traversability

A possible way to define the traversability of a Lorentzian wormhole is to compare the

relative aceleration (proportional to the tidal force) between to parts of a traveller,
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with the magnitude of the Earth surface gravity. We start from the expression of the

four-velocity of a traveller falling towards the throat straight in the radial direction

(that is with zero angular momentum)

Uµ =

(

E

f(r)
,−

√

E2 − f(r), 0, 0

)

, (28)

where E is its energy at infinity (basically its rest mass). Then from the definition

of the geodesic deviation we calculate the covariant relative acceleration between two

parts of the traveller separated by a distance Xr in the radial direction:

DXr

Ds
= Rr

trtX
rU tU t =

−2MEXr

r3(1 − a − 2M/r)
, (29)

where s is the proper time of the traveller. From this expression it can easily be

shown that a choice of the parameters making the wormhole stable (see the next

Section) and also reducing the amount of exotic matter, can render it traversable.

For example, this happens for a = 0.6 and b0 = 104M⊙, which for a length of order

one meter give a tidal acceleration which is about Earth surface gravity.
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Figure 4: The exotic matter amount is shown as a function of a, with a ∈ [0, 0.9998),
for given values of b0.
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Figure 5: For given values of the wormhole radius, the energy density and the pressure
are plotted as functions of the parameter a.

4 Stability analysis

A physically interesting wormhole geometry should last enough so that its traversabil-

ity makes sense. Thus the stability of a given wormhole configuration becomes a cen-

tral aspect of its study. Here we shall analyze the stability under small perturbations

preserving the spherical symmetry of the configuration; for this we shall proceed as

Poisson and Visser in Ref. [11]. As we said, the dynamical evolution is determined

by Eqs. (11) and (12), or by any of them and Eq. (13), and to complete the system

we must add an equation of state that relates p with σ, i.e, p = p(σ). By introducing

the explicit form of the metric in Eq. (11) we have

ḃ2 − 2M

b
− [2πbσ(b)]2 = a − 1. (30)

To obtain σ = σ(b) we first note that the energy conservation equation can be written

as

σ̇ = −2(σ + p)
ḃ

b
(31)

which can be integrated to give

ln
b

b(τ0)
= −1

2

∫ σ

σ(τ0)

dσ

σ + p(σ)
. (32)

From Eq. (26), if the equation of state p = p(σ) is given, one can obtain σ = σ(b).
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Figure 6: For given values of the wormhole radius, the density energy and the pressure
are plotted as functions of the parameter a ∈ [0, 0.9998).

Following the procedure introduced by Poisson and Visser, the analysis of the

stability of the configuration can be reduced to the analogous problem of the stability

of a particle in a one dimensional potential V (b). This is easy to see if we write Eq.

(24) as

ḃ2 = −V (b) (33)

with

V (b) = −2M

b
− [2πbσ(b)]2 + 1 − a. (34)

(We can verify the procedure by setting a = 0 and see that we recover the results

of Ref. [11]). So, to study the stability we expand up to second order the potential

V (b) around the static solution b0 (for which ḃ = 0, b̈ = 0). As we expect, for a stable

configuration it is V (b0) = 0 and V
′

(b0) = 0, where the prime means a derivative

with respect to b. Then, Eq. (27) takes the following form:

ḃ2 = −V
′′

(b0)(b − b0)
2 + O[(b − b0)

3]. (35)

To compute the derivates it is convenient to define the parameter

η(σ) ≡ ∂p

∂σ
, (36)

which for ordinary matter would represent the squared speed of sound: v2
s = η. For

now, however, we simply considerer η as a useful parameter related with the equation
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of state (see below). Then, we obtain the second derivative of the potencial for the

metric (1):

V
′′

(b0) = − 2

b2
0f(b0)

[

(2M/b0)f(b0) + M2/b2
0 + (1 + 2η0)f(b0)(1 − a − 3M/b0)

]

, (37)

where η0 = η(σ0). The wormhole is stable if and only if V
′′

(b0) > 0 while for

V
′′

(b0) < 0 a radial perturbation grows (at least until nonlinear regime is reached)

and the wormhole is unstable. Because the function f(b0) is always positive for

b0 > rhor, we only have to analyze the sign of the bracket in Eq. (31) for determining

which are the values of the parameters M, a, b0 that make the wormhole stable. Then,

after some simple manipulations, the stability conditions can be written as follows:

b0 > 3M/(1 − a) if η0 < −[(1 − a)2 − 3M(1 − a)/b0 + 3M2/b2
0], (38)

b0 < 3M/(1 − a) if η0 > −[(1 − a)2 − 3M(1 − a)/b0 + 3M2/b2
0]. (39)

To get a good insight of the stability regions, we draw the curve V
′′

(b0) = 0 in the

plane (η0, b0/M) for different values of the parameter a (see Fig. 7). We can identify

the regions of stability as follows: In the case of a = 0, for b0/M > 3 the region of

stability lies under the curve, but for b0/M < 3 the stability region is placed above

the curve showed in Fig. 7 (we can also see that when a = 0 we recover the results

by Poisson and Visser). Then, for values of a ∈ [0, 1) the shape of the regions of

stability remains the same of the case a = 0, but their locations are shifted as the

event horizon changes with the parameter a. We find that when a is increased, the

regions of stability, though shifted away, become considerably enlarged.

We observe from these plots that the stability of the wormhole configuration de-

mands that the parameter η0 of the exotic matter at the shell is, when positive,

greater than unity (see, however, the same analysis for a related model in Appendix

B). It is clearly not easy to interprete
√

η0 as a kind of velocity of propagating waves

at the shell. Furthermore, from the regions of stability obtained, we conclude that

traversable wormholes with radii b0 > 3M/(1 − a) could be stable, under pertur-

bations that preserve the spherical symmetry, only if the parameter η0 is negative.

However, it was pointed out by Visser and Poisson that the interpretation of
√

η0

as the speed of sound would require an understanding of the microphysics of exotic

matter, which is not available by now.
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Figure 7: The dependence of the stability regions with the parameter a is shown.

5 Summary

We have built traversable thin-shell wormholes applying the cut and paste procedure

to the geometry corresponding to a spherical cloud of strings. We have found that

the amount of exotic matter –which is restricted to the throat– can be reduced by a

suitable choice of the parameters. Moreover, we have shown that for a fixed wormhole

radius b0 ≫ rhor, there exists a range of values of the parameter a such that, while

the amount of exotic matter can be reduced, the transverse pressure and the surface

energy density can be kept under control. We have also studied the stability of the

configuration under perturbations preserving the spherical symmetry, and we have

found that the stability regions –though shifted away– become enlarged when the

parameter a is increased. Within the characterization of static configurations, we

have considered the traversability of large wormholes by evaluating the tidal force;

we have found that it turns to be acceptable in the case of values of a and b0 such that

the wormhole is stable. Besides, in the Appendix A (see below) we briefly study the

dynamics of the shell beyond the perturbative approach by considering the particular

14



case of the Chaplygin equation of state for the shell matter. Also, the features of a

related wormhole configuration are discussed in the Appendix B.
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Appendix A: Dynamics of the shell

As noted above, it can be proved that there exists a generalized Birkhoff theorem for

the string cloud, so the geometry exhibited in Section 2 is the general solution for the

case of spherical symmetry; in particular, no gravitational waves are emitted. Thus

the time evolution can be obtained from Eqs. (11) and (12) plus an equation of state

relating the energy density and pressure of the exotic matter. Here, we consider the

special case of the Chaplygin gas [25], i.e. a perfect fluid fulfilling

p = −λ

σ
(40)

where λ is a positive constant. A remarkable feature of the Chaplygin gas model is

that it has positive and bounded squared sound velocity: v2
s = ∂p/∂σ = λ/σ2, which

is not trivial for an exotic matter fluid. This model has been applied in cosmological

models because it describes a smooth transition from a deccelerated expansion of the

Universe to the present epoch of cosmic acceleration and because it gives a unified

macroscopic description of dark matter and dark energy [26]. It has been recently

proposed for supporting a class of thin-shell wormholes in Ref. [27]. If we take the
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Figure 8: For a given initial velocity (Ṙ0 = 0) and initial radius (R0 = 3) we show
the relation between the (scaled) proper time T and the wormhole radius in the case
of the Chaplygin equation of state. For large R there is no sensible dependence with
the parameter a while in the case of small R, the evolution exhibits some dependence
with a; here we plot R(T ) for a = 0.2. Note the difference between the two plots in
the scales of both axes.

Eqs. (11) and (12) and replace them in Eq. (34), the equation for the wormhole
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radius b can be written as:

d

dT

(

R
dR

dT

)

= a − 1 +
1

R
+

8π2

l2λ
R2, (41)

where we have defined dimensionless variables R = r/M , T = τ/M and
√

λM =

(lλ)
−1. In order to solve Eq. (35), we define the variable R =

√
y and multiply

this equation by ẏ(T ). So then, after integrating, we obtain a first order differential

equation for the squared velocity:

ẏ2(T ) = ẏ2
0 + 4(a − 1)(y − y0) + 8(

√
y −√

y0) + 32π2l−2
λ (y2 − y2

0). (42)

Now, if we return to the variable R, Eq. (36) can be put in the following integral

form:

∫ T

T0

dt = ±
∫ R

R0

RdR
√

(R0Ṙ0)2 + (a − 1)(R2 − R2
0) + 2(R − R0) + 8π2l−2

λ (R4 − R4
0)

.

(43)

The solution of this integral has a closed expression in terms of elliptic functions of

first and third kind. The general solution is parametrized by a, so for simplicity we

just exhibit a plot of the solution for large R and for small R (see Fig. 8). Of course,

initial conditions are taken such that R0 corresponds to an initial radius greater than

the horizon radius of the original manifold. In the case of large R, this approximation

leads to study the dynamical equation of an anti-oscillator and the solution does not

exhibit a dependence with the parameter a. In the case of small R, the solution has a

smooth dependence with a, and here we have solved the differential equation by Taylor

expanding up to fourth order about the initial radius R0 = 3. As can be seen from

Fig. 8, a monotonic evolution is obtained. Thus, differing from the results obtained

with a linear equation of state (Section 4), within this model no stable configurations

would exist. This seems to be consistent with the results of [27], where it was shown

that in the case of the Chaplygin equation of state, stable configurations required a

non vanishing charge or a cosmological constant, which, compared with the string

cloud, represents a more considerable departure from the pure Schwarzschild metric.
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Appendix B: A related model

An immediate extension of our analysis of Sections 3 and 4 can be performed in the

case of a perfect string fluid (see [24] and the first paper in Ref. [16]). Such a model

includes a non vanishing angular pressure such that the energy-momentum tensor of

the fluid has the form T t
t = T r

r = −αT θ
θ = −αT ϕ

ϕ . As a result of this, for α 6= 2 the

function f in the metric (1) takes the form2

f(r) = 1 − 2M

r
− ǫαL2/α

(α − 2) r2/α
(44)

where L is a positive constant of dimension length, and ǫ = ±1 denotes the sign of the

energy density of the string fluid. Because the calculations are analogous to those

2 4 6 8 10
b0
�������
M

-8

-6

-4

-2

2

4

6

Η0 Α=200 Ε=1 LP
��������
M
=10-38

20 40 60 80 100
b0
�������
M

-3

-2

-1

1

2

3

Η0 Α=1000 Ε=1 LP
��������
M
=10-38

2 4 6 8 10
b0
�������
M

-8

-6

-4

-2

2

4

6

Η0 Α=1 Ε=1 LP
��������
M
=10-38

2 4 6 8 10
b0
�������
M

-8

-6

-4

-2

2

4

6

Η0 Α=100 Ε=1 LP
��������
M
=10-38

Figure 9: The stability regions (black line) and the horizon (dashed line) are shown for
ǫ = 1, L = 10−38M in the case of a perfect string fluid. Four values of the parameter
α are considered. The stability regions are compared with those corresponding to the
cloud of strings with a = 0.6 (gray line).

above, we omit the details and give the results for ǫ = +1 (we want to restric exotic

2We choose α 6= 2 because it allows to reproduce the results of the Schwarzchild–de Sitter and
the Reissner–Nordström thin-shell wormholes in the cases α = −1 and α = 1 respectively (see the
papers by Lobo and Crawford and by Eiroa and Romero, Ref. [15])
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Figure 10: The amount of exotic matter is shown for α > 0, L = 10−38M . We also
show the exotic matter amount for the string cloud (dashed line) with a = 0.6.

matter to the shell) and for L of order 10−38M . We compare the stability regions and

the amount of exotic matter with the case of the string cloud with a = 0.6. As can

be seen from Figs. 9 and 10, while certain values of α allow to reduce the amount

Ω/M with respect to the string cloud case, the regions of stability for low values of

α are shifted towards the horizon and become smaller. However, lower values of the

would be squared speed of sound become compatible with stability; in particular, for

large α a numerical calculation shows that positive values of η0 slightly smaller than

unity are now possible.
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