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Abstract

Motivated by the definition of semi-Nelson algebras, a propositional calculus called
semi-intuitionistic logic with strong negation is introduced and proved to be complete
with respect to that class of algebras. An axiomatic extension is proved to have as
algebraic semantics the class of Nelson algebras.

1 Introduction

There is a well known interplay between the study of varieties of algebras and propositional
calculus of various logics. Prime examples of this are boolean algebras and classical logic,
and Heyting algebras and intuitionistic logic [Fit69]. After the class of Heyting algebras
was generalized to the semi-Heyting algebras by H. Sankappanavar in [San85] and [San0§],
its logic counterpart was developed in [Corll] and further studied in [CV15].

Nelson algebras, or N-lattices were defined by H. Rasiowa [Ras58] to provide an al-
gebraic semantics to the constructive logic with strong negation proposed by Nelson in
[Nel49]. D. Vakarelov in [Vak77] presented a construction of Nelson algebras starting
from Heyting ones. Applying this construction to semi-Heyting algebras, we introduced in
[CV16] the variety of semi-Nelson algebras as a natural generalization of Nelson algebras.
In this variety, the lattice of congruences of an algebra is determined through some of
its deductive systems. Furthermore, the class of semi-Nelson algebras is arithmetical, has
equationally definable principal congruences and has the congruence extension property.

The purpose of this article is to present a Hilbert-style propositional calculus which
is complete with respect to the variety of semi-Nelson algebras. Naming this logic semi-
intuitionistic logic with strong negation was a natural choice. We believe that this logic will
be of interest from the point of view of Many-Valued Logic, since its algebraic semantics
show that it can provide many different interpretations for the implication connective. For
example, on a chain with five elements, ten different semi-Nelson algebras may be defined,
by changing the implication operation.

We present first the algebraic motivation, defining Nelson, semi-Nelson, Heyting and
semi-Heyting algebras. We also show some properties of these algebras which are relevant
for the proof of completeness. In the next section we introduce the axioms and inference
rule for the semi-intuitionistic logic with strong negation, together with some of their
consequences. The proofs of lemmas 3.1 and 3.3 have been omitted here and posted
online [CV17] due to their length. The final section deals with completeness of the logic
with respect to the class of semi-Nelson algebras, and presents an axiomatic extension
that has the variety of Nelson algebras as algebraic semantics.



2 Nelson and semi-Nelson algebras

In this section, we present the algebraic background that motivated our definition of semi-
intuitionistic logic with strong negation, proving along the way some useful results.

Definition 2.1 (see [MM96]) Nelson algebras are algebras A = (A;\,V,—,~, T) that
satisfy the conditions:
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(T ANy) m~zV ~y,

(N1)
(N2)
(N3)
(N4)
(N5) A ~a & (zA ~ 2) A (yV ~ y),
(N6)
(N7)
(N8)

We denote by N the variety of Nelson algebras.

Let us recall that if A = (A;A,V,—,~, T) € N then (A; A, V) is a distributive lattice
with bottom element ~ T and top element T.

Semi-Heyting algebras are a generalization of Heyting algebras introduced by H. Sankap-
panavar in [San85], and they share with Heyting algebras the properties of being pseudo-
complemented, distributive and having their congruences determined by filters. An algebra
A = (A;N,V,—, L, T) is said to be a semi-Heyting algebra if (A; A,V, L, T) is a bounded
lattice, and it satisfies the identities: zA(x — y) =~ Ay, zA(y — 2) = 2A((xAy) = (zA2)),
and x — z &~ T. To define Heyting algebras, all we need to do is to replace the last identity
by (xAy) - y~T.

In [Vak77], D. Vakarelov presented a construction of Nelson algebras from Heyting
algebras. This construction has proven fruitful for the study of Nelson algebras, and in
[CV16] we applied it to semi-Heyting algebras, which motivated the definition of semi-
Nelson algebras.

Definition 2.2 An algebra A = (A; A\, V,—,~, T) of type (2,2,2,1,0) is a semi-Nelson
algebra [CV16] if the following conditions are satisfied:
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(SNT) z =N (y =N 2) ® (T AY) =N 2,
(SNB)
(SN9)
)
)

=Ny =N [y ove) on [ —2) 2N (Y= 2)]l =T,
r=NyY) =N [y =NT) =N [(z—=2) =N (2=2y)]]l~T,

(SN10) (~(x = y)) =N (zA~y) = T,

(
(
(
(A

(SN11 ~y) =N (~(x—y)=T,

where © — N y stands for the term x — (x A y).

Identities (SN1) to (SN5) are the same as (N1) to (N5), and they define Kleene algebras.
We denote with SN the variety of semi Nelson algebras.

The term z —y y = © — (x A y) is quite important for the study of semi-Nelson
algebras. There can be many semi-Nelson implication operations defined over the same
underlying distributive lattice, but all of them will yield the same implication when the
term defining —  is calculated. Furthermore, the algebra with this implication turns out
to be the only Nelson algebra definable over the lattice. In fact, we have the following
theorem:

Theorem 2.3 [CV16, Theorem 2.8] The variety N of Nelson algebras is the subvariety
of SN defined by the identity xt -y ~x —nN y.

Lemma 2.4 Let A = (A;A\,V,—,~, T) be a semi-Nelson algebra and let a,b,c,d € A.
Then the following equations hold:

(aVb) =y c=(a—=nc)A(b—nNc),
(CL —N b) —N ((a —N C) —N (a —N (b/\c))) =T,

(a —N C) —N ((b —N C) —N ((a\/b) —N C)) :T,
ahN ~aAb) =>nyc=T,

)

)

)

)

)

) a—=nb=a—y (aAD),
)

)

i) (ve—=n~a) =oN [(ve—=n~b) on [ve—an~ (aVD)]] =T,
)

(
(bA(~bVe)ANd) >y e=T,
(
(

a—N ) ((b—)N C) —N (a —N C))ZT.

Proof As a direct consequence of Theorem 2.3, the identities (N1)-(N8) are valid in
semi-Nelson algebras when written for the implication — . Similarly, the proofs for (a)
through (e) that appear in [Vig99] can be adapted to this context. Part (f), was proved
in [CV16, Lemma 2.7 (c)]. For the remaining equalities we have:

()
(aN~aAb)—nyc = (aA~a)—n(b—nc) by (N7),
= T by (a).



(h)
(bA(~bVe)ANd) =wye = (bAAAN~D)V (BAdAC)) =N ¢
= [(bAdAN~Db) =N c]A[(bAdAc)—nNc| by part (c),

= TA[bBAdANC) =N ] by (g),
= (bAdANc) =N e
= T by part (b).

(i) (N C—N~ a) —N [(N C—N~ b) —N [N C—N~ (a\/b)]] =

= [(~~o)A(~c—=n~a)AN(~c—n~Db)] =N [~ (aVD)] by (NT7),
= (A (v~ eV ~a)A(~~ eV ~b)] = [~ (aVD)] Dby (N8),
= [(~ &) A (o~ eV (~ A ~ )] =y [~ (0 V D)
= [(~o)A(~~eV(~(aVh))] =n [~ (aVD)]
= T by (h).
() (@—=nb) =N ((b—onc) =N (a—NcC))=
= [(a—=>Nb)A(b—=Nc) =N (a—nNc) by (N7),
= [(a—=nb)A(b—nN c)/\a] -y by (N7),
= Na\/b) (b—)N )/\a]—>Nc by(NS),

(
((~aNa)V(bANa))A(b—=nc)] =N e
[
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= [[(ana)AN(b—=n)]VI[(bAa)A(b—nNc)]] 2N

= [(Na/\a) (b—=nc)] =N A[[(BAa)AN(b—pNc)] —nNc] by (c),

= [(bAa)AN(b—nNc)] =N c by part (g),
= [bAaAN(~bVe)]—nc by (N8),

= [bAan~b)V (bANaAc)] =N c

= [(bAaN~b) =N c]A[(bDANaNc)] =N c by part (c),
= (bAaAc)—nNec by part (g),

3 Semi-intuitionistic logic with strong negation

This section is devoted to define a logic whose algebraic semantics is the variety of semi-
Nelson algebras, and to prove the properties of the propositional calculus that allow us to
prove the completeness result.

A logical language L, as defined in [FJPO03], is a set of connectives, each with a fixed
arity n > 0. For a countably infinite set Var of propositional variables, the formulas of
the logical language L are inductively defined as usual.

A logic, in the language L, is a pair £ = (F'my,, ) where Fimy, is the set of formulas
and F, is a substitution-invariant consequence relation on F'my,. As usual, the set Fmy,
may also be endowed with an algebraic structure, just by regarding the connectives of the
language as operation symbols. The resulting algebra is the algebra of formulas, denoted
by Fmy,. The finitary logic is presented by means of their “Hilbert style” sets of axioms
and inferences rules.

We define semi Intuitionistic logic with strong negation SN over the language L =
{T,~,A,V,—} in terms of the following set of axiom schemata, in which we use the
following definitions:



e o~y fi=a— (aNp),

e a=Bi=(a—yB)A(~ B -y~ a).

(A1) (a =N B) =~ (B—=N ) =N (@ =N 7)),
(A2) (a =N B) =N (@ =N 7) =N (@ =N (BAY))),
(A3) (aAB) =N a,
(Ad) (aAB) =N B
(A5) a =N (aV p)
(46) B —nN (aV B),
(A7) ~(aVp) =Ny~
(A8) ~(aV p) =N~
(A9) (@ =N ) =~ (B =N 7) = ((@VB) =n 7)),
(A10) (~a =N~ B) =N ((~a =y~ 7) 2N (va =y~ (BV 7)),
(All) a = (~~ a)
(A12) (~~ a) = «,
(A13) (a =N B) =N (B —=n ) = [(a =) =N (B =),
(A14) (a =N B) =N [(B =N @) =N [(v = a) =N (v = B)]];
(A15) [(a AB) =N 7] = [a =N (B =N )],
(A16) (~ (e A B)) = (~av ~ p),
(A17) (~aV ~ B) = (~ (a A B)),
(A18) (A (~aVpB)) = (aA(a—n B)),
(A19) (a =N (B =N 7)) = (@A B) =N ),
(A20) (~ (a = B)) =N (@A~ B),
(A21) (aA~ B) =N (~ (a = B)),
(A22) [~ (an((vAa)V (BA@)))] =n [~ (@A (BV )],
(423) T.

The only inference rule is Modus Ponens for the implication — », which we denominate
N-Modus Ponens (N-MP): T'bgpn ¢ and T Fgpnr ¢ —n v yield T Fgar 7.

Lemma 3.1 Let T U{a, 8} C Fmy,. In SN the following properties hold:

(a) IfTFa then'F B =N a,



(b) 'k a—nNa,

(c) fTFa=pthenT'Fa—np and '~ 3 -y~ a,
(d) 'F~a =y~ (a A B),

(e) D'k~ B =N~ (N B),
) Ta,a= B+ B,
(¢) fTFa=p andT'F a then '+ 3,
(h) IfTFa andT'F B then T - a A,
i) TFaAB=aandTFaAp=p,
(J

k) TFa=a,

'ra=avpfadl'Fa= gVa,

(m) Na=pg,0=vFa=7,

n) 'Fa—=y B thenT'EF (yAa) >Ny (YAB) and T F (aANy) =N (BAY),
(o) TFa—=y B thenTF(yVa) =y (yVE) andTF (aVy) =N (BV7),
(p) E(aVp) =N (BVa),

(@) T'E(aAB) =N (BAa),

(r) Ta=BF(aVy)=(6V7Y),

(s) Ta=BE(Va)= (yVH),

(t) Ta=B,y=tF(aVy)=(BV),

)
)
)
)
)
)
)
)
)
)
) IfTFa=pLandT'F =~ thenT'Fa=~,
)
)
)
)
)
)
)
)
w) I 6= ak (~a)=(~f),
) T

(
( F(~(a—=B) =N (~ (a =N B)).

Theorem 3.2 (Deduction Theorem) Let I' U {a, B} C Fmy,. Then

\%

I'Fa—=pypBifand only if I'ya k- S
Proof For one implication we have:
1. I' H o — B by hypothesis.
2. at a—y .
3. I'at a.
4. T, at B by (N-MP) applied to 2 and 3.

For the other one, assume that I',a = 5. We prove the result by induction on the lenght
of the proof of I', o - .



elf - 3or f € T'thenI' - . By Lemma 3.1 (a) we have that - a —x £.
Consequently, I' F a —n .

e If 5 =, using Lemma 3.1 (b), 'F o —xn .

e If B comes from applying the inference rule then there exist v € F'my, such that
NakF~yand I'ya v —xn . Then

'k a—yN (v =~ B) by inductive hypothesis.

I' - o —n v by inductive hypothesis.

'Fla—=n(y =N~ B)] = [(aAy) =N 5] by axiom (A19).

I'Ella =y (v =5 B)] = (@A) =~ Bl] =~ [l =8 (v =N B)] =N
[(a A7) =N S]] by axiom (A3).

I'kla—=n (v =N~ B)] =~ (@A) =N 5] by (N-MP) applied to 3 and 4.
'k (aAvy) —=n B by (N-MP) applied to 1 and 5.

'+ a —-n a by Lemma 3.1 (b).

I'F(a—=nya) =y [(a—=n7) =N (@ =N (@ Ay))] by axiom (A2).

'k (a—=n7v) =~ (@ =N (@A) by (N-MP) applied to 7 and 8.

10. TFa =y (e Ay) by (M-MP) applied to 2 and 9.

11. TF (a =N (@A) =N [[(a Ay) =N B] =~ [ =~ B]] by axiom (Al).
12. TF[(aAy) =n B] =n [a@ =N B] by (N-MP) applied to 10 and 11.

13. T F a —y B by (N-MP) applied to 6 and 12.

Ll S

© N> o

We use a <> [ as an abbreviation for the formula (o —x 8) A (8 =N ).

Lemma 3.3 Let T U{a, 8} C Fmy,. In SN the following properties hold:
(a) T'F(~an~B) <y~ (aVP),
(b) T (aA(a—=nB)) = (aA(~aVp)),

c) IfTFa+ny B thenl'F B <N a,

)
)
(c)
(d) TFa= (aA(aVp)),
() THlaA[(yAa)V(BAa)] = [an(BV9)],
(f) TE(@n(@BVy))=lan((yAa)V(BAa)),
(g) T
(h)
)
)
)
)

F(~B =N~ a) N ((vy =N~ a) 2n (2 (BAY) 2N~ @),
IfTFa=BandlTFa=~vthenl'Fa= Ay andFa=~vAp,
(i) fTFa= B thenTFa= (BVy) andT Fa= (yV ),

(J
(k) T,a=BF(any) = (BAY),
) Da=pE(yAa)= (yAB),

IfTFa=pBthenl'FaAny=FBandTFyANa= 05,



(m) Tya = B,y =tk (any) = (BA1),

(n) Tk [~ (@ =y B)] =N (@A ~ B),

(0) Tk (aA ~a) =N B,

(p) T'F (A ~a) = (BY ~ B),

(@ T'F(a—=nB) =N [(Bona) =N [(~(B—=7) 2~ (~ (=)

(r) T'E(~a—=n~B) =N [(~ B =N~ a) =N [(~ (v = @) = (~ (v = B))]],
s) TFa=p8=av=tt=>vF(a—=7y) = (=1,

(t) TakF 8= a,

(W) T'F(a—B) =N (@ =N P).

4 Completeness

In this section we prove the completeness of the semi-intuitionistic logic with strong nega-
tion with respect to semi-Nelson algebras. Then we show an axiomatic extension equivalent
to the intuitionistic logic with strong negation N associated to Nelson algebras. We prove
the completeness result by showing that SA is an implicative logic and then proving that
the corresponding class of algebras Alg*SN coincides with SN.

Definition 4.1 [Ras7j] Let L be a logic in a language with a binary connective —, either
primitive or defined by a term in exactly two variables. Then L is called an implicative
logic with respect to the binary connective — if the following conditions are satisfied:

(IL1) Fr o — a.
(IL2) a = 6,8 =y Fca— 7.

(IL3) For each connective f in the language of arity n > 0,

{ al%ﬁl’.”’anﬁﬂn }}_Ef(alw")an)_>f(61"”7/8n)'

B1— at,...,Bn — ap
(IL4) o, — B g S.
(IL5) atr 8 — «a.

Theorem 4.2 SN is implicative with respect to the connective = .

Proof Condition (IL1) follows from Lemma 3.1 (k). By Lemma 3.1 (m), (IL2) holds. To
see that condition (IL3) is satisfied, we use Lemma 3.3 (m) for the connective A, Lemma
3.1 (t) for Vv, Lemma 3.3 (s) for the implication —, and Lemma 3.1 (u) for ~. Condition
(IL4) holds by Lemma (3.1) (f). Finally (IL5) obtains from Lemma 3.3 (t). O

Definition 4.3 [Ras74, Definition 6, page 181] Let L be an implicative logic on the lan-
guage L. An L-algebra is an algebra A of similarity type L that has an element T with
the following properties:



(LALG1) For all T U {¢} C Fmy, and all h € Hom(Fmy,A), if I' Fz ¢ and
hI' C{T} then h¢ = T, where hI' = {hy : v € T'}.

(LALG2) For alla,be A, ifa—b=T andb—a=T thena=>.
The class of L-algebras is denoted by Alg*L.

Since SN is an implicative logic with respect to the binary connective =, we have the
next result using [Ras74, Theorem 7.1, pag 222].

Theorem 4.4 The logic SN is complete with respect to the class Alg*SN'. In other words,
for allT U{¢} C Fmy,

I'Fsa @ if and only if hI' C {T} implies h¢p = T,
for all h € Hom(Fmy,, A) and all A € Alg*SN.
Theorem 4.5 Alg*SN C SN.

Proof Let A € Alg*SN. By Lemma 3.1 (i), we have that I' F (A (aV 8)) = a whenever
I' € Fmy,. So, from Lemma 3.3 parts (d), (e) and (f), A satisfies the identities (SN1) and
(SN2).

By the axioms (A11) - (A12) and (A16) - (A17), the identities (SN3) and (SN4) hold
as well.

To prove that the identity (SN5) is valid in A we use the following deduction:
1. T'F (aA ~ a) = (aA ~ a) by Lemma 3.1 (k).
2. T'F (aAN ~a) = (BV ~ ) by Lemma 3.3 (p).
3. TH( = [(aA ~ a) A (BV ~ B)] by Lemma 3.3 (h).
4. T'+ [(a a) A (BV ~ B)] = (aA ~ «) by Lemma 3.1 (i).

an )

Then applying (LALG2) to 3 and 4 above, the identity follows.
From 3.3 (b) and axioms (A18), (A15) and (A19), respectively, identities (SN6) and

(SN7) hold.
Finally, the identities (SN8), (SN9), (SN10) and (SN11) hold as a consequence of
axioms (A13), (A14), (A20) and (A21). O

Theorem 4.6 Let A be a semi-Nelson algebra. Then A satisfies the conditions (LALG1)
and (LALGZ2) with respect to the implication =.

Proof Let a,b € A be such that @ = b=0b = a = T. By Lemma 2.4 (b), a = b, so A
satisfies (LALG2).

Let T U{¢} C Fmy, and h € Hom(Fmy,, A) be such that I' -z ¢ and hI' C {T}. We
shall prove that h(¢) = T by induction on the proof of I -, ¢. We consider the following
cases:

e If €I, then h(¢) = T by hypothesis.
e If there exists @ € Fmy, such that I' -z a and I" 2 a — N ¢ then, by inductive
hypothesis, h(a) = h(aw —=n ¢) = T. Therefore, T = h(a) A h(av =N ¢) = h(a A

(@ =N 0)) = h(an(~ ave)) = h(a) Al(~ Ma) VA(@)] = TA[(~ T)VA($)] = h(9),
using (SNG).



e Assume that ¢ is an axiom of SN.

If ¢ is (A1) or (A2), then by Lemma 2.4 (j) or Lemma 2.4 (d), respectively, the
result holds.

If ¢ is one of the axioms (A3) to (A8) then clearly h(¢) = T by Lemma 2.4 (b).
Lemmas 2.4 (e) and 2.4 (i) prove the result for axioms (A9) and (A10).

In any of the other cases, it is enough to consider the corresponding identity from
the definition of the class SN and Lemma 2.4 (b).

d

Now we can conclude the main result:
Theorem 4.7 The logic SN is complete with respect to the class SN.

Proof From theorems 4.2 and 4.4 it follows that Alg*SN = SN. Therefore, by Theorem

4.4, SN is complete with respect to the class of semi-Nelson algebras. O
Since adding the identity * — y =  —xn y to the definition of semi-Nelson algebras

yields a characterization of Nelson algebras, we can carry this result to the logic SN.

Theorem 4.8 The logic N', which is SN together with the azioms:
(A24) (a =N B) =N (a— B),
(A25) ~ (a =N B) =N~ (a — B),

has the variety of Nelson algebras as its algebraic semantis.

Proof By Theorem 4.7, it will be enough to show that both (¢« — ) = (o —n ) and
(¢ =N B) = (o — ) are theorems of N. The first one follows from Lemma 3.3 (u) and
(A25), while the second one comes from (A424) and Lemma 3.1 (v).

Thus Alg*\ is a subvariety of Alg*SN = SN in which x — y ~ x —y y holds.
Therefore, by Theorem 2.3, Alg*A/ = N. O
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