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Abstract

An h-adaptive mesh procedure to solve the reaction—diffusion problem for multiple reactions in catalytic pellets presenting
strong diffusion limitations is developed. The discretization approach selected for this purpose is based on an integral formulation
of the conservation equations. The adaptive mesh procedure relies on estimating the error of local reaction rate evaluations. By
adding or removing nodes the errors will eventually become bounded within pre-set limits. The algorithm is tried on some test
cases derived from the liquid phase catalytic hydrogenation of butadiene and butyne in butene (1, 2-cis and 2-trans) rich
hydrocarbon mixtures. © 2001 Elsevier Science Ltd. All rights reserved.
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Nomenclature

A cross-section area (m?)

Bi, Biot number of key-species k

Cy molar concentration of species k (kmol m ~?)

Cr total molar concentration (kmol m ~—3)

D, effective diffusivity of species k (m? s~ !)

d vector of residuals of Egs. (11a), (11b) and (11¢) (kmol m~—3 s~ 1)
E, parameter for controlling precision in reaction rate evaluation
E- parameter for controlling convergence, Eq. (20)

H, vector of variables defined in Eq. (17) (kmol m—2 s 1)

K adsorption constant

L length of catalyst slab (m)

N number of subintervals

NGM number of grid modifications

NI number of iterations

NK number of key species

0, =D,(C,—C,)/L* modiﬁed concentration for non-key species p (kmol m =3 s~ 1)
R average net consumption rate (kmol m =3 s~ 1)

r reaction rate or net consumption rate (kmol m =3 s~ 1)

U, vector of variables defined in Eq. (17) (kmol m—2 s 1)
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X molar fraction
Y, = D,(C, — C,.p)/L? modified concentration for key species k& (kmol m 3 s~ 1)
z dimensionless coordinate inside the pellet

Greek letters

(0] Thiele modulus
o matrix of stoichiometric coefficients
K kinetic coefficient (s~ ')

1. Introduction

Average reaction rates of catalytic reaction networks
in pellets with diffusion limitations should be normally
evaluated by employing a numerical procedure. Excep-
tions are linear kinetics and some specific networks and
kinetics for which analytical approximations have been
developed (Gonzo, Gottifredi and Romero, 1998; Got-
tifredi, Gonzo and Froment, 1994). The general case
needing a numerical procedure is undertaken here.

Choosing an efficient numerical procedure to solve
the reaction—diffusion problem can become critical,
when simulating chemical reactors with the following
features:

1. The diffusion limitation is strong and location of
fast reaction zones inside the catalyst pellet can not
be easily foreseen.

2. The number of stoichiometrically independent reac-
tions is large.

3. The evaluation of the average reaction rates should
be carried out many times to fulfil the objective of
simulation.

Point (1) introduces the need of using a rather fine
mesh for the discretization of the conservation
equations.

Point (2) refers to the fact that reaction rate evalua-
tions proportionally increase with the number of con-
servation equations (NK), and the operations to solve
the linear systems resulting from a Newton-like method
to conduct the iterative process increases as NK?>.

Regarding point (3), reactor simulation will introduce
the need of evaluating average reaction rates in a
number of spatial locations and/or time steps, some-
times in iterative way. If, additionally, the reactor oper-
ation should be simulated repeatedly, as for optimizing
operating conditions (and/or design variables), average
reaction rates will have to be evaluated many thousands
(or higher orders) of times before reaching the final
objective.

The three points operate as multiplication factors in
defining the overall computational effort.

Another case involving optimization is when an in-
trinsic kinetic model should be developed from experi-

mental data. Frequently, the experiments can be made
with a catalyst sample ground into a particle size small
enough to avoid transport effects. However, for dealing
with non-uniform commercial catalysts, e.g., of the
egg-shell type (Krishsna and Sie, 1994), grinding may
not be practical. A reasonable alternative in these cases
is to test the full size particles and analyse the data with
a model introducing the diffusion effects.

A number of works dealing with the numerical solu-
tion of the reaction—diffusion problem for multiple
catalytic reactions have been reported in the literature
(Schilson and Amundson, 1961; Wohlfahrt and Hof-
mann, 1979; Wendt, Martinez, Lilley and Corley, 1979;
Kaza and Jackson, 1980; Kaza, Villadsen and Jackson,
1980; Abashar and Elnashaie, 1993). Most of them
have been employed for cases with moderate transport
limitations. An exception is the work by Abashar and
Elnashaie (1993) who studied methane reforming at
conditions leading to very small effectiveness factors.
They applied successfully a global orthogonal colloca-
tion method with collocation points shifted toward the
pellet surface. This approach will be effective, when the
fastest reactions take effectively place in a region close
to the surface. However, when reactive species compete
for adsorption sites, the fastest reactions can occur far
from the pellet surface, if the more easily adsorbable
species react less rapidly.

The aim of this paper is to present an algorithm to
solve the reaction—diffusion problem by employing an
automatic adaptive procedure for the grid of nodes at
which reaction rates are evaluated. The algorithm has
been conceived for multiple reactions and strong diffu-
sion limitation, particularly when the location of fast
reaction zones can not be easily foreseen.

The discretization approach selected for this purpose
is based on the integral formulation of the conservation
equations. The reasons for this choice will be given.

It is assumed in this contribution that Fick law can
be used to describe the flow inside the catalyst. It will
be outlined, however, how the algorithm can be ex-
tended to other more complex models of transport in
porous media. It should be noted that no provision is
made for the possible existence of multiple steady
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states. As a consequence, a practical limitation for the
use of the algorithm exists for conditions leading to
multiplicity, either because of strong non-isothermal
effects or because of the structure of some kinetic
expressions (i.e. negative order reaction rates).

After presenting the different aspects of the proposed
algorithm, some examples derived from the hydrogena-
tion of unsaturated C, species on Pd catalysts will be
employed as test cases.

2. Integral formulation

Consider NK key species reacting and diffusing
within a pellet of length L. Assuming constant effective
diffusivities {D,}}%,, we define modified concentra-
tions Y, = D,(C, — C,z)/L?, where {C,}R®, are molar
concentrations and the suffix F stands for values in the
bulk fluid. The conservation equations can be written in
vectorial notation as

d dyY
dz<A (Z)dz> —A@) . M
where Y =[Y, %,, r=[rYX, is the vector of net

consumption rates and A(z) is the cross-section area.
Boundary conditions for Eq. (1) are assumed of the

type

dY

E = 0, z= 0, (23)
Y

&Y _ v, s-1, (2b)
dz

where Bi is the diagonal matrix of Biot numbers,
[Bi,]X¥,. Eq. (1) is integrated between z=0 and a
generic position z = z’, considering r as a non-homoge-
neous term r(z). Taking into account Eq. (2a), there
results

dY
dz’

Eq. (3) is now integrated from z' =0 to z’ = z,. After
expressing the resulting integral by parts,

=A(z")~ IJ:’A (z)r(z) dz. 3)

Y(z,) — Y(0) = P(z)) J CAG) () dz

- JZ’P(Z)A ) r(z) dz, @)

where,

dz
P(z) = |—.
) f 5 5)
For a catalyst slab, A(z) is constant and P(z) can be
taken as P(z) =z/A. For cylindrical and spherical ge-
ometry P(z) will be proportional to In(z) and (z)~
respectively. The formulation is completed by consider-

ing Eq. (3) at z’ =1, along with the boundary condition
Eq. (2b):

dY
(@)

Egs. (4-6) can also be obtained from the Green
function (Weinberger, 1967) for Egs. (1), (2a) and (2b).

From now on, we will continue dealing specifically
with a catalytic slab. Nonetheless, the treatment holds
in every aspect for cylindrical or spherical geometry.
Eq. (4) and Eq. (6) become for a slab

= —BiY(1)=A(1)~ IJIA(Z)r(Z)dz. (6)

z=1 0

YE) - YO =2, f :

0

T(z) dz — j " x() d, (Ta)

1

— BiY(1) = J 1(z) dz. (7b)

0

3. Discretization of the integral formulation

The integrals in Eqgs. (7a) and (7b) should be dis-
cretized for computational purposes. A possible way to
do this is by defining trial functions for Y(z), from
which r =r(Y) can be integrated by a numerical proce-
dure, in account of the general case considering non-
linear rate expressions. Instead, we will employ trial
function for r(z), as analytical evaluation of the inte-
grals in Egs. (7a) and (7b) is always possible, when
conventional trial functions (i.e. polynomials) are
chosen.

Given a set of nodes {z;}¥ , (z,=0, zy=1), we
consider the contribution to the integrals in Egs. (7a)
and (7b) of a generic subinterval (z;_;, z;). Local
interpolating function for r(z) of different degree can
be formulated. The simplest approximation is a linear
interpolating function on the subinterval end nodes
z; 1, z; Quadratic approximations can be obtained in
at least two ways. One of them, termed here Back
Approximation, interpolates between nodes z; ,, z;
and z; (the node previous to the subinterval is included),
and the Forward Approximation uses z; |, z; and z;, |
(the node next to the subinterval is 1ncluded) Finally,
the cubic approximation is based on the four men-
tioned nodes, z; », z;_;, z; and z;, ,

The formulation for the cubic approximation will be
described next. The contributions

R, = J 7 H2) dz, (8a)
Zi—1

W, = J 2 1(z) dz, (8b)
Zj—1

can be expressed for j=2,..., N—1 as

Ri=vi o, ,+of 1, +o)r+0f 1, (9a)

— A4 L
W=wlor ,4+wix +w’r+wlr,, (Ob)
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where the weighting coefficients v} and w} arise from
integrating the Lagrange interpolating polynomials on
(z,_1, z;). The suffix j of r denotes evaluation at node z;.

A special formulation should be employed for the
first subinterval (0, z,) and for the last one (z5_, zy).
The former is constructed with the first three nodes plus
the symmetry condition dr/dz=0 at z=0, and the
latter is constructed by interpolating on the nodes
ZN_3s Zn—2s Zn_1> Zn- Thus,

R = vy + vi'r; + v3Ts, (10a)
W, =whry+ wir, + wir,, (10b)

_ N A L M
Ry=vxn_sty_ 3+ 0N _ody_ 2+ 0n_Fn_1+ VNN,

(10¢)

Wy=wl_ory s+wih iy o +wh _xy_ i+ wir,.
(10d)
With Egs. (9a) and (9b) and Egs. (10a), (10b), (10c)

and (10d), we now write sequentially Eq. (7b) and Eq.
(7a) fori=N—1, N=2,..., 1, N:

BiYy +oN_sry_ 3+ Z aer,—{- ZAr 0, (l1la)
j=N-—1
i+ 1 i—1

Yi_Y0+ Z (bij Z; al /)r + Z(B j)rjzo;
Jj=i—1 j=0
i=N-—1,..., 1, (11b)
N
Yy—Yo+ Wy s—vN_ )y s+ Z (bN,j_aN,j)rj
J=N-1

N—2

+ 2 (B;—A)r;=0, (11¢)
i=0

where the weighting coefficients have been assembled
into two groups. The values 4, and B, gathered all
contributions of a nodal value r; except those of ry_;
for the last subinterval (vy 5 and wy ). For 4,

Ay=vf b ol ol =0 N2, (122)

which is formally valid for all j=0,..., N — 2 by assign-
ing v} =vl =vl=0.
The remaining coefficients depend on each specific

equation:

a1 =—vi", (i=1.., N=1)
Avy_1=Vn_1+UN_1+Vv5_1, (12b)

ag;=vM+of (i=1,.., N); a,, =0,
(i=1,.,N-=1). (12¢)

Similar definitions as those in Egs. (12a), (12b) and
(12¢) hold for coefficients B;, b; ; with respect to w.

The linear and quadratic approximations can be
similarly formulated. In particular, for the Back Ap-
proximations, the formulation given above formally
holds by dropping the weighting coefficients
v, WiUN W s

4. Iterative solution by Newton method

A successive substitution scheme based on Egs. (11a),
(11b) and (11c) can be easily implemented by starting
with trying nodal values Yy, evaluating r;=r(Yy) and
using Egs. (11a), (11b) and (11c¢) in the sequence (a,c,b)
to explicitly evaluate a new set Y, Unfortunately, this
procedure only converges for weak diffusion effects.
Giona and Baratti (1993) carried out a numerical and
functional analysis on this subject.

We will formulate here the Newton method to
solve the equation set Eqs. (11a), (11b) and (1lc).
To do this, it should be recalled first that reaction
rates would depend, in general, on the concentration of
all reactants. Assuming that NP non-key species
should be considered, and defining for them the
vector of modified concentrations Q =[Q,]%,, 0, =
D,(C,— C,)/L? the reaction stoichiometry allows
writing in vectorial notation for any position inside the
pellet

Q=0Y+0*Yy,, (13a)
where the nodal notation Y,=Y(l) is used, o=
[0, %2 is the matrix of stoichiometric coefficients
and the coefficients of the matrix ¢* = [o%, NP2\ are
0= 0,4 (Bi,/Bi, —1). (13b)

Temperature variations can also be accounted for by
considering that one of the component of Q, say Oyp,
is defined as Qnp=A7(T— Ty)/L? where A, is the
effective thermal conductivity assumed as being a con-
stant. The ‘‘stoichiometric coefficients” oy, Wwill be
suitably defined heats of reaction.

Considering now the dependency r=r(Y,Q), for
Newton method, we should linearize each nodal value r;
around the trial value Y7, but according to Eq. (13a)
also Y§ should be included. We will neglect here this
last contribution, what will be valid for high Biot
numbers (Y3, — 0) or when the ratios Bi,/Bi, (Eq. (13b))
do not depart much from the unity. Cases in which this
assumption can not be valid, particularly when dealing
with thermal effects, will be discussed in the Appendix
A.

Defining the matrix ¢ = 0r/0Y + (6r/6Q)0 with the
derivative matrices Or/0Y =[0r,/0Y,, Jtm—, and Or/
0Q = [0r, /00,152, the linear expansion of r; around
Y{ is written,

r,=r1;+ @AY, (14)

where AY,;=Y,—Y; are the Newton increments and
both, ry and ¢, are evaluated at Y; and, from Eq.
(13a), Q¢ = o ¥; + o*Yy.

Once Eq. (14) is inserted in Egs. (11a), (11b) and
(11c¢), a linear set of equations arises for the increments
AY,
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A simplification to improve the structure of the linear
set of equations is made by avoiding the expansion of
r;,; in Egs. (11b) and (11c) and that of ry_5 in the
terms affected by v¥_5 and w) _; in Eq. (11a) and Eq.
(11c) (i.e. taking v, =719,,, Iry_3=T1%_3). As the
contribution of an individual nodal value r; to a given
equation is relatively small (given the structure of the
integral formulation, Egs. (7a) and (7b)), it can be
reasonably expected that this simplification will not
bring any consequence on the stabilization of the itera-
tive sequence. We found that this is effectively the case
in practice. Only the increase of a unit in the number of
iterations was occasionally noticed. The following set of
equations arises,

anAY y+ ByAY 1+ Uy _r = —d}, (15a)
i=N-—1,..,1

0 AY; —zU;,_ +H;_ + fAY, . — AYy= —d7;
U_1—v_190,AY,_1 —U;,_,=0;
H,_,—w_10;,_1AY,_,—H,_,=0;

(15b)

2 AY v+ foAY Ny —Uy_»+Hy_, —AY,= —d3.
(15¢)

In Egs. (15a), (15b) and (15¢) d¢ are the residuals
of Egs. (11a), (11b) and (llc) evaluated with Yj.
The matrices in Egs. (15a), (15b) and (15c) are defined
as:

oy =Bi+ aAn NP N> Py= Ay N 1PN —15

o =1+ (bf,i —Z;4;;) ;s pi= (bi,i— 1= ZiG )P
i=1..., N=1D,o=1+ (bN,N_ aN,N)(PN,
[))OZ(bN,Nfl _aN,Nfl)(/)Nfln (16)

where I denotes the identity matrix. The vector vari-
ables U,, H; are defined by U_, =0, H_, =0,

U= Y 40,AY; H,=Y BpAY, (i=0,.,N-2),
=0 j=0
J J (17)

as can be checked by applying recursively Eq. (15b).
The variables U,, H; are introduced in the system Egs.
(15a), (15b) and (15c¢) as additional unknowns to reduce
the numerical cost of solving the linear set of equations.
To appreciate this effect, Eqs. (15a), (15b) and (15c¢)
can be written as

J[AYNDAYN — laUN — ZaHN — 29AYN — 20 'aU09HO’AYO]T
= - [dON’d?V— 17070;- . '7d8]Ta (183)

where the structure of the Jacobian matrix J can be
visualised in Eq. (18b), for N =4.

AY, AY; U, H, AY, U, H; AY, U, H, AY,

[a, By | 0
a; —z3l 1 B3 -1
I 0 -Ayp, -1 0
1 -B,0, 0 -1 0
o, —z,1 1 B2 -1
J= I 0 -Ag -l 0
1 -Bg, 0 -1 0
o -zl 1 B -1
I 0 -Agp
I =Bygg
ag By -1 1 -1 |
(18b)

To transform J to an upper triangular matrix, the
blocks {«;}Y_, are first reduced and the left blocks in
the bottom rows are eliminated afterwards. When per-
forming these operations, the regular occurrence of
identity matrices and null blocks should be properly
considered. The number of multiplications (NMLS) for
solving Eq. (18a) is proportional to N and the domi-
nant term, regarding NK, is (4N x NK?®), which indi-
cates the strong effect of the reaction network size.
When NK =1, only the reduction of the last row of J
should be carried out. The total NMLS and divisions to
evaluate the unknowns in this case is exactly (11N —5).

The addition of de U,, H; as unknowns allows the
banded structure of J (with the exception of the bottom
block row and the rightmost block column). Instead, if
U,, H, are replaced in Eqgs. (15a), (15b) and (15¢) in
terms of AY; (from Eq. (17)) a matrix with blocks in
every position above the main diagonal arises, which
substantially increases the number of operations for
solving the linear system in spite of the lower number
of unknowns.

The application of Newton method for the linear and
quadratic approximations leads to linear systems for-
mally identical to that defined by Egs. (15a), (15b) and
(15¢).

When Bi— o0, Y, =0, and Eq. (11a) and Eq. (15a)
are eliminated from the previous formulation.

Two further details have been considered in imple-
menting the Newton iterations.

When a fast irreversible reaction depletes a limiting
species in a short distance from the catalyst surface, a
coarser mesh can be employed for the rest of the
particle, as arisen from the adaptive procedure de-
scribed later. The nodal concentration of the almost
extinguished species may follow a damped oscillatory
pattern around zero for the coarse part of the grid,
provided that the reaction rate gets negative values for
negative concentrations of the limiting species. Many
kinetic expressions do not satisfy this requirement, as
kinetics of fractional order, which do not admit nega-
tive values. To avoid difficulties, the individual values
C,., are kept bounded by a low value (10~ proved to
be effective) if the value from the Newton method is
negative. Other alternatives can also be convenient, as
replacing factors of the type C” by C |C|'~".



1190 S.P. Bressa et al. / Computers and Chemical Engineering 25 (2001) 1185-1198

Far from the solution, the Newton method may
produce too large increments. A step-length parameter
0 <2< 1 is then introduced to evaluate the new set of
variables,

Y, = Y9+ AY, (19)

The performance index G,=d,d{ defined by the
residual of Eq. (11¢) is employed to evaluate 4. With Y;
calculated from Eq. (19), there results G, = Gy(4). The
sequence A =(2/3)" with n=0,1,..., nysx is tried and
checked if Gy(4) < Gy(0). If this happens before n=
nyax, the current value of A is adopted. If not, the
value of A defined with n=ny,x is adopted and the
iteration step finished. The value ny,x =2 was always
found adequate.

Alternatively, a more refined procedure based on the
fact that the direction defined by the Newton incre-
ments is a descent direction for a performance index
G=2XN ,d.d] can be employed to find the best 1 by a
line search (Press, Teukolsky, Vetterling and Flannery,
1992).

Finally, we recall the criterion employed to stop the
Newton iterations. Convergence is assumed when for
all indices k, j the difference between calculated and
trial values satisfies

| Yka j Y/i, j| < EC Yk,max) (20)

where Ec is a given tolerance (i.e. in the range 10~ °—
10~%) and Y ., is the maximum nodal value.

5. Comparison with other numerical methods

Since the integral formulation has not been exten-
sively employed in solving diffusion problems in cata-
lysts, it is useful to make some remarks on the
motivation for its choice as a basis for an i-adaptive
mesh procedure (changing the position and number of
nodes, while maintaining fixed the order of
approximation).

The case of a single reaction and equidistant nodes
will be considered here to analyse the basic properties
of the different approximations presented in previous
section and of other well known numerical methods.

A test condition is defined by a linear expression
r=xC, a Thiele modulus ® = L(x/D)*> =10, Bi—

Table 1

and a precision of 0.01% in estimating the average
reaction rate R = for dz. This level of precision will be
satisfactory for most applications and it will be taken as
a target level throughout this contribution.

The number of equally sized subintervals N needed
by the three approximations described before (linear,
quadratic and cubic) is given in Table 1. The number of
reaction rate evaluations is NRRE = N + 1. Also, the
NMLS needed to solve the linear systems is given. A
standard finite difference (FD) algorithm and two finite
element methods (BEM 1D, SOC), which will be defined
below, are also included.

The linear approximation is definitely inefficient as
judged by the needed value of N. Neither the quadratic
Back Approximation seems to be justified in compari-
son with the cubic one. However, the quadratic approx-
imations will be useful in the adaptive mesh procedure
described later on.

The FD method requires the same number of nodes
as the linear approximation. A lower value of NMLS
results, however, as the triangular matrix in this case
only demands NMLS = 4N multiplications.

The numerical method indicated as BEMI1D is the
code presented by Ramachandran (1994). It also em-
ploys an integral formulation, but on an element basis.
Each end-point of an element provides concentration
and its derivative as unknowns. A third-degree osculat-
ing polynomial (i.e. an approximation with cubic Her-
mite polynomials as shape functions) is used for the
local concentration profile, from which integral contri-
butions (those defined by Eqgs. (8a) and (8b)) are evalu-
ated by Gauss—Legendre quadrature for non-linear
kinetics. Although the code BEMI1D employs 10-point
quadrature, it is most probably that 3 or 4 quadrature
points will suffice in most cases. The number of reac-
tion rate evaluations given in Table 1 corresponds to 3
quadrature points (NRRE = 3NE).

In BEMI1D, the jacobian matrix J for the Newton
increments has a pentadiagonal structure, demanding
for its solution NMLS = 14 x NE — 2.

SOC in Table 1 is Spline Orthogonal Collocation
(Villadsen and Michelsen, 1978), which is also known
as Orthogonal Collocation on finite elements. A local
cubic approximation for C requiring two internal collo-
cation points per element (NRRE =2 x NE) was used.
As regards the linear system for Newton method, cubic

Number of subintervals (N) or elements (NE), reaction rate evaluations (NRRE), and multiplications for solving linear systems (NMLS)
demanded by different methods to reach a precision of 0.01% in evaluating R for linear kinetics (@ = 10)

Method Linear Quadratic (Back) Cubic FD BEMID SOC

N (or NE) 200 55 22 200 16 (NE) 19 (NE)
NRRE 201 56 23 200 48 38
NMLS 1800 600 237 800 222 264
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SOC using Hermite polynomial as shape functions leads
to the same structure as BEM1D (NMLS = 14 x NE —
2).

By comparing the cubic approximation presented
above with the other two cubic finite element method
(BEM1D, SOCQ), it can be appreciated that the former
saves a considerable amount of reaction rate evaluations.
This fact can be explained as follows. If a subinterval
(z;_ 1, z;) is assimilated to an element, the present cubic
approximation is built from the values at the ends of the
element and at the two adjacent nodes, thus conforming
a set of overlapping polynomials. Instead, the finite
element methods BEM1D and SOC use a cubic approx-
imation locally built from values and first derivatives at
the ends of each element. This kind of approximation is
expected to be more accurate, but needs doubling the
number of unknowns. As an overall result, BEM1D and
SOC effectively need slightly fewer elements, but more
reaction rate evaluations.

The values of NMLS for the three cubic methods do
not show significant differences between them. However,
assuming that the values of N and NE remain the same
for a given multiple reaction problem (NK reactions),
NMLS will change with respect to the single reaction
case. Thus, for the present cubic approximation the
highest order term (NK?) of NMLS is (4N)NK?, while
for BEMID and SOC it is (8 x NE)NK®. From the
values of N and NE in Table 1, we can appreciate that
the cubic integral formulation will save a significant
number of operations for a value of NK higher than 3
or 4, from which NMLS starts to be neatly dominated
by the term in NK3.

The results for other kinetic expressions show
an increasing trend of N (or NE) with the order
of reaction <y (r=xC7%. For instance, at
®=L./x(y+ 1)C}'/(2D) = 10, the values for y = (0.5,
1, 2) are NRRE = (12, 23, 33) for the cubic approxima-
tion and NRRE = (28, 38, 48) for SOC. Although, the
order y introduces variations of some relevance, the
parameter ® is more significant, as shown next.

The results in Table 1 can be extended to higher values
of ®. Assuming that @ is large enough for the reactive
species being depleted inside the catalyst, the penetration
depth X will decrease as ® ~! (Villadsen and Michelsen,
1978, Chapter 7). For most types of rate expressions, and
particularly for a first-order reaction, these conditions
will already be reached for ® = 10. Then, we can write,
X = X,0(10/®). As the behaviour of any method employ-
ing local approximations will depend on how many
elements or nodes fall within X, the values of N or NE
needed to reach a given precision will increase as ® does.
Then,

N= Nm<;l())>; NE = NE10<CD>. 1)

10
For example, the actual value of NE for SOC at
® =100 is NE =185, and Eq. (21) predicts NE = 190.

Eq. (21) clearly shows the impact on the number of nodes
or elements introduced by the diffusion limitations. It will
also be valid for multiple reactions on the basis of a
properly defined Thiele modulus. Even though the same
value of N or NE may be needed by a single or a multiple
reaction system, the numerical cost in the last case will
depend on the number of reactions NK for evaluating
the reaction rates, on NK? for their derivatives and on
NK? for solving the linearized systems.

Although the case of a single reaction has been useful
to illustrate the essential features of the reaction—diffu-
sion problem and the behaviour of numerical procedures,
specific strategies can be applied to deal with a single
reaction under strong diffusion limitations, as the pene-
tration depth can be estimated in advance (Villadsen and
Michelsen, 1978, Chapter 7). Instead, an adaptive proce-
dure will be justified for multiple reactions, as it will allow
simultaneously locating the zone (or zones) of fast
reaction rates, refining the mesh within those zones and
finding the solution of the conservation balances.

Higher order finite element formulations have not been
considered here. Although they can be convenient if a
high level of precision is required, a drawback can be
anticipated when using an A-adaptive mesh procedure
(i.e. leaving fixed the order of approximation and mod-
ifying the number and distribution of nodes) as proposed
below. As a high order of approximation involves a large
number of unknowns, adding an element may introduce
more degrees of freedom than needed, while removing an
element may drop the precision below the tolerance.
Among the different methods discussed above, the
present formulation and FDs are optimal in this context,
as only one degree of freedom is involved, when a node
is removed or added. The other cubic approximations
discussed above involve two degrees of freedom per
element.

From the above given discussion, it can be concluded
that the formulation here proposed is an adequate
alternative for building an /i-adaptive mesh algorithm.
Nonetheless, the convenience of the present formulation
as a general purpose method should not be over-empha-
sized, as the following limitations are worth noting:

(a) The approximation order can not be raised above
three in a way as simple as for other methods. Also, the
treatment for the end subintervals will become highly
asymmetric with respect to the interior elements.

(b) For relatively mild diffusion effects (tentatively
defined by ® < 10), the method will not be usually as
efficient as global methods, such as global the orthogonal
collocation.

(c) The use of the method can not be directly extended
for non-linear mass transport models. Although it may
be employed for some cases (as briefly commented on at
the end of Section 8), an auxiliary set of equations is
needed.
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(d) There is not a direct way to extend the use of the
approximating polynomials in one-dimensional prob-
lems to two or three-dimensional cases. The integral
formulation in these cases becomes the basis for
Boundary Element Methods, for which radial basis
functions are conveniently employed to approximate
non-linear terms (Golberg, Chen and Bowman, 1999).

(e) Due to point (a), the method can not be recom-
mended for a p or i—p adaptive strategy.

6. Adaptive mesh procedure

Given an initial node distribution, the procedure
proposed to add or remove nodes is described here.

The calculations are first carried out using the
quadratic Back Approximation described before. After
obtaining convergence with the current grid distribu-
tion, the error in evaluating each value R, ; (Eqs. (8a)
and (8b)) is estimated. With the available nodal values
Ty, » the contributions R} ; resulting from using the
formulation of the quadratic Forward Approximation
(note that equations are not solved with this approxi-
mation) are calculated. The difference A, ;=|R, ;—
R j| is a measure of how much the local profile of r,
departs from a quadratic function. If with a suitable
grid this difference can be maintained low enough
everywhere, it can be assumed that the difference is
dominated by the missing cubic term in the local ap-
proximation of r,. Once this situation is reached, the
last grid is expected to be suitable for using the cubic
approximation as the final stage in the algorithm.

The significance of the differences A, ; will be assessed
with respect to the reference magnitude R, defined as

1N
RA,k = E z (le,j| + Rk, j)» (22)
=1

R 1s used instead of the average net consumption
rate R,,

N
R, = ‘Zle’ j, (23)
J=
because R, may be nearly nil for species being produced
in some regions of the catalyst and consumed in others.
For each subinterval (z;,_,, z;), j=1,..., N, the ratios
{Ar /R4 ;3 i %, are compared to three control parame-
ters E,, E, and E,. An adaptive decision is made by
applying sequentially, from j= N (pellet surface) to
j=1, the following criteria:
e if for any k, (A, ;/R,;) = E,, two equidistant nodes
are added in the subinterval (z;,, z;). If not,
e if for any k, E, < (A, ;/R, ;) < E,, one node is added
in the middle of (z;, 4, z;). If not,
e if for all k, (A, ;/R,;) and (A, ; |/R,;) <E, and
node z;,; was maintained, node z; is removed. If
not,

e no modification is made in the subinterval (z;,_,, z)).

Parameters E, and E, can be written as E, = E,/BO,
E,=E, x B2. The values of B0 and B2 should not be
too low, as an oscillatory behaviour may arise in the
course of the stages, eliminating certain nodes in a
given stage and adding them in the next. A minimum
value of 10 is suggested for both.

Instead of iterating until condition (Eq. (20)) is sa-
tisfied, the grid modification is tried just when,

|Yi ;= Y2 | <EcxBC X Y e (24)

where BC is a parameter higher than one. It is assumed
that the precision level defined by (£ x BC) is enough
to apply the grid adaptive procedure. The product
(Ec x BC) should not result much higher than E|, as
the oscillating behaviour described above may also
occur even for suitable values of B0 and B2.

The value of E should be also suitably related to E,
to guarantee that the precision defined by the latter is
effectively obtained without making wasteful iterations.
In practice, E- should be taken about one order of
magnitude below E,, but values lower than two orders
will probably lead to useless iterations.

In summary, the five parameters E., BC, E;, B0 and
B2 control the precision of Newton iterations, the error
in estimating R, and the course of the adaptive proce-
dure. For the examples described in this and next
sections, the following values were adopted: E. =2 X
10-% BC=50, E;=5x 1073 B0=20 and B2 = 20.

The adaptive strategy outlined above relies upon the
size of the subinterval (z; _, z;) to determine the preci-
sion of R, ; Although this is of primary importance,
the actual precision will depend secondarily on the size
of the adjacent subintervals. It is then a good practice
to avoid the ratio between the size of adjacent subinter-
vals being larger than a pre-set value. This feature can
be readily added to the above given adaptive strategy.
Thus, as an additional condition to remove a node, the
maintenance of the size ratio below the pre-set value
should be checked. Also, when the criteria given above
indicate that nodes are to be inserted, the new set of
size ratios is checked and additional nodes are added in
some subintervals so that the size ratios can satisfy the
tolerance. A value of 4 is suggested as the maximum
size ratio. This feature was proved to be of some
significance for very large diffusion resistances (in terms
of Thiele modulus, ® > 100).

Once a given stage during the adaptive procedure
reveals that no node should be added, the grid is
adopted as definitive and the cubic approximation is
applied along with Newton method until condition (Eq.
(20)) is reached.

A remark concerns the evaluation of R¥, as the
Forward Approximation would require a node at the
right of the subinterval (z5_,, zy). Instead, the deriva-
tive (dr/dz)|._, is employed, which is evaluated with
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Table 2
Comparison between values of subintervals needed by adaptive and
uniform grid procedures, for a single first-order reaction

(] 10 20 50 100 200 500 1000
N (uniform) 22 44 110 220 440 1100 2200
N (adaptive) 11 14 13 14 17 17 17
By
Ts l
n I3
BD » 1Be » Ba
Iy
r Is
2Be

Fig. 1. Scheme of reaction network.

the aid of Eq. (6) as (dr/dz)|._, = ¢yR, where the
derivative matrix ¢, and R result from the values
calculated using the Back Approximation. Then, R¥ is
evaluated from the quadratic expression which satisfies
ry_ 1, Iy and (dr/dz)|._ .

To gain a first impression on the effect of the adaptive
procedure, we consider again the case of a single first-or-
der reaction. The number of subintervals N using both,
a uniform grid and the adaptive procedure, is shown in
Table 2 for different values of the Thiele modulus ®. The
values of N corresponding to uniform grids are calculated
from Eq. (21) and N,, = 22 for the cubic approximation
(Table 1). The precision obtained for R with the adaptive
procedure is, on average, 1.7 x 10 =%, Therefore, the
results are comparable to those when a uniform grid is
employed. The initial grid was {z,}!=J = (0, 0.5, 0.7, 0.8,
0.9,0.97,0.99, 1) and the final configuration was reached
after two or three modification stages.

The adaptive procedure distributes nearly the same
amount of nodes within the penetration length, irrespec-
tive of the value of ®. The moderate increasing trend for
the values of N as ® rises is mainly due to the effect of
keeping a maximum ratio between adjacent subinterval
sizes.

When the additional effort for the grid modification
stages is taken into account, we can expect that the use
of the adaptive procedure will start to be justified for ®@
larger than 10-20. For a general case involving multiple
non-linear reactions, there will be always a value of @
from which an adaptive procedure will be advantageous
over solving the problem with a fixed node distribution.
It is worth remarking that the control error parameter
was E, =5x 1073, but the error in evaluating R is
significantly smaller (1.7 x 10~%). In general, the preci-
sion reached is at least one order of magnitude higher
than that indicated by E,, mainly because the cubic

approximation is used to obtain the final results after the
grid is found suitable with a quadratic approximation.

7. Test examples

The algorithm presented above is employed in this
section for some examples derived from the catalytic
hydrogenation of unsaturated C, species in liquid phase.
One of the main practical purposes of this process is to
hydrogenate selectively small amounts of acetylenic com-
pounds (1-butyne, By, is considered here) and dienes
(typically 1-3 butadiene, BD) in C, cuts rich in olefins,
I-butene (1Be), cis-2-butene and trans-2-butene.
Isobutene may also be present in streams of commercial
interest, but it has practically no reactivity. Some impor-
tant features of this system will be summarized below.
Further discussion on the subject is undertaken by
Bressa, Ardiaca, Martinez, and Barreto (1998).

Commercial catalysts contain Pd as the main catalytic
agent impregnated on a thin external layer of the order
of 100 um (egg-shell catalyst). A simplified scheme of the
reaction network at 300—340 K is presented in Fig. 1,
where 2Be represents a lump of cis- and trans-2-butenes
and Ba represents n-butane. For simplicity, the isomer-
ization of 1Be to the 2Be lump is considered as being
irreversible as 2-butenes are thermodynamically fa-
voured.

The reaction rate expressions can be expressed as
(Bressa et al., 1998)

K kakxﬂz

ri= O, (25a)

NK
A=K,+ ) Kxy, (25b)
k=1
where Cr is the overall molar concentration, X, is the
molar fraction of the unsaturated species reacting in the
ith reaction (Fig. 1), NK corresponds to the number of
unsaturated species and K, accounts for adsorption of
saturated species. The value of K|, is small enough to
ensure that unsaturated species will normally cover all
catalytic sites.

The system is characterized by very large differences
between the adsorption constants K, in the sequence
By >» BD » 1Be > 2Be. If By is present in the system, BD
will only start to react when By has been almost depleted.
In turn, BD should react up to reach a very small
concentration for reactions of 1Be and 2Be to become
noticeable. In the presence of strong diffusion resistance
inside the pellet, the reactants will be consumed consec-
utively from the pellet surface.

According to kinetic expressions (Egs. (25a) and
(25b)), when a given species saturates the catalytic sites,
it reacts following a zero-order regime at a rate (Cr x,
Xm), Where k. is the sum of all kinetic coefficients for
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Fig. 2. Comparison between experimental data and model.

that species. The values x, usually follow the reverse
trend of adsorption constants. This makes it possible that
the fastest reactions can take place well inside the pellet
and not close to the surface. In this sense, By is definitely
slower than the other unsaturated species. Case III
defined below is intended to show this effect.

The existence of strong diffusion limitation within the
thin active layer of these commercial catalysts is due to
the intrinsically slow diffusion in liquid phase and the fact
that Pd is a very active catalytic agent for the hydrogena-
tion of unsaturated hydrocarbons. Although the activity
can be moderated by the content of Pd (usually around
0.1%), these catalysts are known to become deactivated
by deposition of heavy residues (green oil) (Boitiaux,
Cosyns, Derrien and Leger, 1985). Hence, a lower initial
activity (using less Pd content) will surely shorten the
time of the catalyst under continuous service without
regeneration or replacing. A daily loss of 1% in activity
would lead after two years to about one thousand of the
initial catalyst activity. For an analysis of the global
strategy in catalyst design, the presence of By should be
particularly considered. By is adsorbed much more
strongly than any of the other unsaturated species but it
reacts at a considerably slower rate (self-inhibition).
Therefore, the activity level will be important to avoid
very large catalyst loading.

Experimental results obtained in a batch laboratory
reactor with a commercial catalyst have been presented

Table 3
Values of parameters employed in Figs. 2-5*

25

20

X/Xp
x/Xg

Fig. 3. Profiles for Case I (Table 2).

by Bressa et al. (1998) at constant temperature and
pressure (40°C and 8 atm). By was not present in the
experimental mixture. The results of a regression analysis
of data plotted in Fig. 2 using the kinetic model given
by Egs. (25a) and (25b) are presented here. The values
employed for transport parameters are given in Table 3.
The length of the catalytically active shell was L =100
pm.

Estimated values of kinetic parameters from regression
are also given in Table 3 (Case I and common data). The
structure of the kinetic model (Egs. (25a) and (25b))
needs one parameter to be fixed arbitrarily (K. = 1 was
chosen). Values of kinetic and adsorption coefficients for
the 2Be lump (x5 and K,.) and K|, could not be evaluated
with statistical significance as the reaction time was not
long enough to allow an identification of 2Be hydrogena-
tion. Therefore, the values of ks, K, and K, in Table
3 are just mathematically suitable. A good match be-
tween experimental and adjusted model values is
achieved, as it is shown in Fig. 2.

Molar fractions in the bulk liquid defined for Case I
in Table 3 correspond to the end of the experiment. The
estimated profiles inside the pellet are displayed in Fig.
3. The effectiveness factor (average reaction rate relative
to reaction rate at bulk composition) for BD is about 1/10
and the Thiele modulus @z = L\/ r8p.#/(CrXep rDuc)
=9.5. The effectiveness factor for the net consumption
of 1Be is larger than one (about 1.6), because its reactions
become enhanced inside the pellet due to BD depletion.

Case XBD,F X1Be,F XoBe,F XH2,F Kpp = K1+ K, Kige = K3t Ky Kage = Ks Ksp

1 0.00037 0.0584 0.040 0.008 0.47 33 0 416
11 0.00050 0.0600 0.040 0.030 4.0 30 30 500
111 0.00800 0.0600 0.040 0.030 0.2 100 30 10000

4 Common data: Dy, =0.321x 1078 m? s7!, Dy =0.082x 1073 m? s~!, Biy, =39.5, Biyc = 63.2, Cr =7 kmol m~3, (k,/x,) =9, (ic4/K3) =

23, Kige=1, Koo =001, Kg=1x10"5, [c]=s"1.



S.P. Bressa et al. / Computers and Chemical Engineering 25 (2001) 1185-1198 1195

An initial grid and initial guess values x§ to start the
iterative and adaptive procedure should be provided.
For this and the other cases analyzed below, the initial
grid was {z;}i=]=1(0, 0.5, 0.7, 0.8, 0.9, 0.97, 0.99, 1).
The initial set {xy,}i={ was obtained by transforming
the reaction rates to linear expressions. To this end, the
inhibition term A and x, in Egs. (25a) and (25b) were
evaluated with the bulk composition and left fixed
inside the catalyst. Therefore, each kinetic expression
thus obtained depends linearly on the molar fraction of
the corresponding unsaturated species. This problem is
straightforwardly solved for the initial grid, and the
values x{ so obtained are employed to start the simulta-
neous iterative and adaptive procedure described in
Section 6. The number of subintervals, iterations and
reaction rate evaluations are given for this and other
cases in Table 3, along with values obtained by using
equidistant nodes. A comparison between the adaptive
procedure and the use of equidistant nodes will be
undertaken at the end of this section.

The final results for Case I were reached in NI = 10
iterations and the number of subintervals was N =11
(75% between the surface and the middle of the active
layer). The adaptive process demanded NGM =2 grid
modifications.

0.5

0.4

0.3

X/Xg

0.2

0.1

Fig. 4. Profiles for Case II (Table 2).

Table 4

Number of subintervals N, grid modifications NGM, iterations NI
and evaluations of the reaction rate set NRRE =X, (1+N,)NI, for
solving the cases defined in Table 3 with the adaptive procedure®

Case  Adaptive procedure Uniform grid

N (final) NGM NI NRRE N NI NRRE
I 11 2 10 98 16 7 119
11 24 3 15 250 60 12 732
II1 26 6 35 451 110 19 2109

#Values of N, NI and NRRE = (N+1)NI to reach similar preci-
sion by employing a uniform grid are also given.

To evaluate the algorithm under more severe condi-
tions, kinetic coefficients kgzp and x5, about ten times
higher than those of Case I have been considered. Also,
the H, saturation value xy, » was increased by a factor
close to four, what further increases the consumption
rate of unsaturated species. A non-zero value for x,p,
was assumed. The set of conditions is given in Table 3
(Case II). These kinetic parameters represent actual
commercial catalysts more active than the sample of
Case 1.

The concentration profiles for Case II are plotted in
Fig. 4. The effectiveness factor for BD is about 0.014.
Half of the final 24 subintervals are located at z > 0.85,
where BD and 1Be are sequentially depleted. Thus, the
number of nodes needed to evaluate the consumption
rate of BD and 1Be is similar as in Case I (Table 4).
The adaptive procedure, by further shifting the nodes
towards the external surface of the pellet, allows main-
taining nearly the same number of nodes, in spite of
higher consumption rates.

The additional nodes in Case II are employed for the
hydrogenation of 2Be (ignored in Case I), which be-
comes depleted at nearly z = 0.5. The maximum in the
2Be profile arises because it is first formed near the
surface from BD and 1Be and consumed in the interior
of the pellet only when BD and 1Be have been depleted.
Although, the average net production rate of 2Be is
positive, its hydrogenation rate becomes greatly en-
hanced. Thus, the effectiveness factor for reaction 5
(Fig. 1) is 26.

Only one additional grid modification stage over
those of Case I is needed (Table 4). The moderate
increase in the overall number of iterations is essentially
due to the additional grid modification stage.

The last case treated here (Case III in Table 3) is
characterized by a relatively low value of ryp, a large
adsorption constant Ky, and relatively large rate coeffi-
cients #;p. and x,g. This case actually intends to
represent the reaction of By (whose role is played by
BD) in presence of 1Be and 2Be. The molar fraction
profiles are depicted in Fig. 5. About three quarters of
the 26 final subintervals (Table 4) are located at z < 0.4.
This distribution reflects the fact that the fast 1Be and
2Be reactions can only take place once BD has been
depleted. Six stages of grid modifications (NGM) were
needed. The increase of NGM with respect to previous
cases is in consequence of an unsuitable initial grid,
{z;}i=5=1(0, 0.5, 0.7, 0.8, 0.9, 0.97, 0.99, 1). The num-
ber of overall iterations is again roughly proportional
to NGM and the final number of subintervals is similar
to that for Case II. It is interesting to note that 1Be
reactions take place completely within the zone 0.2 <
z<0.3. Also, within this zone the BD hydrogenation
rate drops suddenly to zero and the 2Be hydrogenation
rate reaches a maximum value. These changes can be
better appreciated in Fig. 6, where the net consumption
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Fig. 5. Profiles for Case III (Table 2).
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Fig. 6. Reaction rate profiles for Case III (Table 3).

rates of the three unsaturated species are plotted. Con-
sequently, 12 out of the 26 subintervals correspond to
that zone.

Case III is also useful to show that the coupling of
reaction rates may difficult assessing in advance the
behaviour of the system. The evaluation of Thiele mod-
uli from the composition in the bulk fluid is practically
meaningless in this case (all reactions are strongly in-
hibited by the level of BD concentration). Of course, a
deeper analysis will eventually reveal the essential fea-
tures. In this case, the Thiele modulus for BD reactions,
Dy = L\/VBD,F/(CTXBD,FDHc) =3, along with the fact
that these reactions behave closely as being of zero
order, allows to expect that BD will extinguish inside
the pellet, giving place to the consumption of 1Be and
2Be. Considering for example reactions 3 and 4 for 1Be
consumption (Fig. 1), a modified Thiele modulus can
be evaluated from the fluid bulk composition, except
for taking xgp = 0. The value thus calculated, @5, , =
L\/(r3,F+ F4.7)/(CrXype #Duc) = 25, suggests that 1Be
will be consumed somewhere inside the pellet.

The three cases were also solved by employing
equally spaced nodes. The initial guess values xQ to
start the iterations were evaluated as for the adaptive
procedure. The number of subintervals given in Table 4
are those allowing a precision similar to that obtained
by applying the adaptive procedure (about 10~% in
estimating R). The values of N and NRRE (also dis-
played in Table 4) are useful to compare both proce-
dures. For the adaptive algorithm, NRRE is calculated
by adding the contributions from all the stages in the
procedure, NRRE=ZX (1+ N,)NI,, where n is the
stage index. When employing equidistant nodes,
NRRE = (N + 1)NI. NRRE is a direct indicator of the
total computation task, as the evaluation of the reac-
tion rate derivatives and operations for solving the
linear system are also proportional to NRRE.

For the conditions at which the results in Table 4
were obtained, both N and NRRE provide similar
conclusions. In Case I, the mildest case regarding diffu-
sional limitations, the adaptive algorithm performs
slightly better. Instead, in Cases II and 111 the adaptive
algorithm shows a clear advantage over the use of
equidistant nodes.

8. Conclusions

An integral formulation has been used as the basis of
an h-adaptive algorithm for the evaluation of average
reaction rates in catalytic reaction networks with strong
diffusion limitations. The integrals are evaluated by
employing local interpolating polynomials for the reac-
tion rates.

The numerical solution scheme employed here
was found to behave satisfactorily, as compared
with FDs and other methods based on local cubic
approximations. An additional advantage of the pro-
posed numerical scheme, when using an adaptive
mesh strategy is that any node introduces a single
unknown, minimizing the impact of adding or eliminat-
ing nodes.

The adaptive mesh procedure is based on simple
criteria applied on the estimation of the error resulting
for the average reaction rates when a quadratic approx-
imation is employed. Once a satisfactory grid is found,
the final stage of the algorithm employs the cubic
approximation.

The relevant formulation of the proposed algorithm
comprises Egs. (11a), (11b) and (11c) for the discretized
equations, Egs. (15a), (15b) and (15¢) for the iterative
solution according to Newton’s linearization and the
itemized criteria in Section 6 for the automatic adaptive
mesh procedure.

The algorithm was tried for some cases correspond-
ing to the catalytic hydrogenation of unsaturated C,
compounds. Changes in reaction conditions leading to
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a reduction of the effectiveness factor in about one
order of magnitude demanded nearly the same
number of nodes, displaced towards the catalyst sur-
face, to deal with the fastest reactions. This result
reveals the correct behaviour of the adaptive mesh
procedure.

An example with a species showing the largest ad-
sorption strength and a relatively low consumption rate
(corresponding in practice to By) has been also pre-
sented. In this case, the fastest reactions demanding the
highest concentration of nodes take place deeper inside
the catalyst pellet. The adaptive mesh procedure also
worked efficiently in this situation, as a suitable grid
was reached in only six modification stages from an
initial distribution strongly concentrated near the pellet
surface.

It is concluded that the proposed algorithm is likely
to perform efficiently and reliably for solving many
problems of the class considered in this paper; i.e.,
multiple reaction systems with strong diffusion
limitations, particularly when the location of fast reac-
tion zones can not be known in advance. Instead, for
problems with moderate Thiele moduli (properly
defined), say @, < 10, the adaptive mesh procedure will
loose significance and the use of a global method will
usually be better. A similar conclusion applies, irrespec-
tive of the value of @, for most single reaction systems,
since the penetration length can be estimated in ad-
vance.

The procedure here described for constant
effective diffusivity can be extended to the treatment of
more complex transport models. To this end, we are
presently analyzing an approach based on the
formulation outlined by Kaza and Jackson (1980) for
the Dusty Gas Model. The system of equations
is split into a second-order set of differential
equations, formally equivalent to that considered here,
and another set of first-order differential equations
(defined by the transport model). There are
reasons to expect that solving the sets alternately could
result in an efficient iterative procedure to approach
the global solution. If so, the algorithm here pro-
posed can be used essentially as such for the second-or-
der set, along with a standard procedure for the first-or-
der set.
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Appendix A

When linearizing the nodal values r; for the Newton
method, the effect of the increments AY, through the
stoichiometric relations (Eq. (13a)) were ignored (Eq.
(14)), under the assumption of either large Biot num-
bers or similar ratios between them. Although, practical
cases will usually justify this simplification, there are
exceptions that will not. A typical example concerns
thermal effects for reactions in gas phase. The thermal
Biot number does not reach high values in these sys-
tems, and temperature increments are frequently larger
outside than inside the pellet. In any case, we will
present here a way to include the effect of AY, with a
minimum modification of the Newton linearized set of
equation. The linearized nodal values should be written
1, =17+ @AY, 4 (0r/0Q),0*AY . (A1)

With these equations, the jacobian matrix will
present, in comparison to that depicted in Eq. (18b), a
full leftmost block column corresponding to the un-
known AY, in Eq. (Al). Direct gaussian elimination of
this block column should not be done as this process
would make non-zero blocks propagate below the main
diagonal block of J, which in turn would have to be
reduced (the number of additional operations required
would be proportional to N?). Instead, the following
approach is suggested. We define a new vector variable
3=0*AY,. Then, Eq. (Al) becomes
r,=17 4+ @;AY;+ (0r/0Q),9. (A2)

Including 9§ in the set of unknowns for the Newton
iterations, the set of equations can be arranged as
J[AY N AY v Uy Hy 5 AY v 5,...,Ug, Hy, AY,, 9]0

= - [d?\hdlo\/— 170707' (X3} (O)ao]Ta (A3)
where the new matrix J is (for N =4)
AY, AY; U, H, AY, U, H, AY, U, H, AY, 9

joy By 1 0 0 Y, 1
§ a; -z31 1 By -1y
; I 0 -Ay, -I 0 e, |
I -B0, 0 -1 0 o, |
| o« -zl 1 B -1y, ,
j= | I 0 -Ag -I 0 g,
I -Byg, 0 -I 0 @
o -zl T B-T g
| I 0 -Ay9, €
1 I -Byo @
lag By -1 1 -1y,
‘ s 0 0 0 -1

with

IN= aN,N(ar/aQ)N +dayn_ 1(0r/0Q)y 1,

Vi= (bi,[ - Ziai,i)(ar/aQ)i + (bi,ifl —Zh;;_ P(r/0Q), _,
(i=1,..., N—1),

Yo = (bN,N — ay )(0r/0Q)x

+ (bN,Nf 1 — AN N— DEr/0Q)y 1,
&= — A,(0r/0Q),,



1198 S.P. Bressa et al. / Computers and Chemical Engineering 25 (2001) 1185-1198

w;= — B,(@r/0Q); (i=0,.., N—2,)

To solve Eq. (A3), the reduction of the new bottom
blocks and the treatment of the new rightmost block
column of J involve a number of additional operations
proportional to N.
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