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Abstract

We study circular shells in a (2+ 1)-dimensional background within the framework
of Einstein–Born–Infeld theory. For shells around black holes we analyze the mechan-
ical stability under perturbations preserving the symmetry. Shells around vacuum are
also discussed. We find a large range in the values of the parameters compatible with
stable configurations.
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1 Introduction

The Born–Infeld electromagnetic theory [1] was introduced in order to avoid the infinite self
energy of a charged point particle, which constitutes a well known problem within Maxwell
electrodynamics, and it is the only non–linear theory without birefringence. Maxwell and
Born–Infeld theories have electric–magnetic duality invariance [2], a property not shared
with other electromagnetic theories. Recently, the Born–Infeld electrodynamics has received
considerable attention as it can be obtained as a low energy limit of string theory, which
at present constitutes the main candidate for a unified theory. The spherically symmetric
solution of Einstein gravity coupled to Born–Infeld electrodynamics corresponds to a charged
black hole [3]. The solution in 2 + 1 dimensions [4] also represents a black hole which is
singular at the origin, where the Ricci scalar and the Ricci square diverge. However, the
metric is regular everywhere, and is given by

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dϕ2, (1)
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where the function f(r) has the form

f(r) = −M +
r2

l2
+

2r

b2

(

r −
√

r2 + b2Q2
)

− 2Q2 ln

(

r +
√

r2 + b2Q2

r1

)

. (2)

The dimensionless constants M and Q are identified as the ADM mass and the charge,
−l−2 = Λ is the cosmological constant with dimensions [length]−2, and b is the Born–
Infeld parameter; b has dimensions of length, and therefore those of the inverse of the field
strength. The limit b → 0 corresponds to Maxwell linear electrodynamics; in this limit the
well known static BTZ solution with charge [5] is recovered, and we simply have f(r) =
−M + r2/l2 − 2Q2 ln(r/r0). The spacetime geometry of the BTZ black hole has constant
negative curvature and it is, locally, that of anti–de Sitter (AdS) space; it only differs from
anti–de Sitter in its global properties. This feature makes the BTZ solution of great interest
within the framework of the AdS/CFT correspondence. In the geometry defined by Eqs.
(1) and (2), the radii r0 and r1 are related by 2

√
er1 = r0, and are associated to the

zero of the electrostatic potential A0 in each theory. We will assume that the cosmological
constant Λ is negative (i.e. l2 > 0), so that in the case of a vanishing charge the geometry is
asymptotically anti-DeSitter. For suitable values of the other parameters, this choice makes
possible a standard horizon structure [4], in which the metric function is always positive
beyond a certain radius (different for each theory).

Thin layers of matter naturally appear in the context of general relativity and cosmology.
For instance, they can be used to model the gravitational collapse to a black hole, and
also for the study of the evolution of bubbles and domain walls in a cosmological setting.
Spherically symmetric shells around vacuum (bubbles), around black holes and stars, and
also being the throat of traversable wormholes, have been extensively studied [6–8]; these
shells have also been considered in more than four dimensions [9, 10]. The dynamics of
collapsing shells in three spacetime dimensions has been presented and applied to several
examples in Refs. [11]. Besides, shells in a three dimensional background within Einstein–
Maxwell theory have been associated to thin-shell wormholes [12]. On the other hand, we
have recently analyzed the problem in the four dimensional case for Einstein gravity coupled
to Born–Infeld electrodynamics in relation with thin-shell wormholes [13] and shells around
vacuum or around black holes [14].

The current interest in (2 + 1)-dimensional Einstein–Maxwell and Einstein–Born–Infeld
black holes, leads to address the related problem of the behavior of thin layers associated
with them. In the present article, we study the characterization and the linearized stability
under perturbations preserving the symmetry of circular charged shells around black holes;
as a particular case, we also analyze shells around vacuum. We mathematically build the
shells starting from two black hole geometries with a negative cosmological constant, given
by Eqs. (1) and (2). We apply the well known cut and paste procedure; we work under
the condition that the resulting shell is constituted by normal matter, that is, by matter
satisfying the energy conditions. We set the units so that G = c = 1.
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2 Mathematical construction

To define a shell (more precisely a ring) of radius a we take two geometries of the form
(1) with different metric functions f1, f2 and different coordinates r1, r2, t1 and t2, and we
remove the outer region r1 > a of one of them and the inner region r2 < a of the other
one. Then, we join the resulting manifolds at r1 = r2 = a to form a new one. For a shell
surrounding a black hole, the radius a is chosen beyond the largest horizon radius of the
inner geometry and also a should be large enough to remove the horizons (if any) of the outer
geometry. In the case of a shell around vacuum, the first restriction is no longer needed. The
new complete spacetime in general includes a 1+1 dimensional matter shell at r1,2 = a; this
implies that the metric of the complete geometry, though continuous everywhere, must have
discontinuous derivatives. More precisely, at the shell radius r1 = r2 = a the line element
satisfies f1(a)dt1

2 = f2(a)dt2
2, while the derivatives of the metric at both sides of the 1 + 1

dimensional surface r1,2 = a are related with the surface energy-momentum tensor Sj
i by the

Lanczos equations [15, 16]
8πSj

i = −[Kj

i ] + δji [K] (3)

where Kj
i is the extrinsic curvature tensor, K stands for its trace, and the brackets denote

the jump of a given quantity across the circumference r1,2 = a. We let the radius a to be a
function of the proper time τ on the ring. Then the components of the extrinsic curvature
tensor are given by

Kτ
τ
1,2 = −

ä+ f ′

1,2(a)/2
√

f1,2(a) + ȧ2
, (4)

Kϕ
ϕ
1,2 =

1

a

√

f1,2(a) + ȧ2, (5)

where a prime denotes a derivative with respect to r and a dot stands for d/dτ . The surface
energy density λ = −Sτ

τ and the pressure p = Sϕ
ϕ are given by

λ = − 1

8πa

√

f2(a) + ȧ2 +
1

8πa

√

f1(a) + ȧ2, (6)

p =
ä+ f2

′(a)/2

8π
√

f2(a) + ȧ2
− ä+ f1

′(a)/2

8π
√

f1(a) + ȧ2
. (7)

The energy and pressure for a static (a = a0) ring read

λ0 = − 1

8πa0

√

f2(a0) +
1

8πa0

√

f1(a0), (8)

p0 =
f2

′(a0)

16π
√

f2(a0)
− f1

′(a0)

16π
√

f1(a)
. (9)

A static shell of normal (i.e. non exotic) matter satisfies the weak energy condition, i.e.
λ0 ≥ 0 and λ0 + p0 ≥ 0; this implies f1(a0) ≥ f2(a0). With some changes, the cut and paste
procedure can be used to construct a wormhole geometry; in this case, both terms in the
expressions for λ and p will have the same sign. Then, the weak energy condition cannot be
fulfilled because the joining of two exterior regions (r1,2 > a0) with metrics given by f1(r1)

and f2(r2) would give λ0 = −(
√

f1(a0) +
√

f2(a0))/(8πa0) < 0. In our study of bubbles or
shells around black holes, we will work under the assumption of normal matter.
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3 Stability analysis

From the Lanczos equations, we can obtain an equation for the evolution of the shell radius
in the form analogous to the energy conservation for a point particle restricted to a motion
in only one spatial dimension. Squaring twice the expression for the energy density and after
some algebra we obtain

ȧ2 + V (a) = 0, (10)

where the potential V (a) has the form

V (a) =
f1(a) + f2(a)

2
−
[

f1(a)− f2(a)

16πaλ(a)

]2

− [4πaλ(a)]2 . (11)

The energy and pressure satisfy the conservation equation

d

dτ
(aλ) + p

da

dτ
= 0, (12)

which leads to

λ′ = −1

a
(λ+ p). (13)

If an equation of state p = p(λ) is given, this can be integrated to obtain the energy density
as a function of the ring radius by inverting the resulting relation

ln a = −
∫

dλ

λ+ p(λ)
+ C. (14)

Then λ(a) can be substituted in V (a) and this would allow, in principle, to obtain the time
evolution of the ring radius.

We are interested in a perturbative treatment of the dynamics, more precisely, the stabil-
ity of static solutions. Because of the analogy with the problem of a point particle in a one
dimensional potential, the analysis is straightforwardly carried out in terms of the sign of
the second derivative of the potential V (a) at an equilibrium configuration given by a = a0.
We introduce the definitions

S(a) =
f1(a) + f2(a)

2
, (15)

R(a) =
f1(a)− f2(a)

2
, (16)

m(a) = 2πaλ. (17)

This allows to write the potential as

V (a) = S − R2

16m2
− 4m2. (18)

A static configuration a = a0 implies V (a0) = 0, equilibrium requires V ′(a0) = 0, and the
condition for stability is that V ′′(a0) > 0. The first and second derivatives of the potential
read

V ′(a0) = S ′ − R′R

8

(

1

m

)2

− R2

8m

(

1

m

)

′

− 8mm′, (19)
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V ′′(a0) = S ′′ − 8m′2 − 8mm′′ − R2

8

[

(

1

m

)

′2

+
1

m

(

1

m

)

′′

]

−1

4
R′R

1

m

(

1

m

)

′

− 1

8

(

1

m

)2
[

R′2 +RR′′

]

. (20)

In the perturbative treatment, only the first derivative of the pressure at the equilibrium
position is involved in the dynamics. Second derivatives of m and of m−1 can be expressed
in terms of first derivatives by recalling the conservation equation aλ′ = −(λ + p) and
introducing the parameter

η ≡ p′(a0)

λ′(a0)
(21)

which relates the derivatives of the pressure and energy density at the equilibrium radius
a0; in the case 0 ≤ η < 1 this parameter can be understood as the speed of sound along the
ring. With this definition we have

m′′ = − 1

a0

(

m′ − m

a0

)

η, (22)

(

1

m

)

′′

=
2m′2

m2
+

1

m2a0

(

m′ − m

a0

)

η. (23)

Then taking into account that V ′(a0) = 0 and defining the auxiliary functions

X(a0) =
1

8m

[

S ′ − RR′

8m2
− R2

8m

(

1

m

)

′
]

, (24)

Y (a0) = S ′′ − 1

8m2

(

R′2 +RR′′

)

− RR′

2m

(

1

m

)

′

− R2

8

(

1

m

)

′2

, (25)

Z(a0) =
8m

a0

(

m

a0
−m′

)

η +
R2

8m

[

2m′2

m3
+

1

m2a0

(

m′ − m

a0

)

η

]

, (26)

the stability condition for a static equilibrium configuration takes the concise form

Z(a0) < Y (a0)− 8X2(a0). (27)

Because we are interested in the study of bubbles and rings around black holes (not in
thin-shell wormholes), the additional condition of normal matter must be imposed. The
natural way to understand the results is then to present the stability regions by drawing the
intersection of the relation (27) and the inequalities λ0 ≥ 0, λ0 + p0 ≥ 0 for different values
of the parameters.

In the case of shells around black holes in Einstein–Born–Infeld theory, we fix the scale
with the choice of the cosmological constant; the inner metric corresponds to non charged
black holes (Q1 = 0) with different masses, thus the ring charge is simply the charge as-
sociated to the exterior metric. We first consider the limit b → 0, which corresponds to
Maxwell electrodynamics. The values of the masses and charges of the exterior metrics are
shown in Figs. 1 to 3. For low values of the mass M2, two critical values of the charge Q2
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Figure 1: Shell around a black hole in Einstein–Maxwell theory. The values of the parameters
are Λr20 = −1, M1 = 0.1, Q1 = 0, M2 = 0.5; the critical values of the charge are Qi

c = 0.4321
and Qii

c = 1.4682.
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Figure 2: Shell around a black hole in Einstein–Maxwell theory. The values of the parameters
are Λr20 = −1, M1 = 0.2, Q1 = 0, M2 = 1; the critical value of the charge is Qc = 1.

exist: Qi
c and Qii

c are such that for a charge under Qi
c and for a charge beyond Qii

c there is
an event horizon in the original outer metric, while for 0 < Qi

c < |Q2| < Qii
c it presents a

naked singularity. For a certain value of the mass, the critical values of the charge fuse into
one, and beyond that an event horizon always exists in the original exterior metric for any
value of the charge. In the complete manifold, the features of the outer original metric, i.
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Figure 3: Shell around a black hole in Einstein–Maxwell theory. The values of the parameters
are Λr20 = −1, M1 = 0.3, Q1 = 0, M2 = 1.5.
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Figure 4: Shell around a black hole in Einstein–Born-Infeld theory with b/r0 = 1. The values
of the parameters are Λr20 = −1, M1 = 0.1, Q1 = 0, M2 = 0.5; the critical values of the
charge are Qi

c = 0.4657 and Qii
c = 1.2597.

e. its horizon structure, determine the behavior (range, location and shape) of the stability
regions in parameter space as the charge increases. In particular, only in the case in which
the horizon of the original metric is lost, stability could be possible for vanishing or negative
η. In all cases a vanishing charge makes stability compatible only with η > 1. Figs. 1 to 3
illustrate the behavior of the stability regions with an increase of the charge, for a fixed value
of the cosmological constant and three different values of the mass. The main difference with
the results for the four dimensional case [14] is that in three dimensions the evolution of the
regions is not monotonous: as the considered charge becomes larger, so that the original
outer geometry has an event horizon, the stability regions recover the same form of those
corresponding to low values of the charge.

In the case of Einstein gravity coupled to Born–Infeld non linear electrodynamics, the
departure from standard Maxwell theory is determined by the parameter b, which can be
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Figure 5: Shell around a black hole in Einstein–Born-Infeld theory with b/r0 = 1. The values
of the parameters are Λr20 = −1, M1 = 0.16, Q1 = 0, M2 = 0.8; the critical value of the
charge is Qc = 0.8944.
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Figure 6: Shell around a black hole in Einstein–Born-Infeld theory with b/r0 = 1. The values
of the parameters are Λr20 = −1, M1 = 0.3, Q1 = 0, M2 = 1.5.

taken non negative without losing generality. The stability study is performed in terms of the
dimensionless quantity b/r0. As before, we consider charged shells around (2+1)-dimensional
non charged black holes; the results are shown in Figs. 4 to 6. The behavior of the original
outer metric with the charge is analogous to that of the Maxwell case; however, for all other
parameters fixed, the difference between the values of the two critical charges is smaller
in Born–Infeld electrodynamics. More precisely: for a given value of b/r0, the difference
between Qii

c and Qi
c decreases as the mass M2 is enlarged, while for a given value of M2 this

difference becomes smaller as a larger b/r0 is chosen. This is reflected in the evolution of the
shape and size of the stability regions as functions of the parameters. We display only the
results corresponding to b/r0 = 1. The plots show that the region such that smaller positive
and also negative values of η are compatible with stability is reduced and finally disappears
as the mass M2 is taken larger. Another point to be noted is that, for charges near the
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critical ones, the stability regions for the same values of |Q2|/Qc are in general slightly larger
in the case of Born–Infeld electrodynamics, making stability compatible with lower values
of the parameter η.

As a particular case, we can study bubbles –rings around vacuum– by taking the inner
black hole mass M1 equal to zero. This can be done for both Maxwell and Born–Infeld theo-
ries. Within both theoretical frameworks the results are very similar to those corresponding
to rings around black holes, so figures are not included. However, the numerical analysis
shows that, in general, for the same values of the ring charge, rings around black holes admit
slightly larger stability regions, associated to smaller possible values of the parameter η, than
rings around vacuum.

4 Summary

We have constructed charged rings around (2 + 1)-dimensional non charged black holes
within the framework of Einstein–Born–Infeld theory, and we have studied their stability
under linearized radial perturbations. The Einstein–Maxwell case corresponds to the limit
in which the Born–Infeld parameter b is zero. We have found that, for fixed Λr20 and taking a
given b/r0, for low values of the mass M2 of the outer metric, there are two critical values of
the charge such that the stability regions are larger for charges between them; these critical
charges are no longer present for large values of the mass M2, and the stability regions are
smaller in this case. There are ranges of the parameters for which the stability regions include
the physically more interesting case 0 < η < 1, so η can be understood as the velocity of
sound on the shell. For fixed M2, the critical values of charge get closer to each other as b/r0
grows, reducing the range of charge corresponding to larger stability regions.

We have also considered the particular case of bubbles, that is, charged rings around
vacuum. Though not displayed, the numerical results show that, for fixed values of the
parameters, the stability regions of rings around vacuum are slightly smaller than those of
rings around black holes, in the sense that stiffer matter is needed.
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