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The glass transition temperature, Tg, is one of the most important properties of amorphous polymers. The
ability to predict the Ty value of a polymer prior to its synthesis it is of great value. For this reason we
performed a predictive Quantitative Structure—Property Relationships (QSPR) analysis of Tg. The study
explored the best way to encode the polymers structure for this type of studies, finding that the optimal
option is using three monomeric units. The best linear model constructed from 126 molecular structures

incorporated eight molecular descriptors and showed very good predictive ability, being a very simple
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and straight forward method for the prediction of Tg for polyacrylates since three dimensional de-
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1. Introduction

The glass transition temperature, Tg, also known as the glass
temperature or the glass—rubber transition temperature, is one of
the most important properties of amorphous polymers [1].

As the temperature of a polymer drops below T, it behaves in an
increasingly brittle manner. As the temperature rises above the T,
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the polymer becomes a rubber-like material. Thus, knowledge of Tg
is essential in the selection of materials for various applications. In
general, values of Ty well below room temperature define the
domain of elastomers and values above room temperature define
rigid structural polymers [1].

In the vicinity of Tg, a polymer experiences a sudden increase in
the rate of molecular motions and, as a result, undergoes a series of
conformational transformations. The torsional oscillations and/or
rotations about most of the backbone bonds are activated, which
causes a sharp increase in the free volume of the system as it is
converted from the initial rigid (glassy) state to quasi-liquid state
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[2]. As a result of these processes, many physical properties of
polymers change dramatically; for example, their coefficients of
thermal expansion, heat capacities, and viscosities. The Tg is diffi-
cult to determine experimentally and predict theoretically because
the transition takes place over a comparatively wide temperature
range and is dependent on conditions such as the method of
measurement, duration of the experiment, and pressure during the
measurement [3,4]. The Ty is also very dependent on the structural
(cross-linking, chain stiffness) [5], constitutional (additives, fillers,
impurities) [6], and conformational (tacticity) features of polymers
[1,4,7]. For these reasons, the discrepancies between reported
values of Ty in the literature can be quite high [8].

Numerous researchers have attempted to predict T for poly-
mers on the basis of Quantitative Structure Property Relationships
(QSPR). According to the view of Katritzky et al., there are two
kinds of approaches, the empirical and the theoretical [8].
Empirical methods correlate the studied property with other
physical or chemical properties of the polymers, for instance,
group additive properties (GAP) [1]. The GAP methodology is an
entirely empirical approach, restricted to systems made merely of
functional groups that have previously been investigated. It is an
approximate method, since it fails to account the presence of
neighboring groups or conformational influences. The most
extensively referenced model made from theoretical estimations
was proposed by Bicerano [4]; this regression model (R = 0.9749,
s = 24.65 K) related the Tg with the solubility and the weighted
sum of 13 structural parameters for a data set of 320 polymers;
however the model was not tested on an external set, hence its
validation was not assured.

Katritzky et al. [9] develop a mode with R? of 0.928 using 22
medium molecular weight polymers consisting of four parameters.
Not presenting details about the way structures were encoded, only
mentioning that tree to five monomeric units were used. Later on,
Katritzky et al. [8] used CODESSA to predict the Tg for 88 linear
homopolymers using five parameters and generated a QSPR model
with a standard error of 32.9 K for Tg. In this case three monomeric
units were used but no analysis was done to determine this num-
ber. In both these works, no external test sets were used; hence the
models were not properly validated. Cao and Lin [10] tested the
same set of 88 polymers using five parameters with clear physical
meanings, calculated from individual repeating unit structures,
finding a model with coefficient of determination of R> = 0.9056
and a standard error of 20.86 K. Once more, the model was not
properly validated by an external test set.

Mattioni and Jurs [11] developed a 10-descriptor model using
the structure of the monomer of 165 polymers, to predict T values
using Artificial Neural Networks, the training set rms error was
10.1 K (R? = 0.98) and a prediction set (17 polymers) rms error of
21.7 K (R? = 0.92). In addition, an 11-descriptor model using one
repeating unit from 251 different polymers, in this case, the
training set rms error was 21.1 K (R? = 0.96) and a prediction set (25
polymers) rms error 21.9 K (R?> = 0.96). Although the size of the
prediction set is rather small, the results indicate that the use of the
repeating unit instead of the monomer structure has a better pre-
dictive ability. In this article no further trials were done to attempt
to determine the best number of repeating units to encode the
structures.

A comprehensive neural network model with 28 descriptors
was developed by Chen et al. [12] to predict T, values of 6 randomly
selected polymers from a database containing 71 polymers. The
network was trained with the remaining 65 polymers, using de-
scriptors calculated from individual repeating unit structures, and
had training root mean square error of 17 K (R? = 0.95) and pre-
diction average error of 17 K (R = 0.85). Arriving at a presumably
good model, however the number of test set polymers seems

excessively low and the descriptors used excessively high, hence
the predictivity of the model is uncertain.

A Support Vector Machine-based QSPR for the Prediction of
Glass Transition Temperatures using 77 polymers was done by Yu
[2]. Finding a model with root mean square (rms) errors for the
training (38 polymers), validation (18 polymers) and prediction set
(21 polymers) of 12.13, 15.58, and 16.22 K, respectively. Polymers
were represented by one repeating unit end-capped by two
hydrogen atoms, to calculate molecular descriptors.

An artificial neural network prediction of glass transition tem-
perature using 113 polymers was done by Liu et al. [13], the final
optimum neural network with produced a training set root mean
square error (RMSE) of 11 K (R = 0.973) and a prediction set RMSE
of 17 K (R = 0.955). To calculate the descriptors, the polymers were
represented by their corresponding monomer.

As can be appreciated, none of the previous studies have eval-
uated the optimal number of monomeric units to represent the
polymer structure in the prediction of Tg.

Recently a study using flexible descriptors successfully modeled
a different property, the refractive index, using 234 structurally
diverse polymers [14]. In this case the best found alternative was to
encode the polymers with two repeating units.

In the case of polymer studies, it is not possible to calculate the
molecular descriptors directly from the entire structure, since
polymers possess very high molecular weights; moreover the size
of the molecular chains may vary from different polymer prepa-
rations. Hence, the way to encode the molecules becomes a crucial
part of a QSPR study involving polymers.

For that reason, the main objective of the present work is to
study the best way to encode polymers in QSPR studies, in order to
obtain reliable predictions based on a straight forward method. In
order to do so, a dataset consisting of 126 polyacrylates was
selected. Only polyacrylates were included in this study aiming to
have a structurally similar set, and consequently producing more
precise models.

2. Methods
2.1. Data sets

To carry out this study, a total of 126 polyacrylates with
experimental T were taken from a published compilation [15], to
our knowledge this set of molecules was not employed in this
type of study before. Only the polyacrylates family was chosen
aiming to produce a more specific and precise study. The
experimental Tg values along with the SMILES structure repre-
sentation can be found on Table S1. SMILES notation was chosen
as a way of sharing the dataset with any interested reader, since
it allows easily copying the text string and entering it in many
chemical structure representation software. The data-set was
divided into a training set of 84 and a test set of 42 polymers by
applying a k-means cluster analysis [16], in order to have
representative molecules of the structure diversity of the com-
plete dataset in both training and test sets.

Following the procedure done by of Katritzky et al. [8] where T,
was divided by the molecular weight of the repeating unit (M), and
after some preliminary tests that showed that using Tg/M presented
better correlation results than using directly Tg; it was decided to
use Tg/M for the study.

The experimental measure of Tg is a difficult task, which is
revealed in the dispersion of experimental data for some polymers,
complicating the correlation studies since they rely on the quality
of the experimental dataset. When more than one value was found
for the same polymer an average was used.
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2.2. Molecular descriptors

As mentioned, it is not feasible to calculate descriptors directly
for the entire polymer structures. Therefore, models consisting of
repeating units, end-capped by hydrogen, were chosen as small, yet
representative structures, to calculate the descriptors (Fig. 1 shows
an example of the structure of poly(methyl methacrylate) encoded
by three monomeric units).

In principle at least three units would be necessary to properly
describe the way in which the monomers connect to each other. In
addition, since several descriptors take into account the neigh-
boring atoms and the way in which the structural information
propagates through a molecule, having three connected mono-
meric units may serve as a representation of the way the structural
information spreads thorough the polymer. To verify if this
assumption is correct different trials using one, two and three
monomeric units were done. Following the same reasoning adding
four or five repeating units may further contribute to better
represent the properties of the polymer, hence additional tests
using four and five monomeric units were performed.

The increase in the complexity of the structures does not
represent a problem in the descriptor calculation procedure, since
even for the highest complex case of using five repeating units the
calculation time is lower than 5 min (on a regular desktop PC) for
the entire set of polymers. However, when using four or five
monomeric units, and depending on the polymer, there might be
limitations on the size of the structures on the free available version
of the descriptor calculating software (Virtual Computational
Chemistry Laboratory [17]) since it allows molecules with a
maximum of 150 atoms.

A simple and straightforward descriptor calculation methodol-
ogy was used. The structures of the compounds were written in
SMILES notation and directly inputted in Dragon 5.0 [18] (available
online at the Virtual Computational Chemistry Laboratory [17])
which calculates parameters of all types such as Constitutional,
Topological, Geometrical, Molecular Walk Counts, BCUT de-
scriptors, 2D-Autocorrelations, Aromaticity Indices, Functional
Groups. Three dimensional descriptors along with quantum
chemical and semi-empirical descriptors were excluded; since, as
only a small representative part of the structure is used, its actual
3D disposition is unknown; this considerably simplifies the
descriptor calculation procedure since SMILES notation can be used
directly without the need of any previous optimization. Constant
variables were excluded; the final descriptors pools contained 695,
701, 697, 689 and 682 descriptors for the cases of 1, 2, 3,4 and 5
monomers unit, respectively.

2.3. Model search

The model search consists in finding an optimal subset d of
d descriptor from a set D, containing D descriptors, with d << D, and

with minimal standard deviation S,

1 N
S= 7(N_d_l);res,- (1)

by means of the Multivariate Linear Regression (MLR) technique. In
this equation N is the number of molecules in the training set, and
res; the residual for molecule i, is the difference between the
experimental property (p) and predicted property (pPprea). More
precisely, it is sought to obtain the global minimum of S(d) where
d is a point in a space of size D!/[d!(D — d)!]. A full search (FS) of
optimal variables is impractical because it requires D!/[d!(D — d)!]
linear regressions. Therefore, an alternative method is necessary.
The optimum set of descriptors was selected by using a new
advanced version of the Enhanced Replacement Method (ERM)
[19,20] as a search algorithm that produces linear regression QSAR
models with results similar to the FS, but with much less compu-
tational work. This technique approaches the minimum of S by
judiciously taking into account the relative errors of the coefficients
of the least-squares model given by a set of d descriptors
d = {X1,X>,...,.X4}. The ERM [21] gives models with better statistical
parameters than the Forward Stepwise Regression procedure [22],
and the more elaborated Genetic Algorithms [23]. Details about the
steps involved in the ERM algorithm are available elsewhere [24].

Amongst many other approaches to address this problem,
principle component regression (PCR), partial least squares (PLS)
and artificial neural networks (ANN) analyses provide highly pre-
dictive QSARs, however they are difficult to interpret for being
abstract, and implement for not yielding an equation. A combina-
tion of GA and MLR has shown to produce simple, less sophisticated
models with better performance on external testing set predictions
than PLS [25]. In addition, on an extensive contrast work, ERM has
shown to further improve the performance of the obtained models
when compared to GA [23]; and since ERM provides the same type
of models in terms of simplicity compared to GA, ERM was selected
for this work.

In order to avoid common errors and pitfalls as presented in the
review article by Le et al. [26], several test were carried out: the use
of uninformative descriptors was checked through the correlation
matrix (Table 1); possible overfitting was tested using a theoretical
validation, and more importantly using a test set external valida-
tion; chance correlations were checked using a widely used y-
randomization procedure [27]; and the domain of applicability of
the models was informed using a Williams Plot (Fig. 3).

To theoretically validate the models, the well-known Leave-
One-Out (loo) and the Leave-More-Out Cross-Validation pro-
cedures (I-n%-o0) [28] were chosen, where n% accounts for the
number of molecules removed from the training set. The number of
cases for the removal of 20 random molecules was 1,000,000 in the
case of Leave-More-Out. Calculations were done using the

O 0] O
|| GHa || GHs | ¢Ha
C|—O C‘:—O C|3—O

H —CH2~c|:— —CH,~C— —CH2~c|:— H

Fig. 1. Example of a trimeric repeating units for poly(methyl methacrylate).
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Table 1
Correlation matrix for descriptors of Eq. (4) (N = 84).
Se MWC06 piPCO1 IDDM BEHmM3 BELv8 nRCONHR Neoplastic-50

Se 1 0.4941 0.7015 0.7981 0.0627 0.8763 0.0108 0.3524
MWC06 1 0.8184 0.8561 0.1667 0.3787 0.0056 0.2409
piPCO1 1 0.9527 0.1607 0.7132 0.0374 0.3930
IDDM 1 0.1133 0.7330 0.0205 0.4121
BEHmM3 1 0.0598 0.0064 0.1191
BELv8 1 0.0148 0.4352
nRCONHR 1 0.0563

Neoplastic-50

1

Bold face number indicate the highest correlation.

computational environment Matlab 5.0 (MathWorks, Natick, Mas-
sachusetts, U.S.A). The predictive ability of the model was further
evaluated by (1? — r%g)/r?, (r* — 1'%p)/r%, k and K’ [29,30].

The applicability domain (AD) for the QSAR models was
explored in order to obtain reliable predictions for external sam-
ples. The AD is a theoretical region in the chemical space, defined
by the model descriptors and modeled response, and thus by the
nature of the chemicals in the training set, as represented in each
model by specific molecular descriptors [31]. The AD can be char-
acterized in various ways such as the leverage approach [32], which
allows to verify whether a new chemical can be considered as
interpolated and with reduced uncertainty or extrapolated outside
the domain. If it is outside the model domain, a warning must be
given. The leverage (h) is defined as [32]:

hi=x(XX) X (=1, M) 2)
where x; is the 1 x d descriptor row-vector of compound i, M is the
number of compounds in the dataset, and X is the N x d matrix of
the training set (d is the number of model descriptors, and N is the
number of training set samples). The leverage is suitable for eval-
uating the degree of extrapolation, its limit of normal values is set
as h* = 3(N + 1)/M = 3(Zh; + 1)/M, and a leverage greater than h*
for the training set means that the chemical is highly influential in
determining the model, while for the test set, it means that the
prediction is the result of substantial extrapolation of the model
and may not be reliable.

The definition of the standardized residual (o) for molecule i is:

_res;

= (3)

Oj

where res; is the residual of molecule i and S is the standard de-
viation of the training set.

In order to visualize the AD of a QSAR model a Williams plot of
standardized residuals (o) vs leverage values (h) can be used to
obtain an immediate and simple graphical detection of both the
response outliers (Y outliers) and the structurally influential
chemicals (X outliers) of a model.

3. Results and discussion

Using the ERM we searched the different pools of descriptors for
models containing 1 to 10 molecular descriptors for the cases of the
structures represented by 1-5 monomeric units; finding that the
optimal number of descriptors for this dataset is 8. The optimal
models obtained using Tg/M are presented in Table 2, where it can
be seen that the best model is the model found using three
monomeric units. This can be concluded by looking at the test set
parameters, which are the most important since they reflect the
predictability of the model and also expose if a true correlation

Table 2
Results of the best models found using different number of monomeric units to
represent the polymers.

Monomers d S R FIT Sioo Rioo Stest Reest

1 8 0.1666 09742 9436 0.1907 0.9661 0.2059 0.9303
2 8 0.1729 09727 8913 0.1960 0.9649 0.1616 0.9554
3 8 0.1697 0.9733 9.122 0.1999 0.9629 0.1515 0.9635
4 8 0.1575 09770 10.638 0.1777 0.9707 0.1588 0.9548
5 8 0.1507 09790 11.673 0.1709 0.9729 0.1654 0.9525

Bold face numbers indicate the best model.

between the experimental property and the molecular structure
was found. It is clear that the models found by encoding the
polymers using one monomeric unit are the worst, adding a second
and a third monomeric unit improves the predictability of the
models. These results corroborate that the way to represent the
structure of the polymers require at least 3 monomers in order to
properly indicate the way the monomeric unit connect with each
other, which is also an additional proof that a true correlation be-
tween the structure and the measures property is present.

The model obtained using 4 monomers, although it might be
comparable to the model with 3 monomers, has validation pa-
rameters of inferior quality. Adding a fifth monomer to the struc-
ture further weakens the validation parameters. If the possible
previously mentioned limitations on the size of molecules by the
descriptor calculating software, are also taken into account, it is
clear that for the present data set adding more than three mono-
meric units is not advisable.

The model that better predicts the Tg/M using three monomers
(third model of Table 2) is the following:

Tg/M = 6.025(0.4) +1.582 x 102 (+2 x 102 ) Se

+0.9433 (+0.1)MWC06 + 2.1944(+0.2)piPCO1
—3.811(+0.2)IDDM — 0.2054 (+0.03)BEHm3
— 0.9992(+0.2)BELVS + 0.1802(+0.02)nRCONHR

+ 0.4284(+0.1)Neoplastic — 50 (4)

N=84,R=0.9733,5=0.1697, FIT=9.122, p<10~*
Rigo=0.9629, Sj0o=0.1999, R, 505 ,=0.7850, S, 50 o=0.4837
Rys=0.9635, Sys=0.1515

here, the standard errors of the regression coefficients are given in
parentheses; p is the significance of the model, FIT the Kubinyi
function, loo and 1-20%-o stand for the Leave-One-Out and Leave-
More-Out Cross Validation techniques respectively and TS stands
for Test Set. Table 3 presents the meaning of the descriptors
involved in Eq. (4). By looking at the regression coefficient of the
test set, it can be seen that the predictive ability is comparable or
better than most previously published models. The model obtained
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Table 3
Symbols for molecular descriptors involved in the best model.
Molecular descriptor Type Description
Se Constitutional indices Sum of atomic Sanderson electronegativities (scaled on Carbon atom)
MW(C06 Walk and path counts Molecular walk count of order 6
piPCO1 Path count Molecular multiple path count of order 1
IDDM Information indices Mean information content on the distance degree magnitude
BEHmM3 BCUT Highest eigenvalue n. 3 of Burden matrix/weighted by atomic masses
BELv8 BCUT Lowest eigenvalue n. 8 of Burden matrix/weighted by atomic van der Waals volumes
nRCONHR Functional group counts Number of secondary amides (aliphatic)

Neoplastic-50 Drug-like indices

Ghose-Viswanadhan-Wendoloski antineoplastic-like index at 50%

Italics indicate descriptors names.

by Mattioni and Jurs [11] apparently presents better results but
using a smaller test set on a different data set.

To demonstrate that Eq. (4) are not the result of happenstance,
we resorted to a widely used approach to establish the model
robustness: the so-called y-randomization [27]. It consists of
scrambling the experimental p property, so that activities do not
correspond to the respective compounds. After analyzing 1,000,000
cases of y-randomization, the smallest S value obtained in this way
was 0.5472, which is much larger than the one coming from the
true calibration (0.1697). These results suggest that the model is
robust, that its calibration is not a fortuitous correlation, and that a
reliable structure—activity relationship was derived.

The plot of predicted by Eq. (4) vs. experimental Tg/M shown in
Fig. 2 suggests that the 84 compounds from the training set and 42
from the test set tend to follow a straight line. The predicted activity
given by Eq. (4) for the training and test sets are shown in Table S1.
The Williams plot of the standardized residual vs. the leverages
illustrated in Fig. 3 shows that most compounds lie within the AD of
Eq. (4) and hence were calculated correctly, this is in line with the
fact that an homologous series of compounds (polyacrylates) was
used. Compounds 17 and 109 are X outliers of the training set
reinforcing the model [32]; there are no compounds with a stan-
dardized residual higher than the limit (3c) that can be considered
outliers, compound 86 of the training set is the compound with the
highest residual (2.80).

The correlation matrix of the model was presented in Table 1,
descriptors IDDM and piPCO1 show a relevant degree of inter-
correlation, however the calibration and validation results
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Fig. 2. Predicted (Eq. (4)) vs experimental Tg/M for the training (circles) and test
(rhombus) sets.
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Fig. 3. Williams plot of the Eq. (4) showing the Application Domain for the training
(circles) and test (rhombus) sets. The vertical dashed line indicates the limiting
leverage h*.

indicate that they are important for the prediction of the activity.

The predictive power of the linear model is satisfactory as
revealed by its stability upon the inclusion and/or exclusion of
compounds, measured by the statistical parameter
Ripo = 0.9629 (R;p,% = 0.9272) and
Ri_20%_0 = 0.7850 (Rj_0%_o> = 0.6162). As general rule R,_,5_, (Q)
should be higher than 0.71 (Q? > 0.5) to have a validated model
[33,30].

The model was further validated by the following conditions
[29,30]: Rys® = 0.9283>0.6; k = 1.012; kK = 0.9816 (0.85 < k or
K <115); (r*P—r%)/r? = -00748 < 01; (r?—r?%)
r? = —0.0728 < 0.1.

The standardization of their regression coefficients of Eq. (4)
allows assigning greater importance to the molecular descriptors
that exhibit the largest absolute standardized coefficients [22]. In
this case we have:

IDDM(2.554) > piPC01(1.038) > MWC06(0.6832)
> Se(0.6107) > BELv8(0.3439) > nRCONHR(0.1829) (5)
> BEHm3(0.1518) > Neoplastic — 50(0.1305)

By looking at this order we can see that the most significant
descriptor is the information index IDDM, followed by the Path
Count descriptor piPC01 and the Walk Count descriptor MCWCO6.

Although a physical interpretation of the descriptors is normally
not straight forward, the classes and some details of the most
relevant descriptors appearing in Eq. (4) are given below.

Information indices are molecular descriptors calculated as in-
formation content of molecules, based on the calculation of
equivalence classes from the molecular graph. Among them, the
indices of neighborhood symmetry take into account also neighbor



A.G. Mercader, PR. Duchowicz / Materials Chemistry and Physics 172 (2016) 158—164 163

degree and edge multiplicity. They are calculated by applying for-
mulas as the information content, which is a measure of the degree
of diversity of the elements in a system. The information content of
a system having n elements in a set.

X = {x1, X2, ..., Xp} is defined as:

G
Ic = " nglogyng (6)
g=1

where G is the number of different equivalence classes and ng is the
number of elements in the g™ class [34]. The descriptor IDDM is
defined as the mean information content on the distance degree
magnitude.

Path and Walk Counts are atomic and molecular descriptors
obtained from a H-depleted molecular Graph, based on the
counting of graph paths. The length of the path (the number of
edges along the path) is called path order. To take into account
multiple bonds and heteroatoms, weighted path counts can be
calculated, either by introducing the weighting factors after the
paths have been enumerated or by computing the weighted paths
directly. Among other uses, molecular path codes can be employed
to search for similarities among molecules [34]. They are related to
the molecular brunching and size, and in general to the molecular
complexity. The descriptor piPC01 is defined as molecular multiple
path count of order 1; and MCWC06 as molecular walk count of
order 6.

Constitutional indices are OD-descriptors, independent from
molecular connectivity and conformations. In the case of Se is the
sum of atomic electronegativities; and in the case of descriptor
nRCONHR is calculated by counting the number of secondary
aliphatic amides in the structure.

BCUT descriptors are obtained from the positive and negative
eigenvalues of the adjacency matrix, weighting the diagonal ele-
ments with a type of atom weight. In the case of BELv8 is weighted
by the atomic volume; and in the case of BEHm3 is weighted by the
atomic mass.

4. Conclusions

In this paper we constructed a predictive QSPR model of the Tg/
M based on 126 polyacrylates using eight molecular descriptors.
The model can be used in a very straightforward manner since it is
not based in 3D descriptors. The study showed that the optimal way
to encode the polymers structures is to use three monomeric units.
The best model exhibited great predictive ability established by
theoretical and test set validations; and as could be appreciated it is
of comparable or higher quality than most previously published
models; it is advisable to use it specifically for polyacrylates since it
was built with structurally similar polymers. We expect the pro-
posed model to be a useful tool in the prediction of Tg activity, in a
fast and costless manner, for any future studies that may require an
estimation of this important property of polyacrylates.
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