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Abstract – We develop a free-carrier theory of the optical absorption of light carrying orbital
angular momentum (twisted light) by bulk semiconductors. We obtain the optical transition matrix
elements for Bessel-mode twisted light and use them to calculate the wave function of photo-excited
electrons to first-order in the vector potential of the laser. The associated net electric currents of
first and second-order on the field are obtained. It is shown that the magnetic field produced at
the center of the beam for the �= 1 mode is of the order of a millitesla, and could therefore be
detected experimentally using, for example, the technique of time-resolved Faraday rotation.
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It is well known from classical electromagnetism that
light can carry spin and orbital angular momentum. While
the former was detected for the first time in the 1930s [1],
the latter became widely available for experimental study
only recently after the work of Allen et al. [2] In a seminal
paper, those authors showed that light carrying an integer
amount of orbital angular momentum (� l, with l an
integer) may be generated in the laboratory using conven-
tional laser beams. Since then, research on the subject
of light carrying orbital angular momentum (OAM), or
twisted light (TL) [3–5] has spanned a large number of
areas, namely, generation of beams [4], interaction with
mesoscopic particles (optical tweezers) [6–8], entangle-
ment with spins for potential applications in quantum
information processing [9], interaction with atoms and
molecules [10,11], cavity-QED [12], and interaction with
Bose-Einstein condensates [13,14]. Nevertheless, the
interaction with solid-state systems, although poten-
tially important for technological applications, has not
been explored so far. In this letter, we present the
first theoretical predictions about the interaction of TL
with bulk semiconductors. We consider band-to-band
transitions, i.e. optical transitions with light frequencies
above the bandgap, so that free carriers rather than
excitons are produced. We show that there is a transfer
of OAM between the light and the photoexcited electrons
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so that a net electric current initially confined to the
beam area appears. The magnetic field induced by these
photocurrents is estimated.
A beam of TL presents an azimuthal phase dependence

—helical wavefront— responsible for the OAM, and a
radial dependence of the Laguerre-Gaussian (LG) or
Bessel mode type. We will focus on the Bessel modes,
but our results are applicable to the LG-mode with slight
changes. The vector potential in the Coulomb gauge with
cylindrical coordinates {r‖, φ, z} is [15]

Aql±(r, t) = A0e
i(qzz−ωt)

[
ε±Jl(q‖r‖)eilφ

∓iẑ q‖
qz
Jl±1(q‖r‖)ei(l±1)φ

]
+c.c., (1)

with polarization vectors ε± = x̂± iŷ, Bessel functions Jl,
and parameters q‖� qz.
Semiconductors are solids which at zero temperature

have the highest occupied (valence) and lowest empty
(conduction) energy bands separated by a gap Eg. In
this respect, they are closer to insulators than to metals.
However, in typical semiconductors Eg � 1 eV, making
possible the transitions between the valence and conduc-
tion bands by optical excitation. In a crystalline semi-
conductor, electrons in the valence and conduction bands,
denoted by λ= {v, c}, occupy the Bloch states ϕλk(r) =
L−3/2eik·ruλk(r), with uλk(r) a cell-periodic function
(lattice constant a), �k the crystal momentum, and L the
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linear size of the semiconductor. For concreteness, here we
consider transitions from the heavy-hole valence bands.
The orbital angular momentum equal to 1 of the p-type
orbital states plus the electron spin add up to a total
angular momentum of 3/2 with a z-projection of ±3/2
for these bands. These states are denoted |3/2,±3/2〉.
The conduction band states, being s-type (zero orbital
angular momentum), are |1/2,±1/2〉. We can consider a
simplified two-band model which grasps the main features
of a semiconductor [16], and can be considered a good
model of a real bulk system under the following two condi-
tions: i) an applied strain splits the heavy-hole and light-
hole valence bands; ii) only circularly polarized light is
considered, producing optical transitions of only one elec-
tron spin type between valence and conduction bands. For
example, circularly polarized light with photon spin equal
to −1 induces transition between the states |3/2, 3/2〉 and
|1/2, 1/2〉.
We now proceed to develop an analytical description

of the interband transitions in a two-band model of a
bulk semiconductor induced by twisted light. Our analysis
tackles the coherent optical excitation to conduction-band
states, i.e. we consider the case �ω >Eg. In this regime
the creation of excitons is negligible and one only has to
take into account the free carriers transferred by optical
excitation from the valence to the conduction band [16].
The lowest-order contribution to the light-matter inter-
action, using the minimal-coupling Hamiltonian, is HI =
−(Q/m)p ·Aqlσ(r) with Aqlσ(r) the transverse or xy
part of Aql±(r, t) (eq. (1)), and {p,m,Q} the momentum
operator, mass, and charge of the particle involved. The
complete semiclassical Hamiltonian —operators for elec-
trons and classical variables for the light field— consists
then of two terms, the bare electron energy and the inter-
action HI

H =
∑
λk

Eλka
†
λkaλk

+
∑
λ′k′λk

−Q
m
〈λ′k′|p ·Aqlσ(r)|λk〉a†λ′k′aλk,

with a†λ′k′/aλk the creation/annihilation operators for
electrons in a Bloch state of band λ= v, c and quasi-
momentum �k, and Eλk its bare energy. The action of
p=−i�∇ onto the wave function ϕλk(r) = 〈r|λk〉 yields
two terms: pϕλk(r) = �kϕλk(r)− i�L−3/2eik·r∇uλk(r).
For interband transitions —our interest— the first term
is negligible; then

HI |λ′k′λk = i�

L3
Q

m

∫
L3
dre−i(k

′−k)·r

×u∗λ′k′(r)[Aqlσ(r) ·∇]uλk(r).

This expression can be simplified by using a standard
procedure in solid-state physics. The integration over the
complete system is replaced by an integration over a unit

cell and a sum over all cells

HI |λ′k′λk = −Q
m

1

N

∑
c

e−i(k
′−k)·RcAqlσ(Rc) ·

1

a3

∫
a3
dru∗λ′k′(r)[−i�∇]uλk(r),

where N is the total number of unit cells in the crystal.
The integrand is split thanks to the facts that, in the
length of the unit cell a, Aqlσ(r) and exp[−i(k′−k) · r]
are almost constant and u(r) is periodic. The integral
is the momentum matrix element pλ′k′λk. The sum is
handled using the Jacobi-Anger identity, which allows us
to separate the angular from the radial dependences in

e−i(k
′−k)·Rc , and then applying the orthogonality relation

for Bessel functions [17]. The final expression for the
interaction Hamiltonian is

HI = −(−i)lQA0
m

1

L
e−iωt

∑
kk′

δκ‖q‖
q‖

δκzqz

× eiθl (εσ ·pck′vk) a†ck′avk+h.c., (2)

with κ= k′−k having cylindrical coordinates {κ‖, θ, κz}.
In order to understand the effect that a twisted-light

beam has on the ground state of a semiconductor, we focus

our attention on the positive part H
(+)
I of the interaction

Hamiltonian —first term of eq. (2). The action of H
(+)
I

on the full ground state of the N -electron semiconductor
can be shown to yield an eigenvector with expectation
value of the orbital angular momentum equal to �l. Here
we present a simplified version of the theory where we
show the action of the Hamiltonian on a single-particle
valence-band electron state. The analysis is restricted to
optical excitations that couple electron wave-numbers near
k= 0, a typical situation in semiconductor optics. We
define ξ =−(−i)l(QA0/m)(εσ ·pc0v0) independent of the
wave vectors (see chapt. 5 of ref. [16]), transform variables
{k,k′}→ {k,κ}, fix the value of k and take the continuum
limit for κ. In the coordinate representation and rotating
frame, the action of the Hamiltonian on the valence band
single-particle initial state gives

H
(+)
I ϕvk(r) =

ξ

2π

∫
dκ

δ(κ‖− q‖)
q‖

×δ(κz − qz)eiθlϕck+κ(r),
which makes evident that a “cone”-like transition occurs
producing a linear superposition of conduction-band states
with varying phases, as depicted in fig. 1. Exploiting
the delta functions, using ϕλk+κ(r)� eiκ·rϕλk(r), and
applying the Jacobi-Anger identity, we get

H
(+)
I ϕvk(r) = ξ

[
ileiqzzJl(q‖r‖)eiφl

]
ϕck(r)

.
= ξf(r)ϕck(r). (3)

The dimensionless function f(r) = ileiqzzJl(q‖r‖)eiφl

contains all the relevant information that distinguishes
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Fig. 1: Schematic representation of interband optical excitation
with twisted light. A twisted-light beam excites a valence band
electron into a superposition of states of the conduction band
in a “cone”-like fashion. The laser parameter q‖ equals the cone
radius at the conduction band.

the action of a twisted beam from its counterpart, the
plane wave. Because of the presence of f(r), the RHS
of eq. (3) is not a conduction band eigenstate. For the
expectation value of the z-component of the orbital-
angular-momentum operator Lz =−i�∂φ in the state of
eq. (3) we obtain 〈Lz〉= �l, since 〈Lz〉= �l for the state
eiφl and 〈Lz〉= 0 for the states uck(r) and eik·r. Thus, for
short times, the evolution leads to a well-defined transfer
of orbital angular momentum �l from the light beam to
the electron.
This net transfer of orbital angular momentum to the

photo-excited electrons is expected to result in electric
currents and associated magnetic fields. The latter
would be an experimentally detectable signature of the
type of optical excitation described here, and may also
lead to opto-electronic applications. An estimate of the
total current/magnetic field produced by all electrons
can be obtained by calculating the total number of
electrons excited by the field, then determining the
current/magnetic field of a single electron, and, finally,
multiplying the single-electron current/magnetic field
by the number of photo-excited electrons. We note that
this is a single-particle calculation which does not take
into account the electron-electron Coulomb interaction.
This is justified in the present study by the fact that the
main correction introduced by the Coulomb interaction
would be the renormalization of the single-particle
energies [18,19]. This mean-field effect would be small
since we are working in the regime of low excitation (the
density of photogenerated electrons and holes is small),
and, furthermore, by its nature, it does not affect the
qualitative picture drawn in this work. Beyond the mean-
field approximation, the Coulomb interaction introduces
complex and possibly interesting scattering effects [18,20],
which are beyond the scope of our present analysis, and
are left for future study. Again, however, these effects are
expected to be small in the low-excitation regime.
The number of electrons excited in a volume dV and a

time interval t is dNex = αI(r)t/�ω, with α the absorption
coefficient. I(r) = I0e

−αz is the intensity of the light field,

which is related to the vector potential by 2I0 = vεω
2A20,

where v is the speed of light in the medium. Then, the
total number of electrons that are excited in V =L3 is

Nex = π
L2tI0

�ω
f(q‖L),

with f(q‖L) a function containing Jl−1(x), Jl(x), Jl+1(x),
and e−αL.
In order to calculate the electric current, we first

determine the single photo-excited electron state. For
short times such that t(ω+Eg/�)< 1 the evolution of
the state under the action of the laser field is, in the
Schrödinger picture,

ψ(r, t) = U(t)ϕvk(r)

� ϕvk(r)− e−iEgt/�(it/�)ξf(r)ϕck(r), (4)

with U(t) the evolution operator (see eq. (3)). The
electric-current density of this state is calculated using the
quantum-mechanical expression j= (Q�/m)�[ψ∗∇ψ]−
Q2

m
	[ψ∗Aψ]. After a lengthy calculation we arrive at the

electric current and separate the terms in powers of A0
(hidden in ξ). The zero-order term does not give new
phenomena, and so it is not presented. The first-order
and second-order terms are

j1(r, t) =
2Q

mL3
�
{(

tξ

�

)
pv0c0e

−iEgt/�f(r)
}
, (5)

j2(r, t) =

(
t|ξ|
�

)2
Q�

mL3
�{f(r)∗∇f(r)} . (6)

Let us comment on the main characteristics of these two
currents. j1(r, t) contains the vector momentum matrix
element pv0c0, which reappears in the calculation of the
current due to the mixing of the two terms of ψ(r, t).
Thus, as pv0c0 itself, this component of the macroscopic
current has a microscopic origin. This current is somewhat
analogous to the optical polarization in the standard
interband optical transitions induced by plane waves. Note
that this current has no equivalent in atomic physics [21].
In fig. 2 we show the current vector field for the cases
l= 1 to 4. A clear feature of the current for l= 1 is that
it displays a net circulation around the z-axis, which will
give rise to a sizable magnetic field. For all other values
of l the current shows net circulations around off-centered
axes, like in the cases l= 2 to 4 seen in fig. 2, but no net
circulation around the center of the beam. Finally, without
explicitly showing it here, we mention that the current
field behaves like a travelling wave in the z-direction, and
therefore, at a given time, clockwise and counterclockwise
circulations alternate as one moves along the z-axis. The
second-order term j2(r, t) comes from just the second
term in ψ(r, t). As can be seen in eq. (6), j2(r, t) stems
directly from the function f(r), defined after eq. (3), whose
spatial dependence mimics closely that of laser beam and
varies significantly only on a macroscopic scale. Thus, we
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Fig. 2: First-order electric current for OAM l= 1 to 4. The
center of each plot coincides with the center of the twisted-
light laser beam.

interpret that this current has a macroscopic origin and is
analog to the motion induced by twisted light on atomic
systems.
For the currents with net circulation around the beam

axis, e.g. the case l= 1 in fig. 2, we estimate the magnetic
field bz at the center the beam. We adopt a semiclassical
approach and use Biot-Savart’s law with the currents from
eqs. (5) and (6) whose azimuthal components are

j1φ(r, t) =−2q
2A0p

2
0

m2L3�
J1(q‖r‖) sin (qzz) t, (7)

j2φ(r, t) = l

(
t|ξ|
�

)2
q�

mL3
1

r‖
Jl(q‖r‖)2. (8)

Then, the total magnetic field is determined by Bz =
Nexbz. Our semiclassical approach is an admissible proce-
dure in perturbation theory since the quantum fluctu-
ations of the current are of higher order in the vector
potential and thus smaller than their mean values.
As an example, we estimate the magnetic field Bz

for a realistic situation. We choose the following typical
experimental parameters [12,14,22,23]. For the laser
beam: laser with frequency ν = 3 · 1014 s−1, repetition rate
F = 100MHz, power P = 3µJ s−1, pulse duration t= 10 fs,
qz = 2 · 107m−1, q‖ = 4 · 106m−1 (spot size � (0.5µm)2),
and l= 1. For the semiconductor material we choose
GaAs parameters: α= 105m−1, a= 0.6 nm, v= c/3,
L= 1.3µm and |εσ ·pc0v0|= 6.4 · 10−25 kgm/s. Assuming
a top-hat laser pulse (which approximates the cw-field of
eq. (2) for long enough pulses) these values yield Nex =
3 · 105 and (|ξ|t/�) = 0.8. The resulting z-component
of the magnetic field in the center of the beam is
|B1z|= 1mT and |B2z|= 0.5µT for the first-order and
second-order currents, respectively. This estimate is

reliable since the build-up of the magnetic field takes
place in a time shorter than the typical relaxation times
of electrons in the conduction band of semiconductors at
low excitation density [18].
Our theory can be put to test by measuring this

predicted magnetic field. We suggest the use of time-
resolved Faraday rotation. A quick estimate of the polar-
ization rotation angle can be obtained with the Verdet
formula θ= V Bz�, where V is the Verdet constant and �
is the length traversed by the probe beam. Taking V =
10−4 rad/(G cm) and �= 10µm one obtains θ� 10−6 rad,
which is clearly measurable according to ref. [24]. We note
that the influence of the orbital and spin angular momenta
carried by the photons could be discriminated, for exam-
ple, by comparing two separate measurements, one with
l= 0 and another one with l= 1 with the same circular
polarization.
Let us finally comment on the conservation of the

angular momentum in the optical transitions considered
here. Naturally, in the optical absorption both the orbital
and spin angular momenta of the photon are transferred
to the electrons, but from our analysis we can see that
they exert their influence in different ways. The photon
spin plays a role completely analogous to the one played
in the case of non-twisted light, determining which pair
of energy bands are connected by the optical excitation.
On the other hand, the OAM of the light generates a
macroscopic effect, revealed in the generation of currents
whose characteristic lengths are much greater than the size
of the unit cell.
In conclusion, in this letter we have shown for the first

time the effect that light carrying orbital angular momen-
tum has on semiconductors. We started by generalizing the
basic theory of photo-excitation with plane waves to the
case of Bessel mode beams. We found that the excitation
process generates a superposition of conduction band
states with a well-defined angular momentum. This super-
position state is associated to an electric-current density,
which acts as the source of a magnetic field. As an exam-
ple, the magnitude of this magnetic field has been esti-
mated in a typical experimental situation. The important
regime of excitonic generation has not been addressed here
and will be the subject of a future work, as well as the
inclusion of electron-electron Coulomb interaction effects.
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