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We report a procedure which allows one to decompose the number of effectively unpaired electrons cor-
responding to an N-electron system into two components with well-defined physical meaning. One of
these terms represents the number of net unpaired electrons arising from the spin. The second one
accounts for the partial split of electron pairs that appears when multideterminantal correlated wave
functions are used.
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1. Introduction

The density matrix of odd electrons was introduced a long time
ago by Takatsuka et al. [1,2] as an appropriate tool to characterize
the occupancy of different portions of space by spin-up and spin-
down electrons. In the past decade and in the present one there
has been a growing theoretical interest in studying the features,
approaches and constraints of this device [3–9] which has also
been termed as density matrix of effectively unpaired electrons [4].
In practice, this matrix has been employed extensively in studies
of electronic population analyses as in the Hilbert space defined
by atomic orbitals as in the ordinary physical space [1,10–12] in or-
der to determine valences and free-valences of the atoms within a
molecular system. Another interest of the density matrix of effec-
tively unpaired electrons arises from its ability to describe spatial
distributions of odd electrons in open and closed shell systems,
what constitutes a method for determining the extent of the radi-
cal character in molecules and similar species of any spin multi-
plicity [13].

The main purpose of this report is to decompose the number of
effectively unpaired electrons (the value of the trace of the density
matrix of effectively unpaired electrons) into two components. One
of them is the number of net spin unpaired electrons; in fact this
density matrix coincides with the spin density one when the wave
function of the N-electron system is a single Slater determinant [5].
The other term accounts for the number of unpaired electrons aris-
ing from the partial split of electron pairs that appear, even in
closed shell systems, when the electronic correlation is taken into
account through multideterminantal wave functions [1]. Using
suitable tools, such as the cumulant matrix of the second-order re-
duced density matrix, a meaningful partitioning of the number of
ll rights reserved.
effectively unpaired electrons is achieved, what allows one to de-
scribe and to quantify separately both effects.

We have organized this Letter as follows: in the second section
we summarize the definitions of the main tools used in this work,
the density matrix of effectively unpaired electrons, the reduced
density matrices and the cumulant matrices as well as the relation-
ships between them. The third section describes the partitioning of
the number of effectively unpaired electrons into two components;
this section also describes a discussion of our results supported on
numerical determinations which prove the correctness of our
proposals. Finally, the last section reports the conclusions of this
work.
2. Mathematical framework

According to the authors in Ref. [1], the elements of the density
matrix of effectively unpaired electrons, ui

j, are

ui
j ¼ 21Di

j �
X

k

1Di
k

1Dk
j ð1Þ

in which i; j; k; . . . are orbitals of an orthogonal basis set and 1Di
j are

the elements of the spin-free first-order reduced density matrix cor-
responding to a determined N-electron state W. As is well-known
1Di

j ¼
P

r
1Dir

jr where r ¼ a;b are the spin coordinates and 1Dir

jr are
the elements of the first-order reduced density matrix in the basis
of the spin-orbitals ir; jr; . . .. The number of effectively unpaired
electrons, Nu, is the trace of the u matrix

Nu ¼
X

i

ui
i ¼ 2N �

X
i;k

1Di
k

1Dk
i ; ð2Þ

where the trace of the matrix 1D,
P

i
1Di

i ¼ N, has been taken into ac-
count. Other definitions of the number of effectively unpaired elec-
trons have been reported [7,9]; in this Letter we will refer to the
definition given by Eq. (2) which is the most widely used one and
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consequently provides straightforward comparisons with other
works.

On the other hand, the elements of the second-order reduced
density matrix corresponding to the state W will be denoted by
2Dirkr0

jr lr
0 and their spin-free version by 2Dik

jl ¼
P

r;r0
2Dirkr0

jr lr
0 . These ele-

ments 2Dirkr0

jr lr
0 have been formulated as [14,15]

2Dirkr0

jr lr
0 ¼ 1

2
1Dir

jr
1Dkr0

lr
0 � 1

2
1Dir

lr
0
1Dkr0

jr þ
1
2

Cirkr0

jr lr
0 ; ð3Þ

where Cirkr0

jr lr
0 are the elements of the cumulant matrix of the second-

order reduced density matrix.
The substitution of 1Dia

ja ¼ 1
2

1Di
j þ 1DðsÞ

i

j

� �
and 1Dib

jb ¼
1
2

1Di
j � 1DðsÞ

i

j

� �
in the components 2Diaka

ja la ;
2Diakb

ja lb ; . . . represented by

Eq. (3) and the sum
P

r;r0 leads to [16]

2Dik
jl ¼

1
2

1Di
j
1Dk

l �
1
4

1Di
l
1Dk

j �
1
4

1DðsÞ
i

l
1DðsÞ

k

j þ 1
2

Cik
jl ð4Þ

in which 1DðsÞ
i

j ¼ 1Dia

ja � 1Dib

jb are the elements of the spin density ma-

trix and Cik
jl ¼

P
r;r0C

irkr0

jr lr
0 . In Eq. (4) the elements 2Dik

jl , 1Di
j and

� 1
4

1DðsÞ
i

l
1DðsÞ

k

j þ 1
2 Cik

jl

h i
are independent of the Sz quantum number

corresponding to the state W but 1DðsÞ
i

l
1DðsÞ

k

j and Cik
jl separately are

Sz-dependent.
Eq. (4) provides the calculation of the expression

X
i;k

2Dik
ki ¼

1
2

X
i;k

1Di
k

1Dk
i �

1
4

N2 � S2
z þ

1
2

X
i;k

Cik
ki; ð5Þ

which has been obtained taking into account the values of the
traces

P
i
1Di

i ¼ N and
P

i
1DðsÞ

i

i ðSzÞ ¼ Sz
S

P
i
1DðsÞ

i

i ðSz ¼ SÞ ¼ 2Sz [17].
Table 1
Decomposition of the number of the effectively unpaired electrons according to Eq.
(8) for selected species at configuration interaction level (single and double
excitations) with the 6-31G basis sets.

System State Nu
P

i;kC
ik
kiðSz ¼ SÞ

H2
1Rþg 0.1138 0.1138

HF 1Rþ 0.2372 0.2372
H2O 1A1 0.3081 0.3081
NH3

1A1 0.3520 0.3520

CH 2P 1.3499 0.3499
CH3

2A002 1.3118 0.3118
NO 2P 1.5480 0.5480
H2NO 2B1 1.5080 0.5080

CH2
3B1 2.2414 0.2414

C2
3Rþg 2.5043 0.5043

HBBH (linear) 3R�g 2.3981 0.3981
O2

3R�g 2.5036 0.5036
3. The decomposition of the number of effectively unpaired
electrons

The value of the sum
P

i;k
2Dik

ki is [18]

X
i;k

2Dik
ki ¼
ð4� NÞN

4
� SðSþ 1Þ; ð6Þ

where S denotes the spin quantum number corresponding to the
state W. This expression can also be derived from the expectation
value of the bS2 operator corresponding to the state W, hWjbS2jWi,
using the spin-free second-quantized expression of the operatorbS2 [19].

The substitution of
P

i;k
2Dik

ki in Eq. (5) by the right hand side of
Eq. (6), taking into account the expression (2) leads to

Nu ¼ 2Sþ 2S2 � 2S2
z þ

X
i;k

Cik
kiðSzÞ ð7Þ

in which we have introduced the symbol ðSzÞ to point out that the
value of the

P
i;kC

ik
ki quantity depends on the substate of quantum

number Sz. Obviously, the quantities Nu, 2S and 2S2 in Eq. (7) are
Sz-independent and consequently the sum �2S2

z þ
P

i;kC
ik
kiðSzÞ

h i
is

also Sz-independent. If we focus our attention on the highest projec-
tion substate, Sz ¼ S, Eq. (7) is transformed into

Nu ¼ 2Sþ
X

i;k

Cik
kiðSz ¼ SÞ: ð8Þ

Eq. (8) provides a decomposition of the number of effectively
unpaired electrons, Nu, into two terms with clear physical mean-
ing. 2S represents the number of net spin unpaired electrons
whereas the term

P
i;kC

ik
kiðSz ¼ SÞ accounts for the above mentioned

number of unpaired electrons arising from the partial split of elec-
tron pairs in the case of multideterminantal correlated wave func-
tions. In inverse order, Eqs. (7) and (8) allow one to interpret
physically the quantity

P
i;kC

ik
kiðSz ¼ SÞ, which is identical to

2S2 � 2S2
z þ

P
i;kC

ik
kiðSzÞ

h i
ð8SzÞ.

This interpretation of the two terms of the r.h.s. of Eq. (8) re-
quires that

P
i;kC

ik
kiðSz ¼ SÞP 0. We will show, by means of an inde-

pendent reasoning, that Nu P 2S and consequently that
requirement is fulfilled. Let us consider the highest spin projection
substate Sz ¼ S corresponding to the spin S of the wave function W
which possesses Na ¼ N

2 þ S electrons of type a and Nb ¼ N
2 � S elec-

trons of type b [20]. We will calculate the trace of the 1D2 matrix,
that is

P
i;k

1Di
k

1Dk
i , through the basis set of the natural orbitals,

I; J; . . ., which diagonalize the 1D matrix
X

i;k

1Di
k

1Dk
i ¼

X
I

1DIa

Ia þ 1DIb

Ib

� �2

¼
X

I

1DIa

Ia

� �2
þ
X

I

1DIb

Ib

� �2
þ 2

X
I

1DIa

Ia

� �
1DIb

Ib

� �
: ð9Þ

Since 0 6 1DIa

Ia 6 1 and 0 6 1DIb

Ib 6 1 ð8IÞ and taking into account

that
P

I
1DIa

Ia ¼ N
2 þ S and

P
I
1DIb

Ib ¼ N
2 � S it follows that

P
I

1DIa

Ia

� �2
6

N
2 þ S
� �

,
P

I
1DIb

Ib

� �2
6

N
2 � S
� �

and
P

I
1DIa

Ia

� �
1DIb

Ib

� �
6

N
2 � S
� �

. Conse-

quently,
P

i;k
1Di

k
1Dk

i 6 2ðN � SÞ. Introducing these relationships into
Eq. (2) it results that Nu P 2S. Although in this proof we have uti-
lized the substate Sz ¼ S the result is fulfilled 8Sz since the traceP

i;k
1Di

k
1Dk

i is a Sz-independent quantity. According to this result,
it follows from Eq. (8) that

P
i;kC

ik
kiðSz ¼ SÞP 0. Moreover, according

to Ref. [5] the Nu quantity lies in the interval 0 6 Nu 6 2N. However,
in view of the relationship found Nu P 2S, a reformulation of that
interval is required in terms of 2S 6 Nu 6 2N. Obviously, both inter-
vals are coincident in the singlet state case. If the wave function is a
spin eigenfunction which is a single Slater determinant the ele-
ments of the cumulant matrix Cik

jl are zero and consequently
Nu ¼ 2S, which is the lower bound of that interval.

To check the correctness of the partitioning described in Eq. (8),
we have performed numerical determinations in several systems
corresponding to singlet, doublet and triplet spin symmetries.
The results, shown in Table 1, have been obtained at configuration
interaction level (single and double excitations) using 6-31G basis
sets and experimental geometries with the PSI 3.3 program pack-
age [21]. The calculations have been performed using as reference
the RHF states (singlets) and ROHF ones (doublets and triplets) and
their corresponding molecular orbitals as orthonormal basis sets.
The values written in column 3 have been directly obtained by
means of Eq. (2) while those described in column 4 arise from
Eq. (4). As can be observed taking into account Eq. (8), the concor-
dance between the results arising from both independent proce-
dures is perfect. It is worthy to point out the significant
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Fig. 1. The number of effectively unpaired electrons in the H2 molecule (singlets and triplet) as a function of the internuclear separation.
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numerical values obtained as in closed- as in open-shell systems
for the unpaired electron contribution arising from the multideter-
minantal character of the wave functions. In order to more com-
prehensively illustrate the physical meaning of the Nu number
and its dependence on the environment geometry, we have studied
the variation of the cumulant part with the internuclear distance
for the hydrogen molecule in its singlet ground state 1Rþg , its lowest
triplet state 3Rþu and its lowest excited singlet state 1Rþu . The calcu-
lations have also been performed using the 6-31G basis set, at RHF/
ROHF CISD level of approximation (FCI level in this case), respec-
tively. The results are shown in Fig. 1. In the case of the singlet
states, the Nu value obviously coincides with the value of the
cumulant part. These singlet states are represented by strongly-
correlated multideterminantal wave functions, while the triplet
state wave function turns out to be practically a single determinant
during the whole dissociation process. As can be observed, for the
singlet state cases the cumulant part is always significant, pointing
out the importance of the correlation effects; its value in the
ground state increases with the internuclear distance approaching
to the value 2 at the dissociation limit (one unpaired electron for
each hydrogen atom) while it is almost constant in the excited sin-
glet state. For the triplet state the Nu value also remains almost
constant during the dissociation process being always only slightly
higher than 2S, which must be interpreted in terms of low correla-
tion effects. The results for these states confirm the lower bound
value for the Nu quantity reformulated in this work. Determina-
tions of the Nu quantity have been performed in other systems
[5] which could now be regarded in terms of cumulants.

4. Concluding remarks

In conclusion, in this report we have performed a partitioning of
the number of effectively unpaired electrons corresponding to an
N-electron system into two contributions. A suitable management
the cumulant of the second-order reduced density matrix allows us
to show that one of these terms describes the number of unpaired
electrons associated with the spin, while the other one corresponds
to the partial split of electron pairs that appear when the system is de-
scribed by a multideterminantal correlated wave function. Moreover,
our treatment also allows us to formulate the lower bound of the
number of effectively unpaired electrons in a more precise manner.
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