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ABSTRACT
This article presents the formulation of an enrichedmacro finite element based on the trigonometric shear
deformation theory for the static analysis of symmetrically laminated compositeplates. Shear correction fac-
tor is not required because this theory accounts for tangential stress-free boundary conditions on the plate
boundary surfaces. The macro element is obtained using the principle of virtual work and Gram-Schmidt
orthogonal polynomials as enrichment functions. The implementation of the obtained algorithm is simple
and efficient, and allows studying general quadrilateral plates with a single macro element. Several exam-
ples are presented to show the capability and applicability of the developed formulation.

1. Introduction

Composite materials are mainly preferred in aerospace, marine,
and automobile engineering because of their advanced proper-
ties and tailoring capability, and have the potential for incor-
porating optimum design techniques into the design process of
candidate structures.

For the efficient employment of laminated plates it is neces-
sary to use the appropriated theories and methodologies to pre-
dict accurately their structural behavior. In this sense the use of
three-dimensional (3D) elasticity theory leads to a more accu-
rate determination of transverse shear stresses. However, the
employment of 3D elasticity theory increases significantly the
computational cost. For this reason many equivalent single lay-
ers (ESL) plate theories [1] have been proposed to reduce the 3D
problems to the 2D ones. The simplest ESL theory is the classical
laminated plate theory (CLPT), which is based on Kirchhoff ’s
hypothesis and provides reasonable results for thin plates [2].
The first-order shear deformation theory (FSDT), based on the
works of Reissner [3] and Mindlin [4], assumes constant trans-
verse shear stresses and therefore it requires the use of a shear
correction factor, whichmay be difficult to compute because this
factor varies with the loading conditions, lamination sequences,
and boundary conditions [5].

In order to consider traction-free boundary conditions and
transverse shear effects, avoiding the use of shear correction fac-
tors, different higher order shear deformation theories (HSDT)
have been proposed [6–10].

Among many HSDT, only few higher-order shear deforma-
tion theories have been developed containing non-polynomial
shape strain functions. In particular, trigonometric shear defor-
mation theories were recently applied to composite plates by
Ferreira et al. [11], Xiang et al. [12], Mantari et al. [13], among
others. These theories provide continuity of displacements and

CONTACT Rita F. Rango ritarango@conicet.gov.ar Facultad de Ingenieria, INIQUI (CONICET), Universidad Nacional de Salta, Av. Bolivia , Salta , Argentina.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/umcm.

zero transverse shear stresses at top and bottom surfaces of the
laminate, without the burden of extra degrees of freedom as in
layer-wise formulations. As stated by Mantari et al. [13], it can
be said that there are evidences of the demand of trigonometric
shear deformation theories, mainly because they are richer than
polynomial functions and the free surface boundary conditions
can be guaranteed a priori.

On the other hand, exact solutions for deflections and stresses
on arbitrary laminated plate domain, and for general boundary
conditions are very difficult, if not impossible, to obtain [1]. The
methods for solving the governing equations include different
approaches, such as the finite elementmethod [14–17], the finite
volumemethod [18], or the finite differencemethod [19], which
require mesh generations. Other methodologies called mesh-
less methods have been developed [20]. An interesting review
focusing mainly on the developments of element-free or mesh-
less methods and their applications in the analysis of composite
structures has been reported by Liew et al. [21].

A hierarchical version of finite element method (FEM) in
conjunction with the trigonometric shear deformation theory
has been proposed for Rango et al. [22] for the free vibration
analysis of thick composite laminated plates. Here, this hierar-
chical version is extended, generalized, and applied for the first
time to analyze the static behavior of thick composite laminated
plates with general quadrilateral planform and boundary con-
ditions. The macro finite element is formulated using the prin-
ciple of virtual work and incorporating Gram-Schmidt orthog-
onal polynomials as enriched functions. Further major benefits
of the hierarchical method are the retention of the stiffness coef-
ficients as the order of interpolation is increased [23].

Some numerical examples are used to demonstrate the con-
vergence and accuracy of the proposed methodology in com-
puting global and local responses, which are fundamental to

©  Taylor & Francis Group, LLC
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1198 R. F. RANGO ET AL.

Figure . General quadrilateral thick laminated plate cement in Cartesian coordinates (x, y) and natural coordinates (ξ , η).

detect potential areas of starting and propagation of damage.
Comparisons with results available in the literature are also pre-
sented. After establishing the accuracy of the present formula-
tion, benchmark results for laminated plates with different geo-
metric planform and boundary conditions are presented.

2. Statement of the problem

A general quadrilateral thick laminated plate element is rep-
resented based on a four-node scheme, along with Cartesian
coordinates (x, y) and natural coordinates (ξ , η) as shown in
Figure 1. A symmetric laminate of uniform thickness h with Nl
layers is adopted for the analysis.

According to the trigonometric shear deformation theory
(TSDT) of plates [11], the in-plane displacement components:
u(along the x direction) and v (along the y direction), and
the transverse displacement component w (along the z direc-
tion) are approximated through the thickness of the plate
as:

u(x, y, z) = −z
∂w0(x, y)

∂x
+ sin

πz
h

φx(x, y)

v(x, y, z) = −z
∂w0(x, y)

∂y
+ sin

πz
h

φy(x, y)

w(x, y, z) = w0(x, y)

, (1)

where w0 is the displacement of a generic point on the mid-
plane (z = 0) and φx, φy are the rotation components of the
transverse normal about y and x axes, respectively. Employing
Eq. (1) and based on the linear elasticity theory, the non-zero
strain tensor components at an arbitrary material point of the
plate become:

ε = sin
πz
h

εs − zεκ , γ = π

h
cos

πz
h

ϕ, (2)

where
ε = {

εxx εyy γxy
}T

εs =
{

∂φx

∂x
∂φy

∂y
∂φx

∂y
+ ∂φy

∂x

}T

εk =
{

∂2w

∂x2
∂2w

∂y2
2

∂2w

∂x∂y

}T

γ = {
γyz γxz

}T and ϕ = {
φy φx

}T (3)

The constitutive relations of the kth layer having any fiber ori-
entation in the plane (x, y) can be obtained in the global (x, y, z)
coordinate system from:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σxx
σyy
τxy
τxz
τyz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(k)

=

⎡
⎢⎢⎢⎢⎣
Q̄11 Q̄12 Q̄16 0 0
Q̄12 Q̄22 Q̄26 0 0
Q̄16 Q̄26 Q̄66 0 0
0 0 0 Q̄55 Q̄45
0 0 0 Q̄45 Q̄44

⎤
⎥⎥⎥⎥⎦

(k)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εxx
εyy
γxy
γxz
γyz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(k)

, (4)

where Q̄i j are the elastic constants of the kth layer with respect
to the global Cartesian axes and their detailed definitions can be
found in [1].

3. Derivation of flexure laminated plate equations

Considering the static version of the principle of virtual work,
the following expressions can be obtained:

0 =
∫
R

{∫ h/2

−h/2

[
σ (k)
xx δεxx + σ (k)

yy δεyy + τ (k)
xy δγxy + τ (k)

xz δγxz

+τ
(k)
yz δγyz

]
dz

}
dxdy −

∫
R
qδwdxdy,

(5)
where q is the distributed transverse load and R is the midplane
plate domain in the (x, y) Cartesian coordinates.

Substituting the virtual strains obtained from Eq. (2) and
integrating along z axis, the following expression inmatrix form
is found:

0 =
∫
R
(δεT

s Aεs + δεT
κ Dεκ − δεT

κ Hεs − δεT
s Hεκ + δϕTASϕ)dxdy

−
∫
R
q(x, y)δwdxdy,

(6)
where

A =
⎡
⎣A11 A12 A16
A12 A22 A26
A16 A26 A66

⎤
⎦H =

⎡
⎣H11 H12 H16
H12 H22 H26
H16 H26 H66

⎤
⎦

D =
⎡
⎣D11 D12 D16
D12 D22 D26
D16 D26 D66

⎤
⎦AS =

[
AS
44 AS

45
AS
45 AS

55,

]
(7)
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being:

Ai j =
∫ h/2

−h/2
Qij sin2

(πz
h

)
dz, AS

i j =
(π

h

)2
∫ h/2

−h/2
Qij cos2

(πz
h

)
dz,

Hij =
∫ h/2

−h/2
Qijz sin

(πz
h

)
dz, Dij =

∫ h/2

−h/2
Qijz2dz, (8)

4. Macro finite element formulation

Due to complexity of the laminated plate geometry and the pres-
ence of couplings in the governing equations, it is extremely dif-
ficult, if not impossible, to obtain closed form solutions of the
corresponding equations, particularly under arbitrary boundary
conditions. Hence, approximated methods should be employed
to solve the problem. In this work a macro finite element is
formulated for the global static behavior analysis of laminated
plates. This methodology follows the general approach of refer-
ence [22] and it has been shown that it has a simple formula-
tion, low computational cost, and good accuracy. In addition,
the macro element is free of shear locking phenomenon that
occurs in the conventional finite element method.

To obtain themacro finite element, first thematerial points of
the quadrilateral plates in the physical domain (Cartesian coor-
dinates) are transformed into the computational domain (nat-
ural coordinates) as shown in Figure 1. The mapping process
follows the standard procedure [24], i.e.:

x =
4∑

i=1
Mi(ξ , η)xi, y =

4∑
i=1

Mi(ξ , η)yi , (9)

where (xi, yi), i = 1, . . . , 4 are the coordinates of the four cor-
ners of the quadrilateral region R andMi(ξ , η) are the interpo-
lation functions of the serendipity family [24].

The macro finite element equations are obtained by means
of a hierarchical version of FEM [22, 25–27]. The convergence
in the h-p version of FEM is sought by simultaneously refining
the mesh and increasing the degree of the elements. As it has
been demonstrated by the authors in previous works [22, 27], a
very good convergence can be obtained increasing the amount
of hierarchy Gram-Schmidt orthogonal polynomials and using
a single quadrilateral element.

The unknown functions w, φx, φy in Eq. (1) are approxi-
mated by the product of the shape functions in the natural coor-
dinates (ξ , η), by the respective generalized displacements:

w(ξ , η) =
n∑

i, j=1
p(w)
i (ξ ) q(w)

j (η) c(w)
i j = {N(w)}{c(w)},

φx(ξ , η) =
m∑

i, j=1
p(φ)
i (ξ ) q(φ)

j (η) c(φx )
i j = {N(φ)}{c(φx )},

φy(ξ , η) =
m∑

i, j=1
p(φ)
i (ξ ) q(φ)

j (η) c(φy )

i j = {N(φ)}{c(φy )}.

(10)

The first polynomials in {N(•)} = N(•), (•) = w, φ are
the Hermite cubic polynomials for pi(w)(ξ ), q j

(w)(η)

(i, j = 1...4), and Hermite linear polynomials for pi(φ)(ξ ),

q j
(φ)(η) (i, j = 1, 2). Then, an adequate number of

Gram-Schmidt polynomials are added to formulate a

polynomially-enriched platemacro element: pi(w)(ξ ), q j
(w)(η)

(i, j = 5...n) and pi(φ)(ξ ), q j
(φ)(η) (i, j = 3...m). The degree

of the first Gram-Schmidt polynomial in both natural coordi-
nates is four (4) for the transversal displacement w and two (2)
for the rotations φx, φy. The members of the set of characteristic
orthogonal polynomials are obtained following the procedure
described in [27–29] as briefly described in Appendix A.

This way, the hierarchical modes contribute only to the inter-
nal displacement of the element, and do not therefore affect the
displacement along the element edges or at the element nodes.
Nevertheless, products obtained between any of the Gram-
Schmidt (GS) characteristics orthogonal polynomials and the
Hermite polynomials will constitute what amounts to edge free-
doms along the element boundaries.

Replacing the expressions of Eq. (9) in conjunction with the
chain rules to change the first- and second-order derivatives
given inAppendix B, and the approximating functions [Eq. (10)]
into the virtual work formulation [Eq. (6)], the following equa-
tion system is obtained:

0 =
1∫

−1

1∫
−1

(
δcTB(1)AB(1)T c +δcTB(2)DB(2)T c −δcTB(2)HB(1)T c

−δcTB(1)HB(2)T c +δcTB(3)ASB(3)T c −δcTB(4)q
)

|J| dξdη

(11)
where

B(1) =
⎡
⎣ 0 0 0
A1 0 A2
0 A2 A1

⎤
⎦ ; B(2) =

⎡
⎣A3 A4 2A5

0 0 0
0 0 0

⎤
⎦ ;

B(3) =
⎡
⎣ 0 0

0 N(φ)

N(φ) 0

⎤
⎦ ; B(4) =

⎡
⎣N(w)

0
0

⎤
⎦

(12)

with

A1 = J22
|J|

∂N(φ)

∂ξ
− J12

|J|
∂N(φ)

∂η
, A2 = − J21

|J|
∂N(φ)

∂ξ
+ J11

|J|
∂N(φ)

∂η

A3 = a′
1
∂2N(w)

∂ξ 2 + a′
2
∂2N(w)

∂η2 − a′
3
∂2N(w)

∂ξ∂η

+
3∑

i=1
a′
i

(
α′
i
∂N(w)

∂ξ
+ β ′

i
∂N(w)

∂η

)

A4 = b′
1
∂2N(w)

∂ξ 2 + b′
2
∂2N(w)

∂η2 − b′
3
∂2N(w)

∂ξ∂η

+
3∑

i=1
b′
i

(
α′
i
∂N(w)

∂ξ
+ β ′

i
∂N(w)

∂η

)

A5 = −c′1
∂2N(w)

∂ξ 2 − c′2
∂2N(w)

∂η2 + c′3
∂2N(w)

∂ξ∂η

−
3∑

i=1
c′i
(

α′
i
∂N(w)

∂ξ
+ β ′

i
∂N(w)

∂η

)
, (13)

Finally, for arbitrary values of virtual displacements, Eq. (11)
reduces to:

Kc = F, (14)
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1200 R. F. RANGO ET AL.

Table . Square isotropic plate SSSS.

a/h

   

w σ xx w σ xx w σ xx w σ xx

Exact analytical solution Reddy [] . . . . . . . .
Ferreira et al. [] . . . . . . . .
Present TSDTm = 4 . . . . . . . .

where c is the unknown displacement vector given by:

c = {
c(w)T c(φx )

T c(φy )
T } (15)

The stiffness matrix K and the load vector F are respectively
given by:

K =
1∫

−1

1∫
−1

(
B(1)AB(1)T + B(2)DB(2)T − B(2)HB(1)T

−B(1)HB(2)T + B(3)ASB(3)T
)

|J| dξdη (16)

F =
1∫

−1

1∫
−1

qB(4) |J| dξdη (17)

Different boundary conditions may be applied to the lam-
inated plate, removing from the stiffness matrix K and load
vector F the rows and columns that correspond to the
degrees of freedom associated with the corresponding support
conditions.

5. Numerical results and discussion

The macro finite element solutions of quadrilateral laminated
plates under uniform distributed load q obtained by a TSDT are
presented in this section. The model developed herein is vali-
dated by comparing the results with other available solutions.
For describing the boundary conditions of the plates analyzed,
the following designation is employed: C for a clamped edge and
S for a simply supported edge.

5.1. Square isotropic and laminated plates

The first example corresponds to a simply supported square
isotropic plate (side length a and thickness h) with Poisson’s ratio
ν = 0.3. The normalized transverse displacement w̄ and normal
x-stress σ̄xx are obtained as:

w̄ = 100Eh3

qa4
w

( a
2 ,

a
2 , 0

)
, σ̄xx = h2

qa2
σxx

( a
2 ,

a
2 ,

h
2
)
.

In Table 1 the numerical results obtained with the present
approach are compared with exact analytical ones from Reddy
[6] and with those of Ferreira et al. [11], who used for the first
time the TSDT for modeling symmetric composite plates dis-
cretized by ameshlessmethod. It can be observed that the results

Table . Square laminated plate (///) SSSS.

a/h w σ xx σ yy τ̄xy τ̄xz τ̄yz

 D-FEM []
HSDT-MQ []
HSDT (NS) []
Present TSDTm = 3
Present TSDTm = 4
Present TSDTm = 5

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

 D-FEM []
HSDT-MQ []
HSDT (NS) []
Present TSDTm = 3
Present TSDTm = 4
Present TSDTm = 5

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

 D-FEM []
HSDT-MQ []
HSDT (NS) []
Present TSDTm = 3
Present TSDTm = 4
Present TSDTm = 5

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
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Table . Skew laminated plate (//) SSSS.

a/h = 10 a/h = 5

α Method wA
σ̄ A
xx

(z = h
2 )

τ̄ B
yz

(z = 0)

τ̄ B
yz

(z = h
6 ) wA

σ̄ A
xx

(z = h
2 )

τ̄ B
yz

(z = 0)

τ̄ B
yz

(z = h
6 )

° Chakrabarti et al. []
Ramesh et al. []
Present TSDTm = 4

.
.
.

.
.
.

—
.
.

.
.
.

.
.
.

.
.
.

—
.
.

.
.
.

° Chakrabarti et al. []
Ramesh et al. []
Present TSDTm = 4

.
.
.

.
.
.

—
.
.

.
.
.

.
.
.

.
.
.

—
.
.

.
.
.

° Chakrabarti et al. []
Ramesh et al. []
Present TSDTm = 4

.
.
.

.
.
.

—
.
.

.
.
.

.
.
.

.
.
.

—
.
.

.
.
.

obtained with the present formulation are in excellent agree-
ment with exact solutions.

The second example corresponds to a simply supported four
layer 0/90/90/0 square laminated plate. The normalized dis-
placement and stresses of the plate are defined as:

w̄ = 100E2h3

qa4
w

( a
2 ,

a
2 , 0

)
, σ̄xx = h2

qa2
σxx

( a
2 ,

a
2 ,

h
2
)
,

σ̄yy = h2

qa2
σyy

( a
2 ,

a
2 ,

h
4
)
, τ̄ xy = h2

qa
τxy

(
0, 0, h

2
)
,

τ̄ xz = h
qa

τxz
(
0, a

2 , 0
)
, τ̄ yz = h

qa
τyz

( a
2 , 0, 0

)
.

For this case, the material properties are E1/E2 = 25, G12 =
G13 = 0.5E2.

In Table 2 center point deflections and stresses are pre-
sented for three length-to-thickness ratios: a/h = 5, 10, 20 and
for three to five polynomials of Gram-Schmidt, in order to show

the convergence of results obtained with the present formula-
tion. The present solutions are compared with results derived
from the Multiquadric (MQ) function using meshless local
Petrov-Galerkin solution based on HSDT and 3D-FEM solu-
tion [30] and results obtained with a numerical procedure based
on node-based smoothed discrete shear gap method associated
with HSDT [31]. It can be seen that all results show a good con-
vergence and they are in very good agreement with the results
published by the mentioned authors.

5.2. Skew laminated plates

In this section, simply supported 0/90/0 skew plates for various
skew angles α and length-to-thickness ratios a/h are considered
using four polynomials of Gram-Schmidt (m = 4). The mate-
rial properties and the normalized displacement and stresses are
the same of the example depicted in the previous section. The
results obtained bymeans of the present approach are compared

Figure . (a) Geometry of rhomboidal plate and (b) geometry of general quadrilateral plate.

D
ow

nl
oa

de
d 

by
 [

Po
lit

ec
ni

co
 d

i M
ila

no
 B

ib
l]

 a
t 0

3:
29

 3
1 

M
ar

ch
 2

01
6 



1202 R. F. RANGO ET AL.

Figure . Contour plots of bending and twisting moments for general quadrilateral plates.
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Table . Rhomboidal laminated plate (.) SSSS

a/h = 5 a/h = 10 a/h = 20 a/h = 100 a/h = 1000

β wA M
A
xx wA M

A
xx wA M

A
xx wA M

A
xx wA M

A
xx

Nallim et al. [] ° — — — — — — — — . .
Present TSDTm = 4 . . . . . . . . . .
Nallim et al. [] ° — — — — — — — — . .
Present TSDTm = 4 . . . . . . . . . .
Nallim et al. [] ° — — — — — — — — . .
Present TSDTm = 4 . . . . . . . . . .
Nallim et al. [] ° — — — — — — — — . .
Present TSDTm = 4 . . . . . . . . . .
Nallim et al. [] ° — — — — — — — — . .
Present TSDTm = 4 . . . . . . . . . .
Nallim et al. [] ° — — — — — — — — . .
Present TSDTm = 4 . . . . . . . . . .
Nallim et al. [] ° — — — — — — — — . .
Present TSDTm = 4 . . . . . . . . . .

with those of Chakrabarti and Sheikh [32] who employed a six-
noded triangular finite element with a refined HSDT and with
those of Ramesh et al. [33] who used a higher-order triangular
plate element based on the third-order shear deformation the-
ory. It can be observed from Table 3 that the results obtained
from the present formulation using four Gram-Schmidt poly-
nomials are in good agreement with the solutions reported by
other authors.

5.3. Rhomboidal laminated plates

In this section, results for rhomboidal laminates (Figure 2a)
are presented. Four-ply E-glass/epoxy laminates are considered,
with the following material properties:

E1 = 60.7GPa, E2 = 24.8GPa, G12 = 12GPa,
G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.23

and with 5.3 stacking sequence. As shown in Table 4, SSSS
boundary conditions and length-to-thickness ratios a/h =
5, 10, 20, 100, 1000 are considered. The angle of fiber orien-
tation ranges from β = 0◦ to β = 90◦. In this table, β = 0◦

and β = 90◦ mean cross-ply laminates with stacking sequences
0/90/90/0 and 90/0/0/90, respectively. Deflections and bend-
ing moments in point A (Figure 2a) of the rhomboidal plate are
normalized as:

wA = 100E1h3

qa4
wA, MA

xx = 100
qa2

MA
xx .

Particularly, the results corresponding to the case of a/h =
1000 are compared with those obtained by Nallim et al. [28],
who studied arbitrary quadrilateral anisotropic thin plates using
a formulation based on the Ritz method in conjunction with
natural coordinates and CLPT. When thin plate is considered, it
can be seen that the present formulation is free of shear-locking
phenomenon and then results for a/h = 1000 approach to those
obtained by CLPT.

5.4. General quadrilateral laminated plates

The developed formulation has been further applied to the static
analysis of laminated plateswith general quadrilateral planforms
(Figure 2b), stacking sequence 0/β/0, length-to-thickness ratio
a/h = 10, and boundary conditions CCCC and SSCC. The ter-
minology SSCC means that edges (1) and (2) are simply sup-
ported and edges (3) and (4) are clamped (see Figure 2b).

The assumed material properties are the same as those used
in Section 5.1 as well as the normalized displacement and
stresses of the plate. Table 5 lists the deflections and the stresses
at different points as computedwith themethodology developed
in this article. Results are for three stacking sequences and for
two different boundary conditions.

For each laminated plate, Figure 3 shows the contour plots
of bending moments (Mxx,Myy) and twisting moment (Mxy)
and also includes values of normalized moments in a specific
point that can be used for comparison purposes. By compar-
ing the contour plots, the influence of fiber orientation angles
and boundary conditions in the results can be observed. It can
be seen that the most remarkable differences occur in twisting

Table . General quadrilateral laminated plate (0/β/0)

0/β/0 w( a2 , a
6 ) σ xx(

a
2 , a

6 , h
2 ) σ yy(

a
2 , a

6 , h
2 ) τ xy(

a
2 , a

6 , h
2 ) τ xz(

a
3 , a

6 , 0) τ yz(
a
3 , a

6 , 0)

CCCC 0/30/0 . . . . . .
0/60/0 . . . . . .
0/90/0 . . . . . .

SSCC 0/30/0 . . . . . .
0/60/0 . . . . . .
0/90/0 . . . . . .
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Figure . Variation of bending and twisting moments for general quadrilateral plates along x-axis.

moments. Figure 4 presents the variation of bending and twist-
ing moments for y = a/6, along a line parallel to x-axis. It can
be observed that for the two analyzed boundary conditions, the
bending moment Mxx takes larger values for staking sequence
0/30/0, while for the bending moments Myy and for the twist-
ingmomentsMxy themaximumvalues are obtained for stacking
sequence 0/90/0 and 0/60/0, respectively.

Figure . Effect of length-to-thickness ratio on normalized transverse displacement
w̄ (a) and normalized bending moment M̄xx (b) of the CCCC general quadrilateral
plate /β/ for different angles of fiber orientation β and a/h ratios.

Finally, Figures 5, 6, and 7 show the variation of nor-
malized transverse displacement w and normalized bending
moment M̄xx of CCCC, SSCC, and SSSS general quadrilateral
plates, respectively, for stacking sequence 0/β/0 with different
angles of fiber orientation β and a/h ratios. Once again it can
be observed that this formulation is free from shear-locking
phenomenon.

Figure . Effect of length-to-thickness ratio onnormalized transverse displacement
w̄ (a) and normalized bending moment M̄xx (b) of the SSCC general quadrilateral
plate /β/ for different angles of fiber orientation β and a/h ratios.
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Figure . Effect of length-to-thickness ratio on normalized transverse displacement
w̄ (a) and normalized bending moment M̄xx (b) of the SSSS general quadrilateral
plate /β/ for different angles of fiber orientation β and a/h ratios.

6. Conclusions

A hierarchical macro finite element based on the trigonomet-
ric shear deformation theory has been developed for the static
analysis of general quadrilateral laminated composite plates. In
the TSDT, shear stresses free boundary conditions at the top and
bottom surfaces of the plates are satisfied and hence shear cor-
rection factors are ignored. A weak form of the static model
for laminated composite plates based on the principle of vir-
tual work is derived. The macro finite element is obtained con-
sidering Hermite polynomials as locally supported functions,
enriched with orthogonal polynomials generated by the Gram-
Schmidt procedure. The accuracy of results obtained using the
present formulation is demonstrated by comparing some results
to the 3D elasticity solution and those available in the litera-
ture. Obtained results show high reliability for all test cases from
the thin to thick plates. The examples demonstrate the ability
of enriched macro element in handling general quadrilateral
geometries. Good convergence is found using Gram-Schmidt
polynomials in each plane plate direction, so the presentmethod
constitutes an effective alternative for the analysis of laminated
composite plates in practical applications.

In the developed formulation only symmetric laminated
plates are considered, so the bending and in-plane deforma-
tions are uncoupled, and just three components of the displace-
ment field were approximated in the presented approach (i.e.,
w, φx, φy). Following a similar procedure, the present method
can be easily extended to consider nonsymmetric laminated
plates.
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Appendix A

ThefirstGram-Schmidt polynomials in ξ natural coordinate, for
w and φ are given by:

p(w)
1 (ξ ) = 1 − 2ξ 2 + ξ 4, p(φ)

1 (ξ ) = −1 + ξ 2.

The higher members are constructed by employing the
Gram-Schmidt orthogonalization procedure:

p(•)
2 (ξ ) =

(
ξ − B(•)

2

)
p(•)
1 (ξ ) ,

p(•)

k (ξ ) =
(
ξ − B(•)

k

)
p(•)

k−1 (ξ ) −C(•)

k p(•)

k−2 (ξ ) (•) = w, φ,

where

B(•)

k =
∫ 1
−1 ξ

(
p(•)

k−1 (ξ )
)2
dξ∫ 1

−1

(
p(•)

k−1 (ξ )
)2
dξ

, C(•)

k =
∫ 1
−1 ξ p(•)

k−1 (ξ ) p(•)

k−2 (ξ ) dξ∫ 1
−1

(
p(•)

k−2 (ξ )
)2
dξ

.

The coefficients of the polynomials are chosen in such a way
as to make the polynomials orthonormal,

∫ 1
−1 (p(•)

k (ξ ))
2 = 1.

The polynomials along the η direction are also generated using
the same procedure.

Appendix B

The transformation equation (9)maps a point (ξ , η) in themas-
ter plate onto a point (x, y) in the real plate domain and vice
versa if the Jacobian determinant of the transformation is given
by:

|J| = ∂x
∂ξ

∂y
∂η

− ∂x
∂η

∂y
∂ξ

,

is positive.
Applying the chain rule of differentiation it can be shown that

the first derivatives of a function in both spaces are related by:[
∂
∂x
∂
∂y

]
= J−1

[
∂
∂ξ

∂
∂η

]
=

[ J22
|J| − J12

|J|
− J21

|J|
J11
|J|

][
∂
∂ξ

∂
∂η

]

where J is the Jacobian given by:

J =
[
J11 J12
J21 J22

]
=

[∑
xiMi,ξ

∑
yiMi,ξ∑

xiMi,η
∑

yiMi,η

]
.

The elemental area dxdy in the Cartesian domain R is trans-
formed into |J|dξdη.

Applying again the chain rule of differentiation in Eq. (14),
results in:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂2w

∂x2
∂2w

∂y2
∂2w

∂x∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= [
Op(1)]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂2w

∂ξ 2

∂2w

∂η2

∂2w

∂ξ∂η

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ [
Op(2)]

⎡
⎢⎢⎣

∂w

∂ξ
∂w

∂η

⎤
⎥⎥⎦

where the elements of thematrices [Op(1)] and [Op(2)] are given
by:

[
Op(1)] =

⎡
⎢⎣

a′
1 a′

2 −a′
3

b′
1 b′

2 −b′
3

−c′1 −c′2 c′3

⎤
⎥⎦

[
Op(2)] =

⎡
⎢⎢⎢⎢⎢⎢⎣

3∑
i=1

a′
iα

′
i

3∑
i=1

a′
iβ

′
i

3∑
i=1

b′
iα

′
i

3∑
i=1

b′
iβ

′
i

−
3∑

i=1
c′iα′

i −
3∑

i=1
c′iβ ′

i

⎤
⎥⎥⎥⎥⎥⎥⎦

where

a′
1 = J222

|J|2 , a′
2 = J212

|J|2 , a′
3 = 2

J12J22
|J|2

b′
1 = J221

|J|2 , b′
2 = J211

|J|2 , b′
3 = 2

J11J21
|J|2

c′1 = J21J22
|J|2 , c′2 = J11J12

|J|2 , c′3 = J11J22 + J12J21
|J|2

α′
1 = −J11,ξ J22 + J12,ξ J21

|J| α′
2 = −J21,ηJ22 + J22,ηJ21

|J| ,

α′
3 = J11,ηJ22 − J22,ξ J21

|J|

β ′
1 = J11,ξ J12 − J12,ξ J11

|J| , β ′
2 = J21,ηJ12 − J22,ηJ11

|J| ,

β ′
3 = −J11,ηJ12 + J22,ξ J11

|J|
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