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Gerstenhaber algebra structure on the Hochschild
cohomology of quadratic string algebras

Maŕıa Julia Redondo · Lucrecia Román

Abstract We describe the Gerstenhaber algebra structure on the Hochschild co-
homology HH∗(A) when A is a quadratic string algebra. First we compute the
Hochschild cohomology groups using Barzdell’s resolution and we describe gener-
ators of these groups. Then we construct comparison morphisms between the bar
resolution and Bardzell’s resolution in order to get formulae for the cup product
and the Lie bracket. We find conditions on the bound quiver associated to string
algebras in order to get non-trivial structures.
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1 Introduction

Let A be an associative, finite dimensional algebra over an algebraically closed field
k. By a fundamental result in representation theory it is well known that there
exists a finite quiver Q such that A is Morita equivalent to kQ/I, where kQ is the
path algebra of Q and I is an admissible two-sided ideal of kQ, see for instance
[2, Theorem 3.7]. The pair (Q, I) is called a bound quiver of A.

A finite dimensional algebra is called biserial if the radical of every projective
indecomposable module is the sum of two uniserial modules whose intersection is
simple or zero, see [14]. These algebras have been studied by several authors and
from different points of view since there are a lot of natural examples of algebras
which turn out to be of this kind: Nakayama algebras [23], Kawada algebras [19,27],
blocks of group algebras with cyclic or dihedral defect groups [13,18,26], iterated
tilted algebras of type A and Ã [1, 3], Brauer graph algebras [31] and algebras
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appearing in the Gel′fand-Ponomarev classification of Harish-Chandra modules
over the Lorentz group [15].

The representation theory of these algebras was first studied by Gel′fand and
Ponomarev in [15]: they have provided the methods in order to classify all their
indecomposable representations. This classification shows that biserial algebras
are always tame, see also [12]. They are an important class of algebras whose
representation theory has been very well described, see [3, 8].

The subclass of special biserial algebras was studied by Skowroński and
Waschbüsch in [34] where they characterize the biserial algebras of finite represen-
tation type. The definition of these algebras can be given in terms of conditions
on the bound quiver (Q, I) associated (see Section 2.2). A classification of the spe-
cial biserial algebras which are minimal representation-infinite has been given by
Ringel in [28]. This class of algebras has played an important rôle in the study of
self-injective algebras, and their representation theory is well understood. There
is a beautiful description of all finite-dimensional indecomposable modules over
special biserial algebras: they are either string modules or band modules or non-
uniserial projective-injective modules, see [8, 38].

Since A is an algebra over a field k, the Hochschild cohomology groups

HHn(A,M) with coefficients in an A-bimodule M can be identified with the groups
ExtnA−A(A,M). In particular, if M is the A-bimodule A, we simply write HHn(A).
Even though the computation of the Hochschild cohomology groups HHn(A) is
rather complicated, some approaches have been successful when the algebra A is
given by a quiver with relations. For instance, explicit formula for the dimensions of
HHn(A) in terms of those combinatorial data have been found in [6,9–11,17,24]. In
particular, Hochschild cohomology of special biserial algebras has been considered
in [7, 20,35].

In the particular case of monomial algebras, that is, algebras A = kQ/I where
I can be chosen as generated by paths, one has a detailed description of a minimal
resolution of the A-bimodule A: Bardzell’s resolution [5].

An algebra is called a string algebra if it is Morita equivalent to a monomial
special biserial algebra kQ/I, and it is called quadratic if the ideal I is generated
by paths of length two. In general, the computation of the Hochschild cohomology
groups using Bardzell’s resolution may lead to hard combinatorial computations.
However, for quadratic string algebras the resolution, and the complex associated,
are easier to handle.

The sum HH∗(A) =
⊕
n≥0 HHn(A) is a Gerstenhaber algebra, that is, it is a

graded commutative ring via the cup product, a graded Lie algebra via the bracket,
and these two structures are related, see [16]. So far there are only a few classes of
algebras in the literature where the Gerstenhaber algebra structure on Hochschild
cohomology has been determined explicitly, see [7, 21, 22, 30, 32, 35–37, 39]. In [25]
we compute the Hochschild cohomology groups of a triangular string algebra, and
we prove that its ring structure is trivial.

The purpose of this paper is to study the Gerstenhaber algebra structure on
the Hochschild cohomology of a quadratic string algebra A, that is, we describe
explicitly the ring and the Lie algebra structure of the Hochschild cohomology of
A, and we delete the triangular condition in order to get non-trivial structures. The
main results show the dimension of the Hochschild cohomology groups HHn(A),
see Theorems 1 and 2. These computations are done using Bardzell’s resolution,
and allow us to give an explicit basis for each cohomology group. Furthermore,
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we construct a comparison morphism between the bar resolution and Bardzell’s
resolution which lead us to the formulae for the cup product and the Lie bracket.

Finally we describe explicit non-zero elements in the Hochschild cohomology
whose cup product and Lie bracket are non-zero, that is, we define Gn to be the
set of gentle pairs (see Definition 2(a)) and we prove the following theorems.

Theorem (Theorem 3) Let A = kQ/I be a quadratic string algebra and Gn 6= ∅
for some n > 0. Then the cup product defined in HH∗(A) is non-trivial. More precisely,

(i) if n is even and char k 6= 2, HHs1n(A) ∪HHs2n(A) 6= 0;

(ii) if n is odd and char k 6= 2, HH2s1n(A) ∪HH2s2n(A) 6= 0;

(iii) if char k = 2, HHs1n(A) ∪HHs2n(A) 6= 0

for any s1, s2 ≥ 1.

Theorem (Theorem 4) Let char k = 0 and let A = kQ/I be a quadratic string

algebra such that Gn 6= ∅ for some n > 0. Then the Lie bracket defined in HH∗(A) is

non-trivial. More precisely,

(i) if n is even, [HHs1n+1(A),HHs2n+1(A)] 6= 0;

(ii) if n is odd, [HH2s1n+1(A),HH2s2n+1(A)] 6= 0

for any s1, s2 ≥ 1, s1 6= s2.

These proofs are given in terms of representatives usn and usn+1 of non-zero
elements in HHsn(A) and HHsn+1(A) respectively such that

us1n ∪ us2n = u(s1+s2)n and [us1n+1, us2n+1] = λu(s1+s2)n+1

for some scalar λ ∈ k.
The paper is organized as follows. In Section 2 we introduce all the necessary

terminology. In Section 3 we recall the resolution given by Bardzell for monomial
algebras in [5] and we present all the computations that lead us to Theorems 1
and 2 where we present the dimension of all the Hochschild cohomology groups of
quadratic string algebras. In Section 4 we describe the ring and the Lie structure of
the Hochschild cohomology of these algebras and we find conditions on the bound
quiver associated in order to get non-trivial structures.

2 Preliminaries

2.1 Quivers and relations

Let Q be a connected finite quiver with a set of vertices Q0, a set of arrows Q1

and s, t : Q1 → Q0 be the maps associating to each arrow α its source s(α) and
its target t(α). A path w of length l is a sequence of l arrows α1 . . . αl such that
t(αi) = s(αi+1). We denote by |w| the length of the path w. We put s(w) = s(α1)
and t(w) = t(αl). For any vertex x we consider ex the trivial path of length zero
and we put s(ex) = t(ex) = x. An oriented cycle is a non-trivial path w such that
s(w) = t(w).

The path algebra kQ is the k-vector space with basis the set of paths in Q;
the product on the basis elements is given by the concatenation of the sequences of
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arrows of the paths w and w′ if they form a path (namely, if t(w) = s(w′)) and zero
otherwise. Vertices form a complete set of orthogonal idempotents of kQ. Let F be
the two-sided ideal of kQ generated by the arrows of Q. A two-sided ideal I of kQ
is said to be admissible if there exists an integer m ≥ 2 such that Fm ⊆ I ⊆ F 2.
The elements in I are called relations, kQ/I is called a monomial algebra if the
ideal I is generated by paths, and a relation is called quadratic if it is a path of
length two.

By a fundamental result in representation theory it is well known that if A is a
basic, indecomposable, finite dimensional algebra over an algebraically closed field
k, then there exists a unique finite connected quiver Q and a surjective morphism of
k-algebras ν : kQ→ A, which is not unique in general, with Iν = Ker ν admissible,
see for instance [2, Theorem 3.7]. The pair (Q, Iν) is called a presentation of A.

2.2 String algebras

Recall from [34] that a bound quiver (Q, I) is special biserial if it satisfies the
following conditions:

S1) Each vertex in Q is the source of at most two arrows and the target of at most
two arrows;

S2) For an arrow α in Q there is at most one arrow β and at most one arrow γ

such that αβ 6∈ I and γα 6∈ I.

If the ideal I is generated by paths, the bound quiver (Q, I) is string.

An algebra is called special biserial (or string) if it is Morita equivalent to a
path algebra kQ/I with (Q, I) a special biserial bound quiver (or a string bound
quiver, respectively).

Since Hochschild cohomology is invariant under Morita equivalence, whenever
we deal with a string algebra A we will assume that it is given by a string presen-
tation A = kQ/I with (Q, I) satisfying the previous conditions.

In this paper we are interested in quadratic string algebras, that is, the ideal I is
generated by paths of length two. We fix a minimal set R of paths that generates
the ideal I. Moreover, we denote by P the set of paths in Q such that the set
{γ + I, γ ∈ P} is a basis of A = kQ/I. It is clear that Q0 ∪Q1 ⊆ P since I ⊆ F 2.

3 Hochschild cohomology groups

3.1 Bardzell’s resolution for quadratic string algebras

We recall that the Hochschild cohomology groups HHn(A) of an algebra A are
the groups ExtnA−A(A,A), n ≥ 0. Since string algebras are monomial algebras,
their Hochschild cohomology groups can be computed using a convenient minimal
projective resolution of A as A-bimodule constructed by Bardzell in [5, Theorem
4.1]. In the particular case of quadratic string algebras, this minimal resolution is
the following:

. . . −→ A⊗ kAPn ⊗A
dn−→ A⊗ kAPn−1 ⊗A −→ . . . −→ A⊗ kAP0 ⊗A

µ−→ A −→ 0
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where kAP0 = kQ0, kAP1 = kQ1, for n ≥ 2, kAPn is the vector space generated
by the set

APn = {α1α2 · · ·αn : αiαi+1 ∈ I, 1 ≤ i < n},

all tensor products are taken over E = kQ0, the subalgebra of A generated by the
vertices, and the A-bimodule morphisms are

µ(1⊗ ei ⊗ 1) = ei,

d1(1⊗ α⊗ 1) = α⊗ et(α) ⊗ 1− 1⊗ es(α) ⊗ α,

dn(1⊗ α1 · · ·αn ⊗ 1) = α1 ⊗ α2 · · ·αn ⊗ 1 + (−1)n1⊗ α1 · · ·αn−1 ⊗ αn.

The E-A-bilinear map c : A⊗ kAPn−1 ⊗A→ A⊗ kAPn ⊗A defined by

c(a⊗ α1 · · ·αn−1 ⊗ 1) =

{
b⊗ α0α1 · · ·αn−1 ⊗ 1 if a = bα0 and α0α1 ∈ I,
0 otherwise

is a contracting homotopy, see [33, Theorem 1] for more details.

The Hochschild complex, obtained by applying HomA−A(−, A) to the resolu-
tion we have just described and using the isomorphisms

HomA−A(A⊗ kAPn ⊗A,A) ' HomE−E(kAPn, A)

is

0 −→ HomE−E(kAP0, A)
F1−→ HomE−E(kAP1, A)

F2−→ HomE−E(kAP2, A)→ · · ·

where

F1(f)(α) = αf(et(α))− f(es(α))α,

Fn(f)(α1 · · ·αn) = α1f(α2 · · ·αn) + (−1)nf(α1 · · ·αn−1)αn.

3.2 Computations

In order to describe the ring and the Lie algebra structure of the Hochschild
cohomology HH∗(A) of a quadratic string algebra, we need a convenient description
of the previous complex. In this section we will describe explicit basis of these k-
vector spaces and study the behavior of the maps between them in order to get
information about kernels and images.

For any pair X,Y of sets of paths in Q we denote by (X//Y ) the set of pairs
(ρ, γ) ∈ X × Y such that ρ, γ are parallel paths in Q, that is

(X//Y ) = {(ρ, γ) ∈ X × Y : s(ρ) = s(γ), t(ρ) = t(γ)}.

Recall that we have fixed a set P of paths in Q such that the set {γ+ I : γ ∈ P} is
a basis of A = kQ/I. For any m ≥ 0 we denote by Pm the set of paths in P whose
length is greater than or equal to m. Then

(X//Pm) = {(ρ, γ) ∈ X × P : s(ρ) = s(γ), t(ρ) = t(γ), |γ| ≥ m}

and hence (X//P) = (X//Q0) t (X//P1) = (X//Q0) t (X//Q1) t (X//P2), where
t depicts disjoint union.
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Example 1 Let A = kQ/I where Q is the quiver

1

α1

%%β1 // 2
α2

ee

and I =< α1α2, α2α1, β1α2 >. The sets (APn//P) are

(AP0//Q0) = {(e1, e1), (e2, e2)}
(AP0//P1) = {(e2, α2β1)}

and for i ≥ 0,

(AP2i//Q0) = {((α1α2)i, e1), ((α2α1)i, e2), (β1α2(α1α2)i−1, e1)},

(AP2i//P1) = {((α2α1)i, α2β1)},
(AP2i+1//Q0) = ∅,

(AP2i+1//P1) = {((α1α2)iα1, α1), ((α1α2)iα1, β1), ((α2α1)iα2, α2),

(β1(α2α1)i, α1), (β1(α2α1)i, β1)}.

Example 2 Let A = kQ/I where Q is the quiver

5
α5

// 6

β1

��

α6

// 7

α7 ��
1

α1

��
4

α4

OO

3
α3oo

β2

OO

2
α2oo

and I =< αiαi+1 >{i=1,··· ,6} + < β1β2, β2β1 >. The sets (APn//P) are

(AP0//Q0) = {(ei, ei)}{i=1,··· ,7}

(AP0//P1) = ∅,
(AP1//Q0) = ∅,
(AP1//P1) = {(αi, αi)}{i=1,··· ,7} t {(βi, βi)}{i=1,2},

(AP2i//Q0) = {((β1β2)i, e6), ((β2β1)i, e3)} for i ≥ 1,

(AP4//P1) = {(α2α3α4α5, α2β2), (α3α4α5α6, β2α6)},
(AP2i//P1) = ∅, for i ≥ 1, i 6= 2,

(AP7//Q0) = {(α1α2 . . . α6α7, e1)},
(AP2i+1//Q0) = ∅ for i ≥ 1, i 6= 3,

(AP3//P1) = {(α3α4α5, β2), (β1β2β1, β1), (β2β1β2, β2)},

(AP5//P1) = {(α2α3α4α5α6, α2β2α6), ((β1β2)2β1, β1), ((β2β1)2β2, β2)},

(AP2i+1//P1) = {((β1β2)iβ1, β1), ((β2β1)iβ2, β2)} for i > 2.
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Observe that the k-vector spaces HomE−E(kAPn, A) and k(APn//P) are iso-
morphic: the basis element (ρ, γ) ∈ (APn//P) corresponds to the morphism f(ρ,γ)
in HomE−E(kAPn, A) defined by

f(ρ,γ)(w) =

{
γ if w = ρ,

0 otherwise.

Taking into account these isomorphisms, for any n ≥ 0 we can construct commu-
tative diagrams

HomE−E(kAPn, A)

∼=

��

Fn+1 // HomE−E(kAPn+1, A)

∼=

��
k(APn//Q0)⊕ k(APn//P1)


0 0

F 0
n+1 0

0 F 1
n+1


// k(APn+1//Q0)⊕ k(APn+1//Q1)⊕ k(APn+1//P2)

where

F 0
1 (er, er) =

∑
{β∈Q1: t(β)=r}

(β, β)−
∑

{β∈Q1: s(β)=r}

(β, β),

F 1
1 (er, γ) =

∑
{β∈Q1: t(β)=r}

(β, βγ)−
∑

{β∈Q1: s(β)=r}

(β, γβ),

F 0
n+1(α1 · · ·αn, es(α1))

=
∑

{β∈Q1: βα1∈I,
t(β)=s(α1)}

(βα1 · · ·αn, β) + (−1)n+1
∑

{β∈Q1: αnβ∈I,
s(β)=s(α1)}

(α1 · · ·αnβ, β)

F 1
n+1(α1 · · ·αn, γ)

=
∑
{β∈Q1:

βα1∈I, βγ 6∈I}

(βα1 · · ·αn, βγ) + (−1)n+1
∑
{β∈Q1:

αnβ∈I, γβ 6∈I}

(α1 · · ·αnβ, γβ).

Now we will introduce several subsets of (APn//P) in order to get a nice de-
scription of the kernel and the image of F 0

n+1 and F 1
n+1.

For n = 0 we have that (AP0//P) = (Q0//P). Since A is finite dimensional
and quadratic, if (es(α1), α1 · · ·αm) ∈ (Q0//P1) then αmα1 ∈ I.

For n = 1, (AP1//P) = (Q1//P), and we consider the following partition

(Q1//P) = (1, 1)1 t (0, 0)1 t (1, 0)1 t (0, 1)1

defined as follows: if (α, γ) ∈ (Q1//P), we wonder if the path γ starts or ends with
the arrow α, that is,

(1, 1)1 = {(α, α) : α ∈ Q1}
(0, 0)1 = {(α, γ) ∈ (Q1//P) : γ 6∈ αkQ ∪ kQα}
(1, 0)1 = {(α, γ) ∈ (Q1//P) : γ ∈ αkQ, γ 6∈ kQα}
(0, 1)1 = {(α, γ) ∈ (Q1//P) : γ 6∈ αkQ, γ ∈ kQα}
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For any n ≥ 2, if (ρ, γ) ∈ (APn//P) then ρ is a path of length greater than or equal
to 2, that is, ρ = α1ρ̂α2 and wondering if the path γ starts with the arrow α1 or
ends with the arrow α2, we get the following partition

(APn//P) = (0, 0)n t (1, 0)n t (0, 1)n t (1, 1)n

where

(0, 0)n = {(ρ, γ) ∈ (APn//P) : ρ = α1ρ̂α2 and γ 6∈ α1kQ ∪ kQα2}
(1, 0)n = {(ρ, γ) ∈ (APn//P) : ρ = α1ρ̂α2 and γ ∈ α1kQ, γ 6∈ kQα2}
(0, 1)n = {(ρ, γ) ∈ (APn//P) : ρ = α1ρ̂α2 and γ 6∈ α1kQ, γ ∈ kQα2}
(1, 1)n = {(ρ, γ) ∈ (APn//P) : ρ = α1ρ̂α2 and γ ∈ α1kQ ∩ kQα2}.

We also have to distinguish elements inside each of the previous sets taking into
account the following definitions:

+(X//P) = {(ρ, γ) ∈ (X//P) : Q1γ 6⊂ I}
−(X//P) = {(ρ, γ) ∈ (X//P) : Q1γ ⊂ I}

In an analogous way we define (X//P)+, (X//P)−, +(X//P)+ =+ (X//P) ∩
(X//P)+ and so on.

Example 3 For the algebra presented in Example 1 we have that, for n > 0,

+(0, 0)+n =

{
(APn//Q0) if n is even,

∅ otherwise,

+(0, 0)−n =

{
{((α1α2)iα1, β1)} if n = 2i+ 1,

∅ otherwise,

−(0, 0)−n =

{
{(β1, α1)} if n = 1,

∅ otherwise,

(1, 0)−n =


∅, if n = 1,

{(β1(α2α1)i, β1)} if n = 2i+ 1, i ≥ 1,

{((α2α1)i, α2β1)} if n = 2i,

−(0, 1)n =

{
{(β1(α2α1)i, α1)} if n = 2i+ 1, i ≥ 1,

∅ otherwise

(1, 1)n =


{(α1, α1), (α2, α2), (β1, β1)} if n = 1,

{((α1α2)iα1, α1), ((α2α1)iα2, α2)} if n = 2i+ 1, i ≥ 1,

∅ otherwise,

−(0, 0)+n = (1, 0)+n = +(0, 1)n = ∅,
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and in Example 2 we have that

+(0, 0)+n =


(APn//Q0) if n is even,

{(α3α4α5, β2)} if n = 3,

(AP7//Q0) if n = 7,

∅ otherwise,

(1, 0)+n =

{
{(α2 . . . α5, α2β2)} if n = 4,

∅, otherwise,

+(0, 1)n =

{
{(α3 . . . α6, β2α6)} if n = 4,

∅, otherwise,

(1, 1)3 = {(β1β2)β1, β1), (β2β1β2, β2)},
(1, 1)n = (APn//P1) if n is odd, n 6= 3,

(1, 1)n = ∅ if n is even,
+(0, 0)−n =− (0, 0)+n = −(0, 0)−n = (1, 0)−n = −(0, 1)n = ∅.

We start by describing the behavior of our maps F 1
n+1 restricted to the subsets

we have just defined. With this aim in mind, for any n ≥ 1 we define a map

φn : (1, 0)+n → +(0, 1)n

as follows: given (ρ, γ) ∈ (1, 0)+n we have that ρ = αρ′, γ = αγ′, ρ′ and γ′ do not
share their ending arrows and there exists an arrow β such that γ′β 6∈ I. Since A is
a string algebra we conclude that β is unique and that (ρ′β, γ′β) ∈ +(0, 1)n. Hence
we define φn(αρ′, αγ′) = (ρ′β, γ′β).

The proof of the following lemma is analogous to the proof of [25, Lemma 4.1]
concerning triangular string algebras.

Lemma 1 For any n ≥ 1 we have

(a) −(0, 0)−n t (1, 0)−n t −(0, 1)n t (1, 1)n ⊂ KerF 1
n+1;

(b) the function F 1
n+1 induces a bijection from −(0, 0)+n to −(0, 1)n+1∩(APn+1//P2);

(c) the function F 1
n+1 induces a bijection from +(0, 0)−n to (1, 0)−n+1 ∩ (APn+1//P2);

(d) the maps φn : (1, 0)+n → +(0, 1)n are bijections and

(id+ (−1)nφn)((1, 0)+n ) ⊂ KerF 1
n+1,

(−1)n+1F 1
n+1((1, 0)+n ) = (1, 1)n+1 ∩ (APn+1//P2),

F 1
n+1(+(0, 0)+n ∩ (APn//P1)) = (id+ (−1)n+1φn+1)((1, 0)+n+1) ∩ k(APn+1//P2).

Proof (a) In order to check that (ρ, γ) ∈ (APn//P1) belongs to KerF 1
n+1 we have

to prove that if β1ρ or ρβ2 belong to APn+1 then β1γ ∈ I and γβ2 ∈ I.
If (ρ, γ) ∈ −(0, 0)−n then the statement is clear because Q1γ ⊂ I and γQ1 ⊂ I.
If (ρ, γ) ∈ (1, 0)−n , namely (ρ, γ) = (αρ̂, αγ̂) with γQ1 ⊂ I, then γβ2 ∈ I. On the
other hand, β1ρ ∈ APn+1 implies that β1α ∈ I and then β1γ ∈ I.
The proof for −(0, 1)n is analogous.
Finally, if (ρ, γ) ∈ (1, 1)n, this is, (ρ, γ) = (α, α) if n = 1 and if n ≥ 2, (ρ, γ) =
(α1ρ̂α2, α1γ̂α2), again β1ρ, ρβ2 ∈ APn+1 imply directly β1α, αβ2 ∈ I in the first
case, and for n ≥ 2, β1α1, α2β2 ∈ I, so β1γ ∈ I and γβ2 ∈ I.
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(b) Since A is a string algebra if (ρ, γ) ∈ −(0, 0)+n there exists a unique arrow β

such that γβ ∈ P and then ρβ ∈ APn+1. It is clear that (ρβ, γβ) ∈−(0, 1)n+1 ∩
(APn+1//P2) and F 1

n+1((ρ, γ)) = (−1)n+1(ρβ, γβ).
(c) Analogous to the previous one.
(d) By construction it is clear that the map φn is a bijection. The first statements

follow from the fact that if (αρ′, αγ′) ∈ (1, 0)+n , then φn(αρ′, αγ′) = (ρ′β, γ′β),
(αρ′β, αγ′β) ∈ (1, 1)n+1 ∩ (APn+1//P2) and

F 1
n+1(ρ′β, γ′β) = (αρ′β, αγ′β) = (−1)n+1F 1

n+1(αρ′, αγ′).

Finally if (ρ, γ) ∈ +(0, 0)+n ∩ (APn//P1) there exist unique arrows α, β such that
αγβ ∈ P. So (αρ, αγ) ∈ (1, 0)+n+1 ∩ (APn+1//P2), φn+1(αρ, αγ) = (ρβ, γβ) ∈
+(0, 1)n+1 ∩ (APn+1//P2) and

Fn+1((ρ, γ)) = (αρ, αγ) + (−1)n+1(ρβ, γβ).

ut

Proposition 1 For any n ≥ 1 we have that

dimk KerF 1
n+1 = |−(0, 0)−n |+ |−(0, 1)n|+ |(1, 1)n|+ |(1, 0)n|,

dimk ImF 1
n+1 = |

(
−(0, 1)n+1 t (1, 0)n+1 t (1, 1)n+1

)
∩ (APn+1//P2)|.

Proof It follows directly since the previous lemma implies that the set

−(0, 0)−n t (1, 0)−n t −(0, 1)n t (1, 1)n t (id+ (−1)nφn)((1, 0)+n )

is a basis of KerF 1
n+1, the set(

−(0, 1)n+1 t (1, 0)−n+1 t (1, 1)n+1 t (id+ (−1)n+1φn+1)((1, 0)+n+1)
)
∩k(APn+1//P2)

is a basis of ImF 1
n+1 and

(1, 0)n = (1, 0)+n t (1, 0)−n .

ut

The following result will be used in the description of the cup product defined
in HH∗(A). For any cocycle f in KerFn+1 we denote by f its equivalence class in
HHn(A).

Proposition 2 Let n > 1 and let

f =
m∑
i=1

λi(ρi, γi) ∈ KerF 1
n+1 ∩ k(APn//P2)

such that (ρi, γi) 6∈ −(0, 0)−n for all i with 1 ≤ i ≤ m. Then f = 0 in HHn(A).
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Proof From Lemma 1 we know that f is a linear combination of elements in(
(1, 0)−n t −(0, 1)n t (1, 1)n t (id+ (−1)nφn)((1, 0)+n )

)
∩ k(APn//P2).

Now,

(1, 0)−n ∩ (APn//P2) = F 1
n(+(0, 0)−n−1)

−(0, 1)n ∩ (APn//P2) = F 1
n(−(0, 0)+n−1)

(1, 1)n ∩ (APn//P2) = (−1)nF 1
n((1, 0)+n−1)

(id+ (−1)nφn)((1, 0)+n ) ∩ k(APn//P2) = F 1
n(+(0, 0)+n−1 ∩ (APn−1//P1))

and these equalities imply that f belongs to the image of Fn. ut

In order to describe the behavior of F 0
n+1 in k(APn//Q0) we need a descrip-

tion of the basis elements of this vector space. Observe that (APn//Q0) ⊂ +(0, 0)+n .

Definition 1 A pair (α1 · · ·αn, es(α1)) ∈ (APn//Q0) is called incomplete if αnα1 6∈
I, and it is called complete if αnα1 ∈ I. We denote by In and by Cn the set of
incomplete and complete pairs in (APn//Q0), respectively.

The cyclic group Zn =< τ > of order n acts on Cn, with the action given by

τ(α1 · · ·αn, es(α1)) = (αnα1 · · ·αn−1, es(αn)).

For any (ρ, e) ∈ Cn we define its order as the first natural number r such that
τr(ρ, e) = (ρ, e), and consider the norm of this element defined as follows

N(ρ, e) =
r−1∑
i=0

τ i(ρ, e).

Clearly τ and N induce linear maps τ,N : kCn → kCn. We consider the following
subset of complete pairs

Cn(0) = {(α1 · · ·αn, es(α1)) ∈ Cn :

@γ ∈ Q1 \ {αn} and @β ∈ Q1 \ {α1} with αnβ, γα1 ∈ I}.

Definition 2

(a) A complete pair (α1 · · ·αn, es(α1)) is called gentle if τm(α1 · · ·αn, es(α1)) ∈
Cn(0) for any m ∈ Z;

(b) An incomplete pair (α1 · · ·αn, es(α1)) is called empty if there is no relation
βγ ∈ I with t(β) = s(α1) = s(γ).

We denote Gn and En the set of gentle and empty pairs in (APn//Q0) respec-
tively, and NGn, NEn their corresponding complements in Cn and In respectively,
that is

(APn//Q0) = Cn t In, Cn = Gn tNGn, In = En tNEn.
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Example 4 For the algebra presented in Example 1 we have that, for any n > 0,

NGn =

{
{(α1α2)i, e1), (α2α1)i, e2)} if n = 2i,

∅ otherwise,

Gn = ∅,

NEn =

{
{β1(α2α1)i−1α2, e1)} if n = 2i,

∅ otherwise,

En = ∅,

and in Example 2 we have that

Gn =

{
(APn//Q0) if n = 2i,

∅, otherwise,

NGn = ∅,

En =

{
{(α1 . . . α7, e1)} if n = 7,

∅ otherwise,

NEn = ∅.

In order to describe the map F 0
n+1 : k(APn//Q0)→ k(APn+1//Q1) it is enough

to study its behavior in each direct summand kGn, kNGn, kEn and kNEn.
Observe that any element in the set (1, 1)n+1 ∩ (APn+1//Q1) is of the form

(α1α2 · · ·αnα1, α1)

where (α1α2 · · ·αn, es(α1)) is a complete pair in Cn, belonging to either Gn or NGn.
Hence we can decompose (1, 1)n+1 ∩ (APn+1//Q1) in the disjoint union

(1, 1)Gn+1 t (1, 1)NGn+1.

Lemma 2 The sequence

kGn
N // kGn

(1−τ) // kGn
N // kGn

is exact.

Proof It is clear that N(1 − τ) = (1 − τ)N = 0. Any x ∈ kGn can be written as
follows

x =
∑
i

mi−1∑
j=0

λijτ
j(ρi, esi),

with mi the order of (ρi, esi), λij ∈ k and (ρk, esk) 6= τ j(ρi, esi) if k 6= i. Now,
N(x) = 0 implies that

0 =
∑
i,j

λijNτ
j(ρi, esi) =

∑
i,j

λijN(ρi, esi)
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because Nτ = N . This implies that
∑mi−1
j=0 λij = 0, and hence

x =
∑
i,j

λijτ
j(ρi, esi)−

∑
i

(

mi−1∑
j=0

λij)(ρi, esi) =
∑
i

mi−1∑
j=1

λij(τ
j−1)(ρi, esi) ∈ Im(1−τ).

On the other hand, if (1− τ)x = 0 then

∑
i

mi−1∑
j=0

λijτ
j(ρi, esi) =

∑
i

mi∑
j=1

λi(j−1)τ
j(ρi, esi)

so λi0 = λij for any j, and hence

x =
∑
i

mi−1∑
j=0

λi0τ
j(ρi, esi) =

∑
i

λi0N(ρi, esi) ∈ ImN.

ut

Lemma 3 If n ≥ 1 then F 0
n+1 = G1

n+1 ⊕G2
n+1 ⊕G3

n+1 with

G1
n+1 : kEn → 0

G2
n+1 : kGn → k(1, 1)Gn+1

G3
n+1 : k(NEn tNGn)→ k(1, 1)NGn+1 ⊕ k (((1, 0)n+1 t (0, 1)n+1) ∩ (APn+1//Q1)) .

Moreover, G3
n+1 is injective, KerG2

2m+1 = kG2m/ Im(1− τ) and

KerG2
2m =

{
0 if char k 6= 2

kG2m−1/ Im(1− τ) if char k = 2.

Proof Recall that

F 0
n+1(α1 · · ·αn, es(α1))

=
∑

{β∈Q1:βα1∈I,
t(β)=s(α1)}

(βα1 · · ·αn, β) + (−1)n+1
∑

{β∈Q1:αnβ∈I,
s(β)=s(α1)}

(α1 · · ·αnβ, β)

so it is clear that F 0
n+1(En) = 0, and if (α1 · · ·αn, es(α1)) ∈ Gn then

G2
n+1(α1 · · ·αn, es(α1)) = (αnα1 · · ·αn, αn)+(−1)n+1(α1 · · ·αnα1, α1) ∈ k(1, 1)Gn+1.

Now we shall prove that KerG2
2m+1 = kG2m/ Im(1− τ). From the commutativity

of the diagram

kG2m
G2

2m+1 // k(1, 1)G2m+1

kG2m
(1−τ)

// kG2m

−ψ

OO
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where ψ(α1 · · ·α2m, es(α1)) = (α1 · · ·α2mα1, α1) is an isomorphism, we get that

KerG2
2m+1 = Ker(1− τ).

The equalities

Ker(1− τ) = ImN = kG2m/KerN = kG2m/ Im(1− τ)

follow from the exactness of the sequence

kG2m
N // kG2m

(1−τ) // kG2m
N // kG2m,

proved in Lemma 2. If char k = 2 the same proof works for KerG2
2m. If char k 6= 2,

we define T : k(1, 1)G2m → kG2m−1 as follows:

T (α1 · · ·α2m−1α1, α1) =
1

2

2m−2∑
i=0

(−1)iτ i(α1 · · ·α2m−1, es(α1))

and we get that T ◦G2
2m = id and G2

2m ◦ T = id, hence G2
2m is bijective.

If (α1 · · ·αn, es(α1)) ∈ NEn then

G3
n+1(α1 · · ·αn, es(α1))

=


(βα1 · · ·αn, β) ∈ k(1, 0)n+1

(−1)n+1(α1 · · ·αnγ, γ) ∈ k(0, 1)n+1

(βα1 · · ·αn, β) + (−1)n+1(α1 · · ·αnγ, γ) ∈ k((1, 0)n+1 t (0, 1)n+1)

depending on the existence of β and γ satisfying β 6= αn and βα1 ∈ I, γ 6= α1 and
αnγ ∈ I. Finally, if (α1 · · ·αn, es(α1)) ∈ NGn then

G3
n+1(α1 · · ·αn, es(α1))

=


(αnα1 · · ·αn, αn) + (−1)n+1(α1 · · ·αnα1, α1)

(αnα1 · · ·αn, αn) + (−1)n+1(α1 · · ·αnα1, α1) + (βα1 · · ·αn, β)

(αnα1 · · ·αn, αn) + (−1)n+1(α1 · · ·αnα1, α1) + (−1)n+1(α1 · · ·αnγ, γ)

(αnα1 · · ·αn, αn) + (−1)n+1(α1 · · ·αnα1, α1) + (βα1 · · ·αn, β) + (−1)n+1(α1 · · ·αnγ, γ)

depending on the existence of β and γ in Q1 satisfying β 6= αn and βα1 ∈ I, γ 6= α1

and αnγ ∈ I. Hence

G3
n+1(kNEn) ⊂ k (((1, 0)n+1 t (0, 1)n+1) ∩ (APn+1//Q1)) ,

G3
n+1(kNGn) ⊂ k

(
((1, 1)NGn+1 t (1, 0)n+1 t (0, 1)n+1) ∩ (APn+1//Q1)

)
.

Now we define the linear map

T : k
(

((1, 1)NGn+1 t (1, 0)n+1 t (0, 1)n+1) ∩ (APn+1//Q1)
)
→ k(NEn tNGn)
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as follows:

T (α1 · · ·αnα1, α1) = (−1)n+1
µ(w)−1∑
i=0

(−1)inτ i(w)

T (βα1 · · ·αn, β) =


w if αnα1 6∈ I
0 if αnα1 ∈ I and ∃γ 6= α1

such that αnγ ∈ I
(−1)n

∑µ(τ(w))−1
i=0 (−1)inτ i+1(w) otherwise

T (α1 · · ·αnγ, γ) =


−
∑µ(τ(w))−1
i=0 (−1)inτ i+1(w) if αnα1 ∈ I

0 if αnα1 6∈ I and ∃β 6= αn

such that βα1 ∈ I
(−1)n+1w otherwise

where w = (α1 · · ·αn, es(α1)) and µ(w) is the first natural number such that

τµ(w)−1(w) 6∈ Cn(0). A direct computation shows that T ◦ G3
n+1 = id, and hence

G3
n+1 is injective. ut

Proposition 3 If n ≥ 1 then

dimk KerF 0
n+1 =


|En|+ dimk kGn/ Im(1− τ) if n is even and char k 6= 2,

|En| if n is odd and char k 6= 2,

|En|+ dimk kGn/ Im(1− τ) if char k = 2,

dimk ImF 0
n+1 =


|Cn|+ |NEn| − dimk kGn/ Im(1− τ) if n is even and char k 6= 2,

|Cn|+ |NEn| if n is odd and char k 6= 2,

|Cn|+ |NEn| − dimk kGn/ Im(1− τ) if char k = 2.

Proof The formula for the dimension of KerF 0
n+1 follows by a direct computation

using Lemma 3. The equalities

dimk ImF 0
n+1 = |(APn//Q0)| − dimk KerF 0

n+1

and
|(APn//Q0)| = |Gn|+ |NGn|+ |En|+ |NEn| = |Cn|+ |En|+ |NEn|

imply the formula for dimk ImF 0
n+1. ut

3.3 Dimensions of the Hochschild cohomology groups

We start this section with the computation of the first Hochschild cohomology
groups.

Theorem 1 Let A = kQ/I be a quadratic string algebra. Then

dimk HH0(A) = |−(Q0//P1)−| + 1,

dimk HH1(A) =

{
|−(0, 0)−1 |+ |Q1| − |Q0| + 1 if char k 6= 2,

|−(0, 0)−1 |+ |Q1| − |Q0| + 1 + |G1| if char k = 2.
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Proof Recall that the maps F 0
1 and F 1

1 appearing in the commutative diagram

HomE−E(kQ0, A)
F1 //

∼=

��

HomE−E(kQ1, A)

∼=

��
k(Q0//Q0)⊕ k(Q0//P1)


0 0
F 0
1 0
0 F 1

1


// k(Q1//Q0)⊕ k(Q1//Q1)⊕ k(Q1//P2)

are given by

F 0
1 (er, er) =

∑
{β∈Q1: t(β)=r}

(β, β)−
∑

{β∈Q1: s(β)=r}

(β, β),

F 1
1 (er, γ) =

∑
{β∈Q1: t(β)=r}

(β, βγ)−
∑

{β∈Q1: s(β)=r}

(β, γβ).

Then

F 0
1 (
∑
r∈Q0

λr(er, er)) =
∑
β∈Q1

(λt(β) − λs(β))(β, β) = 0

implies that λi = λj whenever there exists an arrow β : i→ j. Since Q is connected,
we have that λi = λj for any i, j. Hence dimk KerF 0

1 = 1.
On the other hand, (Q0//P1) =− (Q0//P1)− t− (Q0//P1)+ t+ (Q0//P1)− t+

(Q0//P1)+ and we have that:

(i) F 1
1 (−(Q0//P1)−) = 0;

(ii) F 1
1 induces a bijection from −(Q0//P1)+ to −(0, 1)1;

(iii) F 1
1 induces a bijection from +(Q0//P1)− to (1, 0)−1 ;

(iv) there exists a bijection φ1 : (1, 0)+1 →
+(0, 1)1 given by φ1(α, αγ) = (β, γβ)

such that F 1
1 (+(Q0//P1)+) = (id− φ1)((1, 0)+1 ).

Hence −(Q0//P1)− is a basis for KerF 1
1 and then

dimk HH0(A) = dimk KerF1 = dimk KerF 0
1 + dimk KerF 1

1 = 1 + |−(Q0//P1)−|

From these computations we get that

dimk ImF 0
1 = |(Q0//Q0)| − dimk KerF 0

1 = |Q0| − 1

dimk ImF 1
1 = |(Q0//P1)| − dimk KerF 1

1

= |−(0, 1)1|+ |(1, 0)−1 |+ |(1, 0)+1 |.

From Proposition 1 and Proposition 3 we have that

dimk KerF2 = dimk KerF 0
2 + dimk KerF 1

2

= |E1|+ |−(0, 0)−1 |+ |
−(0, 1)1|+ |(1, 1)1|+ |(1, 0)1|

if char k 6= 2 and

dimk KerF2 = |E1|+ |−(0, 0)−1 |+ |
−(0, 1)1|+ |(1, 1)1|+ |(1, 0)1|+dimk kG1/ Im(1−τ)
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if char k = 2. Now |(1, 1)1| = |Q1|, E1 = ∅ since A is finite dimensional and

kG1/ Im(1− τ) = kG1,

so

dimk HH1(A) =

{
|−(0, 0)−1 |+ |Q1| − |Q0| + 1 if char k 6= 2,

|−(0, 0)−1 |+ |Q1| − |Q0| + 1 + |G1| if char k = 2.

ut

The dimensions that have been computed in Propositions 1 and 3 lead us to
the following theorem.

Theorem 2 If A = kQ/I is a quadratic string algebra and n ≥ 2 then

dimk HHn(A) = |−(0, 0)−n |+ |En| − |NEn−1|+ |
(

(1, 0)n t −(0, 1)n

)
∩ (APn//Q1)|

+


dimk kGn/ Im(1− τ) if n is even and char k 6= 2

dimk kGn−1/ Im(1− τ) if n is odd and char k 6= 2,

dimk kGn/ Im(1− τ) + dimk kGn−1/ Im(1− τ) if char k = 2.

Proof From Propositions 3 and 1 we get that if n is even and char k 6= 2 then

dimk HHn(A) = dimk KerFn+1 − dimk ImFn

= |−(0, 0)−n |+ |−(0, 1)n|+ |(1, 1)n|+ |(1, 0)n|

− |
(
−(0, 1)n t (1, 0)n t (1, 1)n

)
∩ (APn//P2)|

+ |En|+ dimk kGn/ Im(1− τ)− |Cn−1| − |NEn−1|

and the desired formula follows since the identification

(α1 · · ·αn−1α1, α1)↔ (α1 · · ·αn−1, es(α1))

implies that |(1, 1)n ∩ (APn//Q1)| = |Cn−1|. Similarly one can deduce the other
formulae. ut

Definition 3 A string algebra A = kQ/I is called a gentle algebra if in addition
(Q, I) satisfies :

G1) For an arrow α in Q there exists at most one arrow β and at most one arrow
γ such that αβ ∈ I and γα ∈ I.

G2) I is quadratic.

The Hochschild cohomology groups of gentle algebras have already been com-
puted in [20], and these results have been expressed in terms of the derived in-
variant introduced by Avella-Alaminos and Geiss in [4]. As a consequence of our
previous theorem, we recover the results in [20].
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Corollary 1 If A = kQ/I is a gentle algebra, then

dimk HH0(A) = |−(Q0//P1)−|+ 1

dimk HH1(A) =

{
|−(0, 0)−1 |+ |Q1| − |Q0| + 1 if char k 6= 2,

|−(0, 0)−1 |+ |Q1| − |Q0| + 1 + |(Q1//Q0)| if char k = 2,

dimk HHn(A) = |−(0, 0)−n |+ |En|+ adimk kGn/ Im(1− τ) + bdimk Gn−1/ Im(1− τ)

where

(a, b) =


(1, 0) if n ≥ 2, n even, char k 6= 2

(0, 1) if n ≥ 2, n odd, char k 6= 2,

(1, 1) if n ≥ 2, char k = 2.

Proof From Theorems 1 and 2 it is clear that we only have to prove that

|NEn−1| = |
(

(1, 0)n t −(0, 1)n

)
∩ (APn//Q1)|.

Since A is gentle, NGn−1 = ∅, and in this case the injective map

G3
n : k(NEn−1)→ k (((1, 0)n t (0, 1)n) ∩ (APn//Q1))

studied in Lemma 3 satisfies

G3
n(α1 · · ·αn−1, er)

=


(βα1 · · ·αn−1, β) ∈ k(1, 0)−n

(−1)n(α1 · · ·αn−1γ, γ) ∈ k(−(0, 1)n)

(βα1 · · ·αn−1, β) + (−1)n(α1 · · ·αn−1γ, γ) ∈ k((id+ (−1)nφn)(1, 0)+n )

depending on the existence of β and γ. So

|NEn−1| = dimk ImG3
n = |

(
(1, 0)n t −(0, 1)n

)
∩ (APn//Q1)|.

ut

Example 5 The algebra presented in Example 1 is a quadratic string algebra, then
by Theorems 1 and 2 we have that

dimk HHn(A) =


2 if n = 0,

3 if n = 1,

1 if n = 2i+ 1, i ≥ 1,

0 otherwise.

The algebra in Example 2 is a gentle algebra, then we can compute its cohomology
using Corollary 1,

dimk HHn(A) =


1 if n = 0,

3 if n = 1,

2 if n = 7,

1 otherwise.
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The following results will be used in the description of the Lie bracket defined
in HH∗(A).

Proposition 4 Let A be a gentle algebra, n > 1 and let

f =
m∑
i=1

λi(ρi, γi) ∈ KerF 1
n+1

such that (ρi, γi) 6∈ −(0, 0)−n , (ρi, γi) 6∈ (1, 1)n ∩ (APn//Q1) for all i with 1 ≤ i ≤ m.

Then f = 0 in HHn(A).

Proof From Lemma 1 we know that f can be written as f = f1 + f2 where

f1 ∈ KerF 1
n+1 ∩ k(APn//Q1) and f2 ∈ KerF 1

n+1 ∩ k(APn//P2).

By Proposition 2 we have that f2 = 0 in HHn(A). On the other hand, f1 is a linear
combination of elements in(

(1, 0)−n t −(0, 1)n t (id+ (−1)nφn)((1, 0)+n )
)
∩ k(APn//Q1).

The proof of Corollary 1 shows that(
(1, 0)−n t− (0, 1)n t (id+ (−1)nφn)(1, 0)+n

)
∩ k(APn//Q1) = ImG3

n ⊂ ImF 0
n .

Hence f1 = 0 in HHn(A). ut

Corollary 2 Let A be a gentle algebra, n > 1 and let

f =
m∑
i=1

λi(ρi, γi) ∈ KerF 1
n+1

such that (ρi, γi) 6∈ −(0, 0)−n for all i with 1 ≤ i ≤ m. If Gn−1 = ∅ then f = 0 in

HHn(A).

Proof By assumption Gn−1 = ∅ and, since A is gentle, NGn−1 = ∅. Then

(1, 1)n ∩ (APn//Q1) = (1, 1)Gn t (1, 1)NGn = ∅

and hence the desired result follows from the previous proposition. ut

4 Gerstenhaber algebra

4.1 Comparison morphisms

The cup product and the Lie bracket in the cohomology HH∗(A) are induced by
operations defined using the bar resolution, and we have made the computations of
HHn(A) using Bardzell’s resolution. In this section we will construct comparison
morphisms between the bar resolution and Bardzell’s resolution in order to get
formulae for the cup product and the Lie bracket.
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We start by recalling the definition of these structures at the level of cochains
using the bar resolution (A⊗

n

, bn)n≥0. Given f ∈ HomE−E(A⊗
n

, A) and g ∈
HomE−E(A⊗

m

, A) we have

f ∪ g ∈ HomE−E(A⊗
m+n

, A) and [f, g] ∈ HomE−E(A⊗
m+n−1

, A)

defined by

f ∪ g(v1 ⊗ · · · ⊗ vn+m) = f(v1 ⊗ · · · ⊗ vn)g(vn+1 ⊗ · · · ⊗ vn+m)

and

[f, g] = f ◦ g − (−1)(n−1)(m−1)g ◦ f

where

f ◦ g =
n∑
i=1

(−1)(i−1)(m−1)f ◦i g (1)

and

f ◦ig(v1⊗. . .⊗vn+m−1) = f(v1⊗. . .⊗vi−1⊗g(vi⊗. . . vi+m−1)⊗vi+m⊗. . . vn+m−1).

These structures are easily carried to Bardzell’s resolution using the comparison
morphisms

A⊗ kAPn ⊗A
Un //

A⊗A⊗
n

⊗A
Vn

oo

given by the A-bimodule morphisms

U0(1⊗ e⊗ 1) = e⊗ 1

Un(1⊗ α1α2 . . . αn ⊗ 1) = 1⊗ α1 ⊗ . . .⊗ αn ⊗ 1, n ≥ 1

V0(1⊗ 1) = 1⊗ 1⊗ 1 =
∑
i∈Q0

1⊗ ei ⊗ 1

V1(1⊗ γ ⊗ 1) =

{
0 if |γ| = 0∑s
i=1 α1 · · ·αi−1 ⊗ αi ⊗ αi+1 · · ·αs if γ = α1 · · ·αs

Vn(1⊗ v1 ⊗ · · · ⊗ vn ⊗ 1)

=


v′1 ⊗ α1v2 · · · vn−1αn ⊗ v′n if v1 = v′1α1, vn = αnv

′
n

and α1v2 · · · vn−1αn ∈ APn,

0 otherwise.

Lemma 4 The maps U = (Un)n≥0 and V = (V )n≥0 are morphism of complexes and

V ◦ U = id .

Using the isomorphisms

HomA−A(A⊗A⊗
n

⊗A,A) ' HomE−E(A⊗
n

, A),

HomA−A(A⊗ kAPn ⊗A,A) ' HomE−E(kAPn, A)
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we get that the morphisms U and V induce quasi-isomorphisms

U• =
(
Un : HomE−E(A⊗

n

, A) −→ HomE−E(kAPn, A)
)
n≥0

and

V • =
(
V n : HomE−E(kAPn, A) −→ HomE−E(A⊗

n

, A)
)
n≥0

.

With these quasi-isomorphisms, the cup product and the Lie bracket, which we
still denote ∪ and [ , ], can be defined as follows: given f ∈ HomE−E(kAPn, A)
and g ∈ HomE−E(kAPm, A),

f ∪ g ∈ HomE−E(kAPn+m, A) and f ◦i g ∈ HomE−E(kAPn+m−1, A), 1 ≤ i ≤ n

are defined by

f ∪ g = Un+m(V n(f) ∪ Vm(g)) and f ◦i g = Um+n−1(V n(f) ◦i Vm(g)).

As usual,

Fn+m+1(f ∪ g) = Fn+1(f) ∪ g + (−1)nf ∪ Fm+1(g)

Fn+m([f, g]) = [f, Fm+1(g)] + (−1)m−1[Fn+1(f), g]

so the products ∪ and [−,−] defined in the complex (HomE−E(kAPn, A), Fn)n≥0

induce products at the cohomology level.

4.2 Formulae for the cup product and the Lie bracket

The following detailed computations will be useful in order to describe the desired
structures:

f ∪ g(α1 · · ·αn+m) = f(α1 · · ·αn)g(αn+1 · · ·αn+m)

and, if g ∈ HomE−E(kAPm, A) is a basis element, that is, g sends a fix basis
element in APm to a basis element in P, and it is zero otherwise, then

f ◦1 g(α1 . . . αn+m−1) = µf(βαm+1 · · ·αn+m−1)

if g(α1 · · ·αm) = µβ ∈ P1 and βαm+1 ∈ I,

f ◦n g(α1 . . . αn+m−1) = f(α1 · · ·αn−1β)µ

if g(αn · · ·αn+m−1) = βµ ∈ P1 and αn−1β ∈ I,

f ◦i g(α1 · · ·αn+m−1) = f(α1 · · ·αi−1βαi+m · · ·αn+m−1)

if g(αi · · ·αi+m−1) = β ∈ Q1 and βαi+m, αi−1β ∈ I, and it is zero otherwise.

Now, using the identification HomE−E(kAPm+n, A) ' k(APm+n//P) given by

f(ρ,γ) ←→ (ρ, γ),

we get that, given

(ρ, γ) = (α1 . . . αn, γ) ∈ (APn//P) and (ρ′, γ′) = (β1 . . . βm, γ
′) ∈ (APm//P)

we have that
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– if αnβ1 ∈ I and γγ′ 6∈ I then (ρ, γ) ∪ (ρ′, γ′) = (ρρ′, γγ′);
– if γ′ ∈ Q1, γ′ = αi, αi−1β1 ∈ I and βmαi+1 ∈ I then

(ρ, γ) ◦i (ρ′, γ′) = (α1 . . . αi−1ρ
′αi+1 . . . αn, γ);

– if γ′ ∈ P2, γ′ = µα1 and βmα2 ∈ I then (ρ, γ) ◦1 (ρ′, γ′) = (ρ′α2 · · ·αn, µγ);
– if γ′ ∈ P2, γ′ = αnµ and αn−1β1 ∈ I then (ρ, γ) ◦n (ρ′, γ′) = (α1 · · ·αn−1ρ

′, γµ)

and all the other cases are zero.

4.3 Vanishing of the cup product and the Lie bracket

In this section we find conditions on the presentation (Q, I) of the quadratic string
algebra that ensures the vanishing of the cup product and the Lie bracket. We
start with a remark that will be used throughout this section.

Remark 1 Any f =
∑
i λi(ρi, γi) in HHn(A) can be written as f = f1 + f2 with

f1 =
∑
|γi|=0

λi(ρi, γi) ∈ KerF 0
n+1, f2 =

∑
|γi|>0

λi(ρi, γi) ∈ KerF 1
n+1

Moreover from Lemmas 1 and 3 we have that f1 ∈ k(En t Gn) and

f2 ∈ k(−(0, 0)−n t (1, 0)−n t− (0, 1)n t (1, 1)n t (id+ (−1)nφn)((1, 0)+n )).

Proposition 5 Let A = kQ/I be a quadratic string algebra, n,m > 0. If Gn = ∅ = Gm
then HHn(A) ∪HHm(A) = 0.

Proof Let f = f1 + f2 ∈ HHn(A), g = g1 + g2 ∈ HHm(A) with f1 ∈ KerF 0
n+1, f2 ∈

KerF 1
n+1, g1 ∈ KerF 0

m+1, g2 ∈ KerF 1
m+1. We will show that, for any i, j = 1, 2,

fi ∪ gj = fi ∪ gj = 0.

The assumption Gn = ∅ and Lemma 3 imply that f1 =
∑
i λi(ρi, γi) ∈ k(En), so for

any (ρ′, γ′) ∈ (APm//P) we have that

(ρi, γi) ∪ (ρ′, γ′) = 0

because ρiρ
′ 6∈ APn+m. Hence f1 ∪ gj = 0. Similarly, fi ∪ g1 = 0. Finally consider

f2 ∪ g2 where

f2 =
∑
i

µi(ρi, γi) ∈ KerF 1
n+1, g2 =

∑
j

µ′j(ρ
′
j , γ
′
j) ∈ KerF 1

m+1.

Recall that

−(0, 0)−n t (1, 0)−n t− (0, 1)n t (1, 1)n t (id+ (−1)nφn)((1, 0)+n )

is a basis of KerF 1
n+1 and observe that f2 ∪ g2 ∈ KerF 1

n+m+1 ∩ k(APn+m//P2). If
(ρi, γi) ∈ −(0, 0)−n or (ρ′j , γ

′
j) ∈

−(0, 0)−m then γiγ
′
j ∈ I and hence (ρiρ

′
j , γjγ

′
j) = 0.

If (ρi, γi) ∈ −(0, 1)n and (ρ′j , γ
′
j) ∈ (1, 0)−m we have that

(ρi, γi) = (ρ̂iα1, γ̂iα1) and (ρ′j , γ
′
j) = (α2ρ̂′j , α2γ̂′j)

with α1, α2 ∈ Q1. Then (ρiρ
′
j , γiγ

′
j) = (ρ̂iα1α2ρ̂′j , γ̂iα1α2γ̂′j) = 0 because α1α2 ∈ I

or ρ̂iα1α2ρ̂′j 6∈ APn+m. In all the remaining cases (ρiρ
′
j , γiγ

′
j) 6∈

−(0, 0)−n+m, and
the desired result follows from Proposition 2. ut
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Corollary 3 Let A = kQ/I be a quadratic string algebra, char k 6= 2. Then HHn(A)∪
HHm(A) = 0 for any n,m > 0 odd natural numbers.

Proof The assertion follows from the previous proof since for n odd we have that
KerF 0

n+1 = kEn and hence the hypothesis Gn = ∅ is superfluous in this case. ut

Now we will describe the Lie bracket for gentle algebras.

Lemma 5 If A = kQ/I is a gentle algebra, n,m > 1 and g ∈ −(0, 0)−m. Then f ◦g = 0
for any f ∈ (APn//P).

Proof Since f ◦ g =
∑n
i=1(−1)(i−1)(m−1)f ◦i g, it suffices to compute f ◦i g for each

i with 1 ≤ i ≤ n. Let g = (ρ, γ) = (β1 · · ·βm, γ), with γ = µγ′ = γ′′ν, µ, ν ∈ Q1,
β1 6= µ and βm 6= ν and let f = (α1 . . . αn, δ) ∈ (APn//P). The non vanishing of
f ◦i g would imply that

α1 . . . αi−1β1 . . . βmαi+1 . . . αn ∈ APn+m−1 and αi = µ

or

α1 . . . αi−1β1 . . . βmαi+1 . . . αn ∈ APn+m−1 and αi = ν.

In this case

αi−1β1 ∈ I and αi−1µ ∈ I

or

βmαi+1 ∈ I and ναi+1 ∈ I.

But β1 6= µ, βm 6= ν and by hypothesis A is gentle. This is a contradiction. ut

Proposition 6 If A = kQ/I is a gentle algebra, n,m > 1, and Gn−1 = ∅ = Gm−1

then [ HHn(A),HHm(A) ] = 0.

Proof Let f = f1 + f2 ∈ HHn(A), g = g1 + g2 ∈ HHm(A), with f1 ∈ KerF 0
n+1, f2 ∈

KerF 1
n+1, g1 ∈ KerF 0

m+1, g2 ∈ KerF 1
m+1. We will show that [fi, gj ] = 0 for any i, j.

Since f1 ∈ k(APn//Q0) and g1 ∈ k(APm//Q0), it is clear that fi ◦ g1 = 0 = gi ◦ f1
for any i. The statement is clear if f2 = 0 = g2. If f2 6= 0, by Corollary 2 we
may assume that f2 belongs to k(−(0, 0)−n ). In this case Lemma 5 implies that
gi ◦ f2 = 0 for any i. The case g2 6= 0 is analogous, and hence we are done. ut

Corollary 4 Let A = kQ/I be a gentle algebra, char k 6= 2. Then [HHn(A),HHm(A)] =
0 for any n,m ≥ 1 even natural numbers.

Proof From the previous proof and Proposition 4 we deduce that we only have
to consider the case f2 ∈ k(1, 1)n ∩ k(APn//Q1) and g2 ∈ k(1, 1)m ∩ k(APm//Q1).
Since A is gentle we have that (1, 1)2s ∩ (AP2s//Q1) = (1, 1)G2s, and the proof of
Proposition 3 shows that k(1, 1)G2s = ImG2

2s ⊂ ImF2s, so f2 = 0 and g2 = 0 in this
case. ut
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4.4 Non-vanishing of the cup product and the Lie bracket

In this section we find conditions on the presentation (Q, I) of a quadratic string
algebra in order to get non-trivial structures.

Theorem 3 Let A = kQ/I be a quadratic string algebra and Gn 6= ∅ for some n > 0.

Then the cup product defined in HH∗(A) is non-trivial. More precisely,

(i) if n is even and char k 6= 2, HHs1n(A) ∪HHs2n(A) 6= 0;

(ii) if n is odd and char k 6= 2, HH2s1n(A) ∪HH2s2n(A) 6= 0;

(iii) if char k = 2, HHs1n(A) ∪HHs2n(A) 6= 0

for any s1, s2 ≥ 1.

Proof By hypothesis there exists ω = (α1 · · ·αn, es(α1)) ∈ Gn. If this element has
order r and char k = 2 or, char k 6= 2 and n is even, we have seen in the proof of
Lemma 3 that

N(ω) = N(α1 · · ·αn, es(α1)) =
r−1∑
i=0

τ i(α1 · · ·αn, es(α1)) ∈ KerF 0
n+1

Moreover, for any s ≥ 1, the element ωs = ((α1 · · ·αn)s, es(α1)) belongs to Gsn, has
order r and

N(ωs) = N((α1 · · ·αn)s, es(α1)) =
r−1∑
i=0

τ i((α1 · · ·αn)s, es(α1)) ∈ KerF 0
sn+1

The element N(ωs) is non zero in HHsn(A) because ImFsn ⊆ k(APsn//P1). For
any s1, s2 ≥ 1 and 0 ≤ i, j < r, we have

τ i(ωs1) ∪ τ j(ωs2) = δijτ
i(ωs1+s2)

where δij is the Kronecker’s delta. Then

N(ωs1) ∪N(ωs2) = N(ωs1+s2)

and hence

HHs1n(A) ∪HHs2n(A) 6= (0).

If n is odd and char k 6= 2, we consider the elements ω2s and we get that

HH2s1n(A) ∪HH2s2n(A) 6= (0)

for any s1, s2 ≥ 1. ut

Theorem 4 Let char k = 0 and let A = kQ/I be a quadratic string algebra such that

Gn 6= ∅ for some n > 0. Then the Lie bracket defined in HH∗(A) is non-trivial. More

precisely,

(i) if n is even, [HHs1n+1(A),HHs2n+1(A)] 6= 0;

(ii) if n is odd, [HH2s1n+1(A),HH2s2n+1(A)] 6= 0

for any s1, s2 ≥ 1, s1 6= s2.
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Proof By hypothesis there exists ω = (α1 · · ·αn, es(α1)) ∈ Gn and suppose that it
has order r. From Lemma 1 we have that

ψ(ω) = (α1 . . . αnα1, α1) ∈ KerF 1
n+2

because (α1 . . . αnα1, α1) ∈ (1, 1)n+1. Moreover, for any s ≥ 1, the element

ωs = ((α1 · · ·αn)s, es(α1)) ∈ Gsn

also has order r and

ψ(ωs) = ((α1 · · ·αn)sα1, α1) ∈ KerF 1
sn+2.

If n is even, the element ψ(ωs) is non zero in HHsn+1(A) because we have seen in
the proof of Lemma 3 that ψ(ωs) ∈ ImFsn+1 if and only if ws ∈ Im(1 − τ). But
Im(1− τ) = KerN and ws 6∈ KerN . For any s1, s2 ≥ 1, we have that

ψ(ωs1) ◦i ψ(ωs2) =

{
ψ(ωs1+s2), if i = lr + 1, for l = 0, · · · , s1 nr ;
0, otherwise.

Then

ψ(ωs1) ◦ ψ(ωs2) =

s1n+1∑
i=1

(−1)(i−1)(s2n)ψ(ωs1) ◦i ψ(ωs2) =

s1
n
r∑

l=0

(−1)(lr)(s2n)ψ(ωs1+s2)

= (s1
n

r
+ 1)ψ(ωs1+s2)

and hence

[ψ(ωs1), ψ(ωs2)] = ψ(ωs1) ◦ ψ(ωs2)− (−1)(s1n)(s2n)ψ(ωs2) ◦ ψ(ωs1)

= (s1
n

r
+ 1)ψ(ωs1+s2)− (s2

n

r
+ 1)ψ(ωs1+s2)

=
n

r
(s1 − s2)ψ(ωs1+s2).

So,
[ HHns1+1(A),HHns2+1(A) ] 6= 0 if s1 6= s2.

If n is odd, we consider the element

ψ(ω2s) = ((α1 . . . αn)2sα1, α1) ∈ KerF2sn+2

and we get that

[ HH2ns1+1(A),HH2ns2+1(A) ] 6= 0, if s1 6= s2.

ut

Remark 2 The previous theorem also holds in any characteristic if we add some
hypothesis on the element n

r .

Example 6 For the algebra in Example 2 we have that Gn 6= ∅ hence our Theorems
4 and 3 say that its Gerstenhaber algebra structure is non-trivial. More precisely,
if we consider the following sets of generators:

– {u1 = (β1, β1), v1 = (α1, α1), w1 = (α7, α7)} for HH1(A),
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– {u7 = ((β1β2)3β1, β1), v7 = (α1 . . . α7, e1)} for HH7(A)
– {(u2n+1 = ((β1β2)nβ1, β1)} for HH2n+1(A) when n > 0, n 6= 3, and
– {u2n = N(((β1β2)n, e6))} for HH2n(A) when n ≥ 1,

then

u2i ∪ u2j = u2(i+j)

u2i ∪ u2j+1 = u2j+1 ∪ u2i = u2(i+j)+1

[u2i+1, u2j+1] = (i− j) u2(i+j)+1

[u2i, u2j+1] = −[ u2j+1, u2i ] = i u2(i+j)

[v7, v1] = −[v1, v7] = v7

[v7, w1] = −[w1, v7] = v7

and all the other cases are zero.

Example 7 Let char k 6= 2 and let A = kQ/I be the radical square zero algebra
whose quiver Q consists of an oriented cycle of length m > 1

α1

//

α2

��
αm

??

αi−1

��

αi+1

__

αioo

A straightforward computation shows that

HHqm(A) = k, HHqm+1(A) = k

when qm is even and it is zero in all the other cases. More precisely,

uqm = N((α1, . . . , αm)q, es(α1)) and uqm+1 = ((α1 . . . , αm)qα1, α1)

are generators of HHqm(A) and HHqm+1(A) respectively. From Theorems 4 and 3
we know that its Gerstenhaber algebra structure is non-trivial and the bracket on
the generators is given by

[uq1m+1, uq2m+1 ] = (q1 − q2) u(q1+q2)m+1

[uq1m, uq2m+1 ] = −[uq2m+1 , uq1m] = q1 u(q1+q2)m

If we only consider odd degrees, that is,

HHodd(A) =
⊕
q≥0,

qm even

HHqm+1(A),

then the Gerstenhaber bracket endows HHodd(A) with a Lie algebra structure
such that it is isomorphic to the infinite dimensional Witt algebra. In this way we
recover the results in [29, Proposition 4.3.4].
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