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The study of neutrinoless double beta decays of nuclei and hyperons requires the calculation of hadronic

matrix elements of local four-quark operators that change the total charge by two units�Q ¼ 2. Using a low

energy effectiveLagrangian that induces these transitions,we compute these hadronicmatrix elements in the

framework of theMassachussetts Institute of Technology bagmodel. As an illustrative examplewe evaluate

the amplitude and transition rate of�� ! pe�e�, a decay process that violates lepton number by two units

(�L ¼ 2). The relevantmatrix element is evaluatedwithout assuming the usual factorization approximation

of the four-quark operators and the results obtained in both approaches are compared.
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I. INTRODUCTION

Lepton number violating (LNV) interactions with�L¼2
are widely viewed as the cleanest test of the Majorana
nature of massive neutrinos [1]; indeed, Majorana mass
terms violate lepton number by two units [2] giving rise to
production or decay processes with�L ¼ 2. Other mecha-
nisms underlying the generation of neutrino masses, like
the ones involving Higgs triplets [3], can also provide a
source of LNV. Currently, neutrinoless double beta (0���)
nuclear decays ðA; ZÞ ! ðA; Zþ 2Þe�e� have become the
most sensitive probe to search for the effects of very light
Majorana neutrinos [4]. The underlying mechanism lead-
ing to these transitions is the conversion of two bounded
neutrons in the initial nucleus into two bounded protons in
the final one, making the knowledge of the nuclear wave
functions the main limitation to achieve precise theoretical
predictions. At the quark level, the elementary process
dd ! uue�e� is responsible for 0��� nuclear decays.

The same simple mechanism would produce �L ¼ 2
violation in hyperon decays, B�

1 ! Bþ
2 l

�l0�, where B1;2

are hyperon states and l, l0 ¼ e or �. Examples of these
decays are shown in Table I:

Only one experimental upper limit of the channels listed
in Table I has been reported so far, namely Bð�� !
p����Þ � 4:0� 10�8 [5]. A less restrictive �L ¼ 2 de-
cay mode in the charm sector has been reported in Ref. [6]
with the following upper limit: Bð�þ

c ! ���þ�þÞ �
7:4� 10�4. In the case of the decays listed in Table I,
two down-type (d or s) quarks convert into two up-quarks
changing the charge of hyperons according to the �Q ¼
�L ¼ þ2 rule, as is shown in Fig. 1. These quarks con-
versions are assumed to occur at the same space-time
location and, therefore, they are driven by local four-quark
operators. Therefore, the study of the relatively simpler

case provided by 0��� hyperons decays may shed some
light on the approximations used to evaluate the hadronic
matrix elements relevant for similar nuclear decays.
In the present paper we study the hadronic matrix ele-

ments of four-quark operators taken between initial and
final hyperon states in the framework of theMassachussetts
Institute of Technology (MIT) bag model [7]. We use the
effective low-energy Lagrangian proposed in Ref. [8]
which underlies �L ¼ 2 semileptonic transitions as the
ones shown in Table I. This method provides an evaluation
of the hadronic matrix elements that does not use the
approximation based on the insertion of intermediate states
by factorizing the four-quark operators into two quark
currents. The later approximation is commonly used in
the evaluation of the hadronic matrix elements in neutrino-
less double-beta decays of nuclei [4] and hyperons [9,10].

II. EFFECTIVE LAGRANGIAN AND HADRONIC
MATRIX ELEMENTS

The most general form of the low-energy effective
Lagrangian that is relevant for LNV semileptonic hyperon
decays was given in Ref. [8] (the superscript c labels the
charge conjugated spinor):

TABLE I. Lepton number violating (�L ¼ 2) decays of
hyperons. The classification of these decays according to their
change in strangeness (�S) is also indicated.

Channel �S Channel �S

�� ! �þe�e� 0 �� ! pe�e� 2

�� ! pe�e� 1 �� ! pe��� 2

�� ! pe��� 1 �� ! p���� 2

�� ! p���� 1 �� ! �þe�e� 2

�� ! �þe�e� 1 �� ! �þ��e� 2

�� ! �þ��e� 1 �� ! �þ���� 2
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�L�� ¼ G2
F

���

fc1ð �u�idÞð �u�jdÞ þ c2½ð �u�idÞð �u�jsÞ

þ ð �u�isÞð �u�jdÞ� þ c3ð �u�isÞð �u�jsÞg fd1ð �e�ke
cÞ

þ d2ð ���k�
cÞ þ d3ð �e�k�

c þ ���ke
cÞg: (1)

Here��� is a mass parameter corresponding to the physics

scale for these processes and ci, di are dimensionless
coefficients which represent the interaction strengths for
the different channels. The dimensionless �i’s are combi-
nations of Dirac gamma matrices and depend on the physi-
cal mechanisms involved. The parameters and Lorentz
structures involved in Eq. (1) depend on the specific under-
lying model and will contain some unknown parameters
[8]. In the present paper, for the purpose of illustration, we
will assume that only vector—axial structures are involved
in fermionic bilinears althought it is not very difficult to
consider other Lorentz structures.

At the lowest order in the interaction Lagrangian of
Eq. (1), the 0��� decays of hyperons require the evalu-
ation of the hadronic matrix elements of four-quark opera-
tors. The amplitude for any of the decays listed in Table I,
which we denote as B�

1 ðpÞ ! Bþ
2 ðp0Þl�ðp1Þl�ðp2Þ with

l ¼ e or � (letters within brackets denote the four-
momenta), is given by:

MðB�
1 ! Bþ

2 l
�l�Þ ¼ G2

F

���

cidjX
B1!B2
�� L��; (2)

where

L�� ¼ ½ �uðp2Þ��ð1� �5Þ��u
cðp1Þ � ðp1 $ p2Þ�

¼ 2g�� �uðp2Þð1þ �5Þucðp1Þ (3)

is the properly antisymmetrized leptonic tensor, ci and dj
are the corresponding coefficients of the operators in the
Lagrangian (1) and ucðp1Þ denotes the charge conjugate of
spinor uðp1Þ; note that L�� becomes a symmetric tensor

after using the charge conjugation property of the leptonic
current [11].
The hadronic matrix element is:

XB1!B2
�� ¼ hBþ

2 ðp0Þjð �u��ð1� �5ÞDÞ
� ð �u��ð1� �5ÞD0ÞjB�

1 ðpÞi; (4)

where D, D0 denote down-type quarks d or s. One way to
compute the hadronic matrix element is to insert, between
the product of quark bilinear operators, a set of intermedi-
ate baryonic states with the appropriate quantum numbers.
Usually, one has to truncate the calculation by including
only a few intermediate states which are supposed to be the
dominant ones (for example, the�0 and� hyperons in this
case). This was done in Refs. [9,10] in a model where the
effects of virtual Majorana neutrinos is considered (see
Fig. 2 for the specific case of �� ! pl�l� decay). Next,
one needs to use a set of form factors to parametrize the
matrix elements of weak currents at each vertex; this
procedure introduces a model-dependent input in the cal-
culations. This approximation is good as long as only a few
intermediate states and the low-energy behavior of the
form factors give the dominant contribution. Note however
that the loop integration becomes divergent and requires
the introduction of an ad hoc regulator which can be
identified with some average distance between quarks
inside the hyperon [9,10].
In this paper, we use the MIT bag model of baryons to

compute the matrix element given in (4). Let us first note
that, given the specific structure of quark currents in (4), we
can write it as follows:

hB2ðp0ÞjðV � AÞ�ðV0 � A0Þ�jB1ðpÞi
¼ �uðp0Þ½�V

�� � �A
���uðpÞ; (5)

where uðpÞ are Dirac spinors describing the free hyperon

states, and �A;V
�� ðP; qÞ are second-rank tensors that depends

upon P ¼ pþ p0 and q ¼ p� p0. After using Gordon
identities for the vector and axial currents, the most general
form of the vertices can be parametrized as:

FIG. 2. Feynman diagram for the �� ! pl�l� decay induced
by the loop effect of a Majorana neutrino.

FIG. 1. Feynman diagram describing the local interaction of
Eq. (1) which converts two down-type quarks into two up quarks
and two leptons, dd0 ! uu0l�l�.
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�V
�� ¼ h1g�� þ ih2��� þ h3

2M
��P� þ h4

2M
��q� þ h5

2M
��P� þ h6

2M
��q� þ h7

4M2
P�q� þ h8

4M2
q�q�

þ i
h9
4M2

P����q
� þ i

h10
4M2

q����q
� þ i

h11
4M2

P����q
� þ i

h12
4M2

q����q
� þ ih13������

���5

þ h14
4M2

�����P
�q��5 þ h15

2M
�����q

����5 þ h16
2M

�����P
����5; (6)

where M ¼ ðmþm0Þ=2, with mðm0Þ the mass of the initial
(final) hyperon state. The coefficients hi are q2-dependent
form factors which depend on the specific B1 ! B2 tran-
sition. Similarly, the axial vertex can be obtained by means
of the following replacement: �A

�� ¼ �V
��ðhi ! giÞ � �5.

The form factors hi, gi in the vector and axial vertices have
all a common dimension of energy. The contributions pro-
portional to q=M are suppressed and the terms containing
the Levi-Civita tensors do not contribute to the decay am-
plitude because of the symmetric leptonic tensor in Eq. (2).

III. FORM FACTORS IN THE MIT BAG MODEL

For definiteness, let us consider the specific example of
the�� ! pe�e� transition; in this case only the operators
with coefficients c2 and d1 in Eq. (1) give a contribution. In
the framework of the MIT bag model, the vector and axial
components of the hadronic matrix element in the�� ! p
transition, Eq. (4), can be written as follows:

X��!p
�� ðVÞ ¼ �uðp0Þ�V

��uðpÞ
¼ hpj½Mds!uu

�� þMsd!uu
�� �

þ ½Qds!uu
�� þQsd!uu

�� �j��i; (7)

X��!p
�� ðAÞ ¼ �uðp0Þ�A

��uðpÞ
¼ hpj½Nds!uu

�� þ Nsd!uu
�� �

þ ½Pds!uu
�� þ Psd!uu

�� �j��i; (8)

where we have defined (latin indices a, b, c, d denote flavor
labels):

Mbd!ac
�� ¼

Z
d3x½ �c aðxÞ��c bðxÞ� � ½ �c cðxÞ��c dðxÞ�;

Nbd!ac
�� ¼

Z
d3x½ �c aðxÞ��c bðxÞ� � ½ �c cðxÞ���5c dðxÞ�;

Pbd!ac
�� ¼

Z
d3x½ �c aðxÞ���5c bðxÞ� � ½ �c cðxÞ��c dðxÞ�;

Qbd!ac
�� ¼

Z
d3x½ �c aðxÞ���5c bðxÞ� � ½ �c cðxÞ���5c dðxÞ�:

(9)

In the above expressions c iðxÞ denotes the wave function
of quark with flavor i in the MIT bag model which is
calculated according to Ref. [7] and it is reproduced in
the Appendix.

In the nonrelativistic limit for baryons, the only non-
vanishing matrix elements turn out to be the following:

X��!p
00 ðVÞ ¼ hpj½Mds!uu

00 þMsd!uu
00 �j��i

¼ Rðw1�1; w1�1; RÞ
�D
p
�����X

j

�þ
j

X
i

�þi
�������

E

þ
D
p
�����X

i

�þi
X
j

�þ
j

�������
E�
: (10)

X��!p
0k ðAÞ¼�hpj½Nds!uu

0k þNsd!uu
0k �j��i

¼�Sðw1�1;w1�1;RÞ
�D
p
�����X

j

�þ
j

X
i

�k;i�
þ
i

�������
E

þ
D
p
�����X

j

�þj
X
i

�k;i�
þ
i

�������
E�

(11)

X��!p
k0 ðAÞ¼�Sðw1�1;w1�1;RÞ

�D
p
�����X

j

�k;j�
þ
j

X
i

�þi
�������

E

þ
D
p
�����X

j

�k;j�
þ
j

X
i

�þ
i

�������
E�
: (12)

X��!p
jk ðVÞ

¼
�
T ðw1�1; w1�1; RÞ

�D
p
�����X

l

�j;l�
þ
l

X
i

�k;i�
þ
i

�������
E

þ
D
p
�����X

l

�j;l�
þ
l

X
i

�k;i�
þ
i

�������
E�

þ 	jkUðw1�1; w1�1; RÞ
�D
p
�����X

l

�þ
l

X
i

�þi
�������

E

þ
D
p
�����X

l

�þl
X
i

�þ
i

�������
E��

: (13)

In the previous expressions ��i , ��
i denote, respectively,

the isospin and U-spin raising/lowering operators acting
over the quark states in position i within the spin-flavor
wave functions of j��i and jpi (see Ref. [12]). Similarly,
�k;j refer to the kth component of the spin operator acting

on the quark state in position j in the hyperon spin-flavor
wave function. On the other hand, the functions R, S, T
and U introduced in Eqs. (10)–(13) arise from the inte-
gration over spatial coordinates of the quark wave func-
tions in the MIT bag model; they depend upon the bag
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model parameters as shown in the expressions given in the
Appendix.

The matrix elements in Eqs. (10)–(13) can be readily
evaluated by using the quark model spin-flavor wave func-
tions [12] of the �� and p states. An explicit calculation
yields:

�
pjX

j

�þ
j

X
i

�þi j��
�
¼

�
pjX

i

�þi
X
j

�þ
j j��

�
¼ 1

�
pjX

j

�þ
j

X
i

�k;i�
þ
i j��

�
¼

�
pjX

i

�k;i�
þ
i

X
j

�þ
j j��

�

¼ 5

3
	k3�

pjX
j

�k;j�
þ
j

X
i

�þi j��
�
¼

�
pjX

i

�þi
X
j

�k;j�
þ
j j��

�

¼ � 1

3
	k3;

and it follows (hereafter we omit the superscript labels of
the hadronic matrix elements)

X00ðVÞ ¼ 2Rðw1�1; w1�1; RÞ: (14)

X0kðAÞ ¼ � 4

3
	k;3Sðw1�1; w1�1; RÞ (15)

Xk0ðAÞ ¼ � 4

3
	k;3Sðw1�1; w1�1; RÞ (16)

XjkðVÞ ¼ 2

�
1

3
T ðw1�1; w1�1; RÞ½	j;3	k;3 � ð1� 	j;3Þ

� ð1� 	k;3Þijþk½2ð�1Þjþ1 þ ð�1Þk��
þ 	jkUðw1�1; w1�1; RÞ

�
: (17)

On the other hand, taking the nonrelativistic limit of
Eqs. (5) and (6) we get the following expressions for the
nonvanishing hadronic matrix elements:

X00ðVÞ ¼ h1 þ h3 þ h5 � f1

X0kðAÞ ¼ �ðg2 � g5 þ 2ih13Þ	k;3 � f2	k;3;

Xk0ðAÞ ¼ ðg2 þ g3 þ 2ih13Þ	k;3 � f3	k;3;

XjkðVÞ ¼ �	jkh1 þ ðih2 � h16Þð	j;1	k;2 � 	j;2	k;1Þ
� f4	jk þ f5ð	j;1	k;2 � 	j;2	k;1Þ; (18)

or equivalently, from Eqs. (17) and (18):

f1 ¼ 2Rðw1�1; w1�1; RÞ;
f2 ¼ f3 ¼ � 4

3
Sðw1�1; w1�1; RÞ;

f4 ¼ 2

3
T ðw1�1; w1�1; RÞ þ 2Uðw1�1; w1�1; RÞ;

f5 ¼ 2iT ðw1�1; w1�1; RÞ; (19)

for the effective form factors fi. Note that, in the non-
relativistic limit, all these form factors should be evaluated
at zero momentum transfer (q2 ¼ 0). Thus, we are not able
to provide their momentum dependence; however, as in the
case of the beta decays of hyperons, we may expect that
these q-dependent effects would affect the decays rates by
at most 10–20% given that they are a SU(3) symmetry
breaking scale of order q=M [13].
The contraction of Lorentz indices in Eqs. (2) and (3)

leads to the following simple form of the decay amplitude:

Mð�� ! pe�e�Þ

¼ G2
F

���

c2d12 �uðp2Þð1þ �5Þucðp1Þ � �uðp0Þ

� ½Aþ B�5�uðpÞ; (20)

where A ¼ 4h1 þ h3 þ h5 ¼ f1 � 3f4 and B¼4g1þ
g4þg6. In the nonrelativistic limit described above the
numerical evaluations of Eqs. (19) obtained in the frame-
work of the MIT bag model lead to A ¼ 3:56� 105 MeV3

and B ¼ 0 (note the simplified expressions given in the
Appendix for the functionsR, S,T andU). We have used
the numerical values of the bag model parameters given in
Ref. [7].
From the above decay amplitude we get the following

expression for the differential decay rate:

d�

dq2
¼ G4

F

32
3m3
�

�
c2d1
���

	
2ðq2�2m2

l Þðumax �umin Þ

�fA2½ðm�þmpÞ2�q2�þB2½ðm��mpÞ2�q2�g;
(21)

where umax � umin ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

e=q
2

p Þ � �1=2ðm2
�; m

2
p; q

2Þ
and �ðx; y; xÞ denotes the triangle function. By using
��� ¼ 1:479� 10�10 s [14], and integrating numerically
the differential rate in the range 4m2

e � q2 � ðm� �mpÞ2,
we get the branching ratio for the di-electron channel:

Bbagð�� ! pe�e�Þ ¼
�
c2d1
���

	
2 � ð4:65� 10�13 MeV2Þ:

(22)

If the take for weak coupling coefficients ci, di �Oð1Þ and
��� 	 100 GeV, the branching fraction turns out to be

extremely suppressed: Bbagð�� ! pe�e�Þ � 10�23.
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Equivalently, we can define the following ratio [8]:

Ree=e�ð��Þ � �ð�� ! pe�e�Þ
�ð�� ! ne� ��eÞ : (23)

Using the result given in (22), we get Rbag
ee=e�ð��Þ 


ðc2d1=���Þ2 � ð4:6� 10�10 MeV2Þ. If we compare this

number with the estimate given in Ref. [8], which is based
on pure dimensional arguments, the result of our present
calculation appears to be smaller by six orders of magni-
tude. On the other hand, the corresponding result obtained
by using the approximation based on the insertion of
intermediate baryon states in the baryon-neutrino loop of

Fig. 2 is R
loop
ee=e�ð��Þ ¼ 7:2� 10�18jhmeeij2MeV�2 (from

Table 1 in Ref. [10]). Using the current limit jhmeeij �
1 eV, we get Rloop

ee=e�ð��Þ � 7:2� 10�30 or, equivalently, a

branching fraction Bloopð�� ! pe�e�Þ � 7:3� 10�33.

This upper limit on Rloop
ee=e�ð��Þ is smaller than the one

obtained in our bag model calculation by ten orders of
magnitude (assuming c2 ¼ d1 �Oð1Þ and ��� 	
100 GeV). Note however, that the result of Ref. [10] de-
pends strongly on the cutoff used to regularize the integral
over the virtual neutrino momentum in the loop.

IV. CONCLUSIONS

In this paper we have used the MIT bag model [7] to
evaluate the hadronic matrix elements of four-quark op-
erators required to compute the rates of 0��� decays of
hyperons. These four-quark operators appear in the most
general �Q ¼ 2 low-energy effective Lagrangian [8] that
describes the �L ¼ 2 lepton number violation in hyperon
transitions. This method avoids the use of the approxima-
tion based on the insertion of baryon intermediate states,

which requires the knowledge of form factors for hyperon
beta decays at very high energy scales. To our knowledge,
this is a novel method for direct calculations of hadronic
matrix elements of four-quark operators.
As a specific example, we have considered the �� !

pe�e� lepton number violating decay and have computed
the nonvanishing form factors of the �� ! p transition in
the nonrelativistic limit using the spin-flavor wave func-
tions of the hyperon states. Using reasonable values for the
order of magnitude of couplings and mass scales of the
underlying new physics, we have computed the upper limit
on the branching ratio which turns out to be of order 10�23

for the �� ! pe�e� decay. Although this result turns out
to be ten orders of magnitude larger that the calculation
based on a model where this decay is induced by a loop of
baryons and light Majorana neutrinos [10], it is still very
small to be accessible to sensitivities reached by current
experiments. It shows, however, that the calculations based
on models involving loops of virtual neutrinos and the
insertion of virtual intermediate hyperon states may under-
estimate the true branching fractions.
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APPENDIX

In the MIT bag model the eigenfunctions of quarks
confined within a baryon, which is assumed to be a spheri-
cal bag of radius R, are given by [7] (note that � ¼ �1):

c n�mðx; tÞ ¼ 1ffiffiffiffiffiffiffi
4


p
ij1

2ð�þ1Þðwn�r=RÞð� � r̂Þ12ð�þ1ÞUm

ð�1Þ12ð1��Þj1
2ð1��Þðwn�r=RÞð� � r̂Þ12ð1��ÞUm

0
@

1
Ae�iwn�t=R; (A1)

where wn� satisfies the eigenvalue condition tanwn� ¼
wn�=ð1þ wn�Þ, j1

2ð��1Þ are spherical Bessel functions and
Um are two-component Pauli spinors. These eigenfunc-
tions are normalized according to

Z
d3xNðwn�ÞNðwn0�0 Þc y

n�mðx; tÞc n0�0mðx; tÞ
¼ 	nn0	��0	mm0 ; (A2)

and the normalization factors are defined from the follow-
ing integrals:

Z R

0
r2drj20ðwn�r=RÞ ¼ 1

4N2ðwn�Þ
2wn� þ �

wn� þ �
;

Z R

0
r2drj21ðwn�r=RÞ ¼ 1

4N2ðwn�Þ
2wn� þ 3�

wn� þ �
: (A3)

The general form of the integrals involving the product
of four eigenfunctions required in our calculations of had-
ronic matrix elements, see Eq. (9), are

Z
d3xc y

L1
ðx; tÞc L2

ðx; tÞc y
L3
ðx; tÞc L4

ðx; tÞ

¼ 	̂n�

N1234

	m1m2
	m3m4

Rðwn1�1
; wn3�3

; RÞ; (A4)

Z
d3xc y

L1
ðx; tÞc L2

ðx; tÞc y
L3
ðx; tÞ�kc L4

ðx; tÞ

¼ 	̂n�

N1234

	m1m2
�34

k Sðwn1�1
; wn3�3

; RÞ; (A5)
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Z
d3xc y

L1
ðx; tÞ�jc L2

ðx; tÞc y
L3
ðx; tÞ�kc L4

ðx; tÞ ¼ 	̂n�

N1234

½�12
j �34

k T ðwn1�1
; wn3�3

; RÞ þ 	m1m2
	m3m4

Uðwn1�1
; wn3�3

; RÞ�;
(A6)

where we have introduced the following notation: N1234 � Nðwn1�1
ÞNðwn2�2

ÞNðwn3�3
ÞNðwn4�4

Þ, Li ¼ ni�imi, �
ij
k �

Uy
mi
�kUmj

and 	̂n� � 	n1n2	n3n4	�1�2
	�3�4

.

By inserting the solutions given in Eq. (A1) in the previous results, one gets:
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A numerical evaluation of these radial integrals leads to the values of the the form factors in Eqs. (19).
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