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Correlated � distributions can be used to describe the clutter seen in images
obtained with coherent illumination, as is the case of B-scan ultrasound, laser,
sonar, and synthetic aperture radar (SAR) imagery. These distributions are derived
using the square root of the generalized inverse Gaussian distribution for the
amplitude backscatter within the multiplicative model. A two-parameter particular
case of the amplitude � distribution, called �0

A, constitutes a modeling improvement
with respect to the widespread �A distribution when fitting urban, forested, and
deforested areas in remote sensing data. This article deals with the modeling and the
simulation of correlated �0

A-distributed random fields. It is accomplished by means
of the Inverse Transform method, applied to Gaussian random fields with spatial
correlation. The main feature of this approach is its generality, since it allows the
introduction of negative correlation values in the resulting process, necessary for
the proper explanation of the shadowing effect in many SAR images.

Keywords Image modeling; Simulation; Spatial correlation; Speckle.

Mathematics Subject Classification 62; 62M40.

1. Introduction

The demand for exhaustive clutter measurements in all scenarios would be alleviated
if plausible data could be obtained by computer simulation. Clutter simulation is
an important element in the development of target detection algorithms for radar,
sonar, ultrasound and laser imaging systems. Using simulated data, the accuracy of
clutter models may be assessed and the performance of target detection algorithms
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Simulation of Spatially Correlated Clutter 2135

may be quantified against controlled clutter backgrounds. This article is concerned
with the simulation of random clutter having appropriate both first and second
order statistical properties.

The use of correlation in clutter models is significant and relevant since
correlation effects often dominate system performance. Models merely based on
single-point statistics could, therefore, produce misleading results, and several
commonly used forms for clutter statistics fall into this category.

The statistical properties of heterogeneous clutter returned by Synthetic
Aperture Radar (SAR) sensors have been largely investigated in the literature.
A theoretical model widely adopted for these images assumes that the value in every
pixel is the observation of an uncorrelated stochastic process ZA, characterized by
its single-point (first-order) statistics. A general agreement has been reached that
the amplitude fields are well explained by the �A distribution. Such distribution
arises when coherent radiation is scattered by a surface having gamma-distributed
cross-section fluctuations. Although agricultural fields and forest on flat areas are
very well fitted by this distribution, it is also known that it fails giving accurate
statistical descriptions of extremely heterogeneous data, such as urban areas and
forest growing on undulated relief.

As discussed in Frery et al. (1997, 1999), another distribution, the �A law, can
be used to describe those extremely heterogeneous regions, with the advantage that
it has the �A distribution as a particular case. This distribution arises in coherent
imaging applications as a result of the action of multiplicative speckle noise on an
underlying square root of a generalized inverse Gaussian distribution. The main
drawback of this general model is that it requires an extra parameter, besides its
theoretical complexity.

Nevertheless, it can be seen in Frery et al. (1997) and Mejail et al. (2000)
that another special case of the �A distribution, namely the �0

A��� �� n� law, which
has as many parameters as the �A distribution, is able to model with accuracy
extremely heterogeneous clutter. The number of looks, n, is fixed for the whole
image and describes the signal-to-noise overall ratio. Relevant information can
be extracted by estimating � and � as, for instance, thematic maps (see Gambini
et al., 2006; Mejail et al., 2003) and maximum a posteriori filters (Moschetti et al.,
2006). Frery et al. (2004) provided a technique for dealing with small samples when
maximum likelihood estimates are sought. Recent research has focused on improved
estimation through data resampling (see Cribari-Neto et al., 2002) and via analytical
corrections (see Silva et al., 2008; Vasconcellos et al., 2005, for details). Robust
estimators have also been proposed for the parameter estimation of speckled data,
c.f. Bustos et al. (2002) and Allende et al. (2006).

More recently, hypothesis tests based on stochastic distances have been
proposed for this kind of data (Nascimento et al., in press).

As a consequence, efforts have been directed towards the simulation of �0
A

textures, but no exact method for generating patterns with arbitrary assigned spatial
autocorrelation function and �0

A distribution has been envisaged so far. This article
tackles the problem of simulating correlated �0

A fields.

2. Correlated ���0
A Clutter

The main properties and definitions of the �0
A clutter are presented in this section,

starting with the first order properties of the distribution and concluding with the
definition of a �0

A stochastic process that will describe ZA fields.
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2136 Bustos et al.

2.1. Marginal Properties

The �0
A��� �� n� distribution is characterized by the following probability density

function:

fZA
�z� ��� �� n�� = 2nn��n− ��√

���−����n�
·

(
z√
�

)2n−1

(
1+ z2

�
n
)n−� · ��0�+���z�� � < 0� � > 0� (1)

being n ≥ 1 the number of looks of the image, which is controlled at the image
generation process, and �T �·� the indicator function of the set T . The parameter
� describes the roughness, being small values (say � ≤ −15) usually associated
to homogeneous targets, like pasture, values ranging in the �−15�−5� interval
usually observed in heterogeneous clutter, like forests, and large values (−5<�< 0,
for instance) commonly seen when extremely heterogeneous areas are imaged.
The parameter � is related to the scale, in the sense that if Z is �0

A��� 1� n� distributed
then ZA = √

�Z obeys a �0
A��� �� n� law.

A SAR image over a suburban area of Munchen, Germany, is shown in Fig. 1.
It was obtained with E-SAR, an experimental polarimetric airborne sensor operated
by the German Aerospace Agency (Deutsches Zentrum fur Luft-und Raumfahrt
DLR). The data here shown were generated in single look format, and exhibit the
three discussed types of roughness: homogeneous (the dark areas to the middle

Figure 1. E-SAR image showing three types of texture.
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Simulation of Spatially Correlated Clutter 2137

of the image), heterogeneous (the clear area to the left) and extremely heterogeneous
(the clear area to the right).

The rth moments of the �0
A��� �� n� distribution are:

E�Zr
A� =

(
�

n

)r
2 ��−�− r

2

)
�
(
n+ r

2

)
��−����n�

� � < −r/2� n ≥ 1� (2)

when −r/2 ≤ � < 0 the rth order moment is infinite. Using Eq. (2), the mean and
variance of a �0

A��� �� n� distributed random variable can be computed:

�ZA
=

√
�

n

��n+ 1
2 ���−�− 1

2 �

��n���−��
�

	2
ZA

= �
n�2�n��−�− 1��2�−�− 1�− �2�n+ 1
2 ��

2�−�− 1
2 ��

n�2�n��2�−��
�

Figure 2 shows three densities of the �0
A��� �� n� distribution for the single look

(n= 1) case. These densities are normalized so that the expected value is 1 for every
value of the roughness parameter. This is obtained using Eq. (2) for setting the
scale parameter � = ���n = n���−����n�/���−a− 1/2���n+ 1/2���2. These densities
illustrate the three typical situations described above: homogeneous areas (� = −15,
dashes), heterogeneous clutter (� = −5, dots) and an extremely heterogeneous target
(� = −1�5, solid line).

Following Barndorff-Nielsen and Blæsild (1981), it is interesting to see these
densities as log probability functions, particularly because the �0

A is closely related
to the class of Hyperbolic distributions (see Frery et al., 1995). Figure 3 shows
the densities of the �0

A and Gaussian distributions, with parameters �−3� 1� 1� and
�3�/16� 1/2− 9�2/256�, respectively, in semilogarithmic scale. Such parameters were

Figure 2. Densities of the �0
A��� ���3� 3� distribution.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
l
e
s
i
a
,
 
A
n
a
 
G
e
o
r
g
i
n
a
]
 
A
t
:
 
1
9
:
5
7
 
7
 
O
c
t
o
b
e
r
 
2
0
0
9



2138 Bustos et al.

Figure 3. Densities of the �0
A and Gaussian distributions with same mean values � = 3�/16

in semilogarithmic scale.

chosen distributions so that these distributions have equal mean (shown as the
vertical line at � = 3�/16) and variance. The different decay of the tails is evident:
the former behaves as a logarithm, while the latter decays in quadratic fashion.
This behavior ensures the ability of the �0

A distribution to model data with extreme
variability.

Besides being essential for the simulation technique here proposed, cumulative
distribution functions are needed for carrying out goodness of fit tests and for the
proposal of estimators based on order statistics. It can be seen in Mejail et al. (2000,
2003) that the cumulative distribution function of a �0

A��� �� n� distributed random
variable is given, for every z > 0, by G�z� ��� �� n�� = 2n�−2��−�z2/��, where s�t is
the cumulative distribution function of a Snedecor’s Fs�t distributed random variable
with s and t degrees of freedom. Both ��� and −1

��� are readily available in most
platforms for computational statistics.

The single look case is of particular interest since it describes the noisiest images
and it exhibits nice analytical properties. The distribution is characterized by the
density

f�z� �� �� 1� = −2�
��

z��+ z2��−1�0���z�� −�� � > 0�

Its cumulative distribution function is given by F�t� = �1− �1+ t2/������0����t�, and
its inverse, useful for the generation of random deviates and the computation of
quantiles, is given by F−1�t� = ����1− t�

1
� − 1��

1
2 ��0�1��t�.

2.2. Correlated Clutter

Instead of defining the model over �2, a realistic description of finite-sized fields is
made in this section. Let ZA = �ZA�k� ���0≤k≤N−1�0≤�≤N−1 be the stochastic model that
describes the return amplitude image.
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Simulation of Spatially Correlated Clutter 2139

Definition 2.1. We say that ZA is a �0
A��� �� n� stochastic process with correlation

function �ZA
(in symbols ZA ∼ ��0

A��� �� n�� �ZA
�� if for all 0 ≤ i� j� k� � ≤ N − 1

holds that

1. ZA�k� �� obeys a �0
A��� �� n� law;

2. the mean field is �ZA
= E�ZA�k� ���;

3. the variance field is 	2
ZA

= Var�ZA�k� ���;
4. the correlation function is �ZA

��i� j�� �k� ��� = �E�ZA�i� j�ZA�k� ���− �2
ZA
�/	2

ZA
.

The scale property of the parameter � implies that correlation function �ZA
and �

are unrelated and, therefore, it is enough to generate a Z1
A ∼ ��0

A��� �� n�� �ZA
� field

and then simply multiply every outcome by �1/2 to get the desired field.

This article presents a variation of a method used for simulation of correlated
Gamma variables, called Transformation Method, that can be found in Bustos et al.
(2001a,b). This method can be summarized in the following three steps.

1. Generate independent outcomes from a convenient distribution.
2. Introduce correlation in these data.
3. Transform the correlated observations into data with the desired marginal

properties.

The transformation that guarantees the validity of this procedure is obtained
from the cumulative distribution functions of the data obtained in step 2, and from
the desired set of distributions.

Recall that if U is a continuous random variable with cumulative distribution
function FU then FU�U� obeys a uniform ��0� 1� law and, reciprocally, if V obeys
a ��0� 1� distribution then F−1

U �V� is FU distributed. In order to use this method it
is necessary to know the correlation that the random variables will have after the
transformation, besides the function F−1

U .
The method here studied consists of the following steps.

1. Propose a correlation structure for the �0
A field, say, the function �ZA

.
2. Generate a field of independent identically distributed standard Gaussian

observations.
3. Compute �, the correlation structure to be imposed to the Gaussian field from

�ZA
, and impair it using the Fourier transform without altering the marginal

properties.
4. Transform the correlated Gaussian field into a field of observations of identically

distributed ��0� 1� random variables, using the cumulative distribution function
of the Gaussian distribution (�).

5. Transform the uniform observations into �0
A outcomes, using the inverse of the

cumulative distribution function of the �0
A distribution (G−1).

The function that relates �ZA
and � is computed using numerical tools.

In principle, there are no restrictions on the possible roughness parameters values
that can be obtained by this method, but issues related to machine precision
must be taken into account. Another important issue is that not every desired
final correlation structure �ZA

is mapped onto a feasible intermediate correlation
structure �. The procedure is presented in detail in the next section.
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2140 Bustos et al.

3. Transformation Method

Let G�·� ��� �� n�� be the cumulative distribution function of a �0
A��� �� n� distributed

random variable. As previously stated,

G�x� ��� �� n�� = 2n�−2�

(
−�x2

�

)
�

where �1��2
is the cumulative distribution function of a Snedecor F�1��2

distribution,
i.e.,

�1��2
�x� = �

(
�1+�2

2

)
�
(
�1
2

)
�
(
�2
2

)(�1
�2

)�1
2 ∫ x

0
t
�1−2
2

(
1+ �1

�2
t

)− �1+�2
2

dt�

The inverse of G�·� ��� �� n�� is, therefore

G−1�t� ��� �� n�� =
√
− �

�
−1

2n�−2��t��

To generate Z1
A = �Z1

A�k� ���0≤k≤N−1�0≤�≤N−1 ∼ ��0
A��� 1� n�� �ZA

� using the
inversion method we define every coordinate of the process ZA as a transformation
of a Gaussian process � as Z1

A�i� j� = G−1�����i� j��� ��� 1� n��, where � =
���i� j��0≤i≤N−1�0≤j≤N−1 is a stochastic process such that ��i� j� is a standard Gaussian
random variable and with correlation function �� (i.e., where ����i� j�� �k� ��� =
E���i� j���k� ���� satisfying

�ZA
��i� j�� �k� ��� = ����n������i� j�� �k� ���� (3)

for all 0 ≤ i� j� k� � ≤ N − 1 and �i� j� �= �k� �� and where � denotes the cumulative
distribution function of a standard Gaussian random variable and the function ����n�
will be defined below in Eq. (4).

Posed as a diagram, the method consists of the following transformations
among Gaussian (� ), Uniform (�), and �0

A-distributed random variables:

A central issue of the method is finding the correlation structure that the
Gaussian field has to obey, in order to have the desired �0

A field after the
transformation. The function ����n� is defined on �−1� 1� by

����n���� =
R���n����−

(
1
n

)( ��n+ 1
2 ���−�− 1

2 �

��n���−��

)2

− 1
1+�

− � 1
n
�
(

��n+ 1
2 ���−�− 1

2 �

��n���−��

)2 � (4)
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with

R���n���� =
∫ ∫

�2
G−1���u�� ��� 1� n��G−1���v�� ��� 1� n���2�u� v� ��du dv

where

�2�u� v� �� =
1

2�
√
�1− �2�

exp
(
−u2 − 2� · u · v+ v2

2�1− �2�

)
�

Note that R���n������i� j�� �k� ���� = E�Z1
A�i� j�Z

1
A�k� ��� for all 0 ≤ i� j� k� � ≤ N − 1

and �i� j� �= �k� ��.
The answer to the question of finding �� given �ZA

is equivalent to the problem
of inverting the function ����n�. This function is available using numerical methods.

3.1. Inversion of ����n�

The function ����n� has the following properties.

1. The set �����n���� � � ∈ �−1� 1�� is strictly included in �−1� 1�, and depends on the
values of �.

2. The function ����n� is strictly increasing in �−1� 1�.
3. The values ����n���� are strictly negative for all � < 0.

Let ð���n� be the inverse function of ����n�. Then, in order to calculate its value
for a fixed � ∈ �−1� 1�, we have to solve the following equation in �:

R���n����+
�

1+ �
+ ��− 1�

(
1
n

)(
��n+ 1

2��−�− 1
2 �

��n���−��

)2

= 0�

Then, it follows from the properties of ����n�, that for certain values of � the set
of � such that this equation is solvable is a strict subset of �−1� 1�. Table 1 shows
some values of the function ð���n� for specific values of �, n, and �. Figure 4 shows
� as a function of � for the n = 1 case and varying values of �, and it can be seen
that the smaller � the closer this function is to the identity. This is sensible, since
the �0

A distribution becomes more and more symmetric as � → −� and, therefore,
simulating outcomes from this distribution becomes closer and closer to the problem
of obtaining Gaussian deviates.

Figure 5 presents the same function for � = −1�5 and varying number of looks.
It is noticeable that � is far less sensitive to n than to �, a feature that suggests a
shortcut for computing the values of Table 1: disregarding the dependence on n,
i.e., considering ���� �� n� 	 ���� �� n0� for a fixed convenient n0.

The source FORTRAN file with routines for computing the functions ����n� and
ð���n� can be obtained from the first author of this article.

3.2. Generation of the Process �

The process �, that consists of spatially correlated standard Gaussian random
variables, will be generated using a spectral technique that employs the Fourier
transform. This method has computational advantages with respect to the direct
application of a convolution filter. Again, the concern here is to define a finite
process instead of working on �2 for the sake of simplicity.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
l
e
s
i
a
,
 
A
n
a
 
G
e
o
r
g
i
n
a
]
 
A
t
:
 
1
9
:
5
7
 
7
 
O
c
t
o
b
e
r
 
2
0
0
9



T
ab
le

1
V
al
ue
s
of

ð �
�
�n
�

�
=

−1
�5

�
=

−3
�0

�
=

−9
�0

�
n
=

1
n
=

3
n
=

6
n
=

10
n
=

1
n
=

3
n
=

6
n
=

10
n
=

1
n
=

3
n
=

6
n
=

10

−�
9

−�
95
3

−�
95
4

−�
95
8

−�
8

−�
87
7

−�
84
5

−�
84
5

−�
84
8

−�
7

−�
88
6

−�
88
1

−�
90
1

−�
91
5

−�
76
3

−�
73
7

−�
73
7

−�
74
0

−�
6

−�
74
7

−�
74
5

−�
76
1

−�
77
2

−�
65
0

−�
63
0

−�
63
0

−�
63
2

−�
5

−�
61
3

−�
61
2

−�
62
4

−�
63
2

−�
53
9

−�
52
3

−�
52
3

−�
52
5

−�
4

−�
84
4

−�
90
3

−�
94
8

−�
97
2

−�
48
3

−�
48
3

−�
49
2

−�
49
8

−�
42
9

−�
41
7

−�
41
7

−�
41
9

−�
3

−�
59
1

−�
63
0

−�
65
6

−�
67
0

−�
35
7

−�
35
7

−�
36
3

−�
36
7

−�
32
0

−�
31
2

−�
31
2

−�
31
3

−�
2

−�
37
0

−�
39
2

−�
40
5

−�
41
2

−�
23
4

−�
23
5

−�
23
9

−�
24
1

−�
21
2

−�
20
7

−�
20
7

−�
20
8

−�
1

−�
17
4

−�
18
3

−�
18
8

−�
19
0

−�
11
6

−�
11
6

−�
11
7

−�
11
9

−�
10
5

−�
10
3

−�
10
3

−�
10
4

0
�0

�0
�0

�0
�0

�0
�0

�0
�0

�0
�0

�0
.1

�1
55

�1
61

�1
64

�1
65

�1
12

�1
13

�1
14

�1
15

�1
04

�1
03

�1
03

�1
03

.2
�2
94

�3
03

�3
07

�3
09

�2
22

�2
23

�2
25

�2
26

�2
08

�2
05

�2
05

�2
05

.3
�4
18

�4
28

�4
33

�4
35

�3
28

�3
29

�3
32

�3
34

�3
10

�3
06

�3
06

�3
07

.4
�5
29

�5
39

�5
44

�5
46

�4
32

�4
33

�4
36

�4
38

�4
11

�4
07

�4
07

�4
08

.5
�6
29

�6
38

�6
42

�6
44

�5
33

�5
34

�5
37

�5
39

�5
12

�5
07

�5
08

�5
08

.6
�7
19

�7
27

�7
30

�7
31

�6
31

�6
33

�6
35

�6
37

�6
11

�6
07

�6
07

�6
08

.7
�8
00

�8
06

�8
08

�8
09

�7
27

�7
28

�7
31

�7
32

�7
10

�7
06

�7
06

�7
07

.8
�8
73

�8
77

�8
79

�8
80

�8
20

�8
21

�8
23

�8
24

�8
07

�8
05

�8
05

�8
05

.9
�9
40

�9
42

�9
42

�9
43

�9
11

�9
12

�9
13

�9
13

�9
04

�9
03

�9
03

�9
03

2142

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
l
e
s
i
a
,
 
A
n
a
 
G
e
o
r
g
i
n
a
]
 
A
t
:
 
1
9
:
5
7
 
7
 
O
c
t
o
b
e
r
 
2
0
0
9



Simulation of Spatially Correlated Clutter 2143

Figure 4. Values of � as a function of � for n = 1 and varying �.

We should notice that the usual simulation method of such Gaussian vectors is
based on inverting their correlation matrix, and it is not computationally feasible in
the case of remote sensing imagery. In this case, it would involve the computation
of the inverse of a huge matrix. Even for the case of a very small image, let say
32× 32 pixels, we should invert a matrix of dimension �32× 32��32× 32�. For
remote sensing images, the general size is about 3�000× 3�000 pixels.

Consider the following sets:

R1 = ��k� �� � 0 ≤ k� � ≤ N/2��

R2 = ��k� �� � N/2+ 1 ≤ k ≤ N − 1� 0 ≤ � ≤ N/2��

R3 = ��k� �� � 0 ≤ k ≤ N/2� N/2+ 1 ≤ � ≤ N − 1��

R4 = ��k� �� � N/2+ 1 ≤ k ≤ N − 1� N/2+ 1 ≤ � ≤ N − 1��

RN = R1 ∪ R2 ∪ R3 ∪ R4 = ��k� �� � 0 ≤ k� � ≤ N − 1��

RN = ��k� �� � −�N − 1� ≤ k� � ≤ N − 1��

Let � � R1 −→ �−1� 1� be a function, extended onto RN by:

��k� �� =




��N − k� �� if �k� �� ∈ R2�

��k� N − �� if �k� �� ∈ R3�

��N − k� N − �� if �k� �� ∈ R4�

��N + k� �� if −�N − 1� ≤ k < 0 ≤ � ≤ N − 1�

��k� N + �� if −�N − 1� ≤ � < 0 ≤ k ≤ N − 1�

��N + k� N + �� if −�N − 1� ≤ k� � < 0�
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Figure 5. Values of � as a function of � for � = −1�5 and varying n.

Let ZA = �ZA�k� ���0≤k≤N−1�0≤�≤N−1 be a �0
A��� �� n� stochastic process with

correlation function �ZA
defined by �ZA

��k1� �1�� �k2� �2�� = ��k2 − k1� �2 − �1�.
Assume that ��k� �� = ð���n����k� ��� is defined for all �k� �� in RN .

Let � ��� � RN −→ 	 be the normalized Fourier Transform of �, that is,

� ����k� �� = 1
N 2

N−1∑
k1=0

N−1∑
�1=0

��k1� �1� exp�−2�i�k · k1 + � · �1�/N 2��

Let � � RN −→ 	 be defined by ��k� �� = √
� ����k� �� and let the function � � RN =

��k� �� � −�N − 1� ≤ k� � ≤ N − 1� −→ � be defined by

��k� �� = �−1����k� ��/N = 1
N

N−1∑
k1=0

N−1∑
�1=0

��k1� �1� exp�−2�i�k · k1 + � · �1�/N 2�

(the normalized inverse Fourier Transform of �) for all �k� �� ∈ RN ; and

��k� �� =



��N + k� �� if −�N − 1� ≤ k < 0 ≤ � ≤ N − 1�

��k� N + �� if −�N − 1� ≤ � < 0 ≤ k ≤ N − 1�

��N + k� N + �� if −�N − 1� ≤ k� � < 0�
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A straightforward calculation shows that

�� ∗ ���k� �� =
N−1∑
k1=0

N−1∑
�1=0

��k1� �1���k− k1� �− �1� = ��k� ���

for all �k� �� ∈ RN .

Remark 3.1. The fact that � ����k� �� ≥ 0 and the last equality for all �k� �� ∈ RN is
easily deduced from the results in Sec. 5.5 of Jain (1989); more details can be seen
in Kay (1988).

Finally, we define � = ���i� j��0≤i≤N−1�0≤j≤N−1 by

��k� �� = �� ∗ ���k� �� = N�−1���� ������k� ���

where � = ���k� ����k���·∈RN
is a Gaussian white noise with standard deviation 1.

Then it is easy to prove that � = ���i� j��0≤i≤N−1�0≤j≤N−1 is a stochastic process
such that ��i� j� is a standard Gaussian random variable with correlation function
�� satisfying Eq. (3).

3.3. Implementation

The results presented in previous sections were implemented using the IDL version
7.1 development platform, with the following algorithm.

Algorithm 3.1. Input: � < −1� � > 0� n ≥ 1 integer, � and � functions as above,
then:

1. Compute the frequency domain mask ��k� �� = √
� ����k� ��.

2. Generate � = ���k� ����k���∈RN
, the Gaussian white noise with zero mean and

variance 1.
3. Calculate ��k� �� = N�−1��� · � ������k� ��, for every �k� ��.
4. Obtain Z1

A�k� �� = G−1�����k� ���� ��� 1� n��, for every �k� ��.
5. Return ZA�k� �� = √

�Z1
A�k� �� for every �k� ��.

4. Simulation Results

In practice, both parametric and nonparametric correlation structures are of
interest. The former relies on analytic forms for �, while the latter merely specifies
values for the correlation. Parametric forms for the correlation structure are
simpler to specify, and its inference amounts to estimating a few numerical values;
nonparametric forms do not suffer from lack of adequacy, but demand the
specification (and possibly the estimation) of potentially large sets of parameters.

In the following examples, the technique presented above will be used to
generate samples from both parametric and nonparametric correlation structures.

Example 4.1 (Parametric Model). This correlation model is very popular in
applications. Consider L ≥ 2 an even integer, 0 < a < 1� � > 0 (for example
� = 0�001), � < −1 and n ≥ 1. Let h � � −→ R be defined by

h�x� =
{
x if �x� ≥ ��

0 if �x� < ��
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Figure 6. Correlated �0�−1�5� 1� 1�-distributed amplitude image with the correlation
structure defined in Example 4.1.

Let � � Rx −→ �−1� 1� be defined by ��0� 0� = 1, and if �k� �� �= �0� 0� in R1 by:

��k� �� =
{
h�a exp�−k2/L2�� if k ≥ ��

−h�a exp�−�2/L2�� if k < ��

The image shown in Fig. 6, of size 128× 128, was obtained assuming a = 0�4, L = 2,
� = −1�5, � = 1�0, and n = 1.

Figure 7. Real urban area and simulated data: (a) Urban area and (b) Correlated clutter.
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Example 4.2 (Nonparametric Specification). The starting point is the urban area
shown in Fig. 7(a). This 128× 128 pixels image is a small sample of data obtained
by the E-SAR system over an urban area. The complete dataset was used as input
for estimating the correlation structure defined by an 16× 16 correlation matrix
using Pearson’s procedure (�̂ below, where only values larger than 10−3 are shown;
see Appendix A). The correlation structure for the Gaussian process is � below,
where only values larger than 10−3 are shown. The roughness and scale parameters
were estimated using the moments technique. The simulated �0

A field is shown in
Fig. 7(b).

�̂ =




1�00 0�65 0�22
0�97 0�63 0�22
0�88 0�58 0�21
0�76 0�50 0�19
0�64 0�43 0�16
0�53 0�36 0�14
0�43 0�30 0�12
0�36 0�25 0�10
0�29 0�20 0�00
0�24 0�17 0�00
0�20 0�13 0�00
0�16 0�11 0�00
0�13 0�00 0�00
0�11 0�00 0�00




� � =




1�00 0�76 0�32
0�98 0�74 0�32
0�93 0�70 0�31
0�85 0�63 0�28
0�75 0�56 0�24
0�68 0�49 0�21
0�56 0�42 0�18
0�49 0�36 0�16
0�41 0�294 0�00
0�35 0�25 0�00
0�29 0�20 0�00
0�24 0�17 0�00
0�20 0�00 0�00
0�17 0�00 0�00




Example 4.3 (Mosaic). A mosaic of nine simulated fields is shown in Fig. 8(a). Each
field is of size 128× 128 and obeys the model presented in Example 4.1 with a = 0�4,
� = 1�0, n = 1, roughness a varying m the rows �−1�5�−3�0, and −9�0 from top to
bottom) and correlation length L varying along the columns (2, 4, and 8 from left
to right). The popularity of this correlation structure is partly due to the appealing
results, when compared with real imagery from deforested or pasture areas, forest
on flat relief and primary forest on undulated relief shown in Fig. 8(b). Notice the
shadowing effect of the last sample, and how different it is from the one observed
on Fig. 7(b), which corresponds to urban area.

5. Conclusions and Future Work

A method for the simulation of correlated clutter with desirable marginal law and
correlation structure was presented. This method allows the obtainment of precise
and controlled first and second-order statistics, and can be easily implemented using
standard numerical tools. The technique is quite general, and allows the specification
of both parametric and nonparametric correlation structures.

The adequacy of the method for the simulation of several scenarios was assessed
using real data, as presented in Example 4.2: estimating the underlying correlation
structure of an urban area and then simulating fields with it. We have also shown a
mosaic of nine simulated fields, computed using a parametric correlation structure
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2148 Bustos et al.

Figure 8. Real samples from JERS-1 data and simulated correlated return: (a) Mosaic of
nine simulated fields and (b) Real data: pasture, forest on flat relief and primary forest on
undulated relief.

that mimics the characteristic shadowing of primary forest on undulated relief.
Urban areas and forest areas are both heavy correlated, but their correlation
structures are very different. Our simulation method allows us to mimic these
differences, making its output suitable for testing classification schemes.

We can summarize the trend of our future research as follows:

1. Extension of current methodology to multidimensional SAR models, generated
by different sources like baseline, polarization, frequency, time as well as their
different combinations;

2. Utilization of more sophisticated models being able to take into consideration all
available a priori information and knowledge;

3. Utilization of an integrated platform with high numerical performance.

Bustos and Frery (2005) showed that IDL may present numerical instabilities,
while Almiron et al. (in press) conducted an analysis of platforms showing that
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R (freely available at http://www.r-project.org) has excellent numerical
performance. The authors are migrating the implementation from the former to the
latter platform avoiding, also, the use of FORTRAN code.

Appendix A: Estimating Correlation Structure with Pearson’s Method

Consider the image z with M rows and N columns

z =




z�0� 0� · · · z�N − 1� 0�
���

� � �
���

z�0�M − 1� · · · z�N − 1�M − 1�




and nv a positive integer smaller than min�M�N�. Define nc = 
N/�2nv�� and nf =

M/�2nv��, where 
x� = max�k ∈ 
 � k ≤ x� for every real number x. For each
i= 0� � � � � nc − 1 and each j = 0� � � � � nf − 1 define c�i� j� the submatrix of z of size
2nv × 2nv given by

c�i� j� =




z�2nvi� 2nvj� · · · z�2nvi+ 2nv − 1� 2nvj�

���
� � �

���

z�2nvi� 2nvj + 2nv − 1� · · · z�2nvi+ 2nv − 1� 2nvj + 2nv − 1�


 �

and let zv�i� j� be the submatrix of c�i� j� of size nv × nv given by

zv�i� j� =




z�2nvi� 2nvj� · · · z�2nvi+ nv − 1� 2nvj�

���
� � �

���

z�2nvi� 2nvj + nv − 1� · · · z�2nvi+ nv − 1� 2nvj + nv − 1�


 �

We will consider that zv�i� j�, for every i = 0� � � � � nc − 1 and every
j= 0� � � � � nf − 1, is a sample of the random matrix

Z =




Z�0� 0� · · · Z�nv − 1� 0�
���

� � �
���

Z�0� nv − 1� · · · Z�nv − 1� nv − 1�


 �

The autocorrelation function of the random matrix Z is defined as

�z��m� n�� �k� ��� = E�Z�m� n�Z�k� ���− �z�m� n��z�k� ��

	z�m� n�	z�k� ��
�

where �z�k� �� = E�Z�k� ��� and 	z�k� �� =
√
Var�Z�k� ���, for every 0 ≤ m�n� k� � ≤

nv − 1.
The function �z can be estimated using Pearson’s sample correlation coefficient

based on zv�i� j�� i = 0� � � � � nc − 1 and j = 0� � � � � nf − 1, i.e., for 0 ≤ m�n� k� � ≤
nv − 1 by

rz��m� n�� �k� ��� = Cz��m� n�� �k� ���

sz�m� n�sz�k� ��
�
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where

Cz��m� n�� �k� ��� =
nf−1∑
j=0

nc−1∑
i=0

�z�2nvi+m� 2nvj + n�− z̄�m� n��

× �z�2nvi+ k� 2nvj + ��− z̄�k� ����

sz�m� n� =
√√√√nf−1∑

j=0

nc−1∑
i=0

�z�2nvi+m� 2nvj + n�− z̄�m� n��2�

z̄�m� n� = 1
ncnf

nf−1∑
j=0

nc−1∑
i=0

z�2nvi+m� 2nvj + n��
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