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Abstract— This work proposes a substrate feeding strategy for a bioprocess integrated with a 

biomass estimator based in nonlinear filtering techniques. The performance of the proposed 

estimator and the substrate strategy are illustrated for the δ-endotoxin production of Bacillus 

thuringiensis (Bt) in batch and fed batch cultures. Nonlinear filtering techniques constitutes an 

adequate option as estimation tool because of the strongly nonlinear dynamics of this bioprocess 

and also due to nature of the uncertainties and perturbations that cannot be supposed Gaussians 

distributed. Biomass estimation is performed from substrate and dissolved oxygen. Substrate 

feeding strategy is intended to obtain high product concentration. Simulations results along with 

their experimental verifications demonstrate the acceptable performance of the proposed biomass 

estimator and the substrate feeding strategy. 

 

 Keywords— Biomass Estimation, Nonlinear Filtering, Bayes Theory, Fed Batch Process, 

Substrate Feeding Strategy. 

 

1. Introduction 

Motivation of this paper arises from the experimental results of the previous work [1] where it can 

be seen that it is possible to increase biomass concentration of B. thuringiensis subsp. medellin by 

Intermittent Fed-Batch Culture (IFBC) with total cell retention (IFBC-TCR). In this mentioned 

work the objective was to achieve a fed batch bioprocess model. The process model belongs to so-

called hybrid biochemical processes classes. These processes are being carried out at units under 

integrated operation such as membrane bioreactors. Hybrid operation indicates the coexistence of 

continuous and discrete event dynamics during the process operation. This way, allowing to 

improve yields and production efficiencies with reduced operating costs and initial investments [2, 

3]. 

 

In the present work the authors propose a substrate feeding strategy according to the model 

previously developed and completed by the same authors [4] with an additional model of dissolved 

oxygen and propose  a biomass estimator integrated with this feeding strategy with the objective to 

increment productivity with the adequate estimation of biomass concentration.  

 

Frequently, process monitoring is a critical problem in many industrial applications. However, just a 

few of the considered process state variables (reactors instantaneous composition) are possible to 

measure by real physical sensors. In bioprocesses, the biomass concentration is rarely available 

online and it is generally the most important variable from the process control point of view and 



hence, for its productivity. In the particular case of the δ-endotoxins production by Bacillus 

thuringiensis (Bt), the biomass constitutes the fermentation product itself. In this work, we propose a 

Bt δ-endotoxin estimator, i.e., a biomass observer design with the aim to give adequate and 

realizable online biomass estimation for the mentioned bioprocess.  The constructed state could be 

used to control the process [4].  A survey of used techniques for control can be found in the work of 

[5]. The state estimation objective is to rebuild the largest possible amount of system information 

(since is not totally available online), from the all the available system states’ measurements [6]. 

 

In [7] it is ensured that batch and semi batch process quality control problems can be reduced to 

estimation of process state from the initial conditions. In [8] some typical features of these 

processes are mentioned. There are many reports, in which state estimation in bioprocess is 

performed with different techniques ([9]; [10]; [11]; [12], [13] and so on. [14] proposed a state 

observer for a bioprocess with known kinetics structure and unknown kinetic parameters. The 

author proposed the use of these parameters as extra parameters design to guarantee reach stationary 

error equal to zero. In the mentioned work, Dochain divides the sates observers in two classes: 

classics observers, like the Luenberguer, Kalman, among others, and a second class of asymptotic 

observers, where the estimator’s structure depends completely on the model’s precision; the latter 

supposes that uncertainty of models rely on bioprocess kinetics. Recently  [15] publicized an 

interesting work about the applications of recent observers to chemical process systems and classify 

them into six classes, which differentiate them with respect to their features and assists in the design 

of observers. In [9] and [16] biomass estimation in a bioprocess is performed by the use of different 

kinds of Neural Networks, and later using sensorial fusion techniques. [17] worked on variables 

prediction in batch processes, by the use of subspaces identifications techniques. Generally, not 

only in continuous, but also, in batch process, model and parameters uncertainty makes of the 

asymptotic observers a good option that does not require the perfect model knowledge but depends 

strongly of operation conditions [14]. In [4] and [13] several biomass estimators for the δ-

endotoxins of Bacillus thuringiensis production process are presented. In the mentioned work, first 

principle based techniques are used; neural networks estimators and finally, fusion techniques to 

achieve better biomass estimation. It should be noted that except for the Kalman filter, those 

techniques are completely developed in a deterministic context. Modelling uncertainties are only 

taken into account through the variation of parameters, and the performance in presence of noise 

measurements is evaluated through numerical simulation. 

 

Generally real processes have strongly nonlinear dynamics due to the interactions nature between 

their variables and the disturbances always present in the real systems. A common way to reflect the 

non linearities and disturbances is through the system representation in terms of state variable 

models. Nonlinear stochastic differential equations (SDE) are the mathematics object that 

characterises these kinds of models. If uncertainties or stochastic disturbances are neglected, then 

the SDE’s are transformed to nonlinear differential equations. The form in which the information 

propagates through the system’s evolution, determines the states values and their consequences over 

the output system; this way, propagation of information is determined by the probability distribution 

function of the system states. Sometimes, it is possible to determine the relationship between the 

system output and their states. However, due to its non-linear and non-Gaussian nature, the 

application of traditional information recovering techniques is difficult to apply in practice. 

Traditional information reconstruction is possible, if it is assumed that the way the system states are 

distributed is Gaussian and, in some cases, linearization around some equilibrium system points can 

be made. 

 



From a stochastic point of view in bioprocess, [18] proposed a state estimation formulation like a 

filtering problem; in which, the stochastic terms are introduced into the dynamics, measurements 

and initial conditions. The object of interest is the full state conditional probability law respect to 

some noise measurements of some components. In [18] the mathematical modelling of the 

uncertainty is presented, through a stochastic differential system. Then, the authors designed a set of 

asymptotic observers used with along with the observed components, to approach the probability 

law of the unobserved ones. In addition, the authors established the relevance of stochastic 

modelling into the biotechnology field that allows using the “know how” existent in biology and 

optimization; also they have succeeded showing the feasibility of using this kind of approach in 

numerical solutions. 

 

This work proposes the use of nonlinear filtering techniques for state estimation in a Bt δ-endotoxins 

production process with the aim to implement a substrate feeding strategy in order to increment the 

bioprocess productivity. Specifically a nonlinear non Gaussian filter is used, through the called 

Particle Filters [19, 20]. This technique is based on Bayesian theory and Monte Carlo Sequential 

Methods. The methodology has the advantage of not using system linearization, as well as having a 

great potential for parallel implementation in systems that require more complexity and significant 

computational load. A discrete formulation of the problem is made; it means that the SDE’s that 

characterises the system in continuous time, it is discretized to obtain the difference stochastic 

equations. At this point, it is possible to pose a valid formulation in probabilistic form under 

Bayesian Theory in which an optimal solution is obtained from the states probability density 

function (pdf). 

 

The δ-endotoxin production of Bacillus turingiensis is a batch or fed batch process that cannot be 

linearized around a unique equilibrium point because its behaviour is transient in the complete batch 

duration time. Hence, a piece-wise linearization doesn’t bring an appropriate solution either. 

Another interesting feature is the irreversibility present in this kind of process [21];[22]. For this 

reason, there is a strong dependency on the initial conditions. Random nature of reactions at 

molecular scale has been mentioned and studied by other authors [23]. At macroscopic scale, the 

modelled the total effect of these individual reactions on global concentrations can be modelled 

through an additive noise term with variance proportional to the reaction kinetics [24]. In this 

context, two of the process states: biomass and substrate (X,S) were modelled as Markov process, 

satisfying the Langevin chemical equation [23]. All features previously mentioned, convert this 

system into an attractive application for the use of Nonlinear Filtering tools in state observers 

design. 
 

The interest of this work is into monitoring the states of a biological reactor, emphasising on the 

biomass concentration, with the aim to increment productivity thought a proposed substrate feeding 

strategy and their posterior application to bioprocess control. The paper is organised as follows, in 

Section II the batch fermentation process is presented; Section III describes details of the algorithms 

for state estimation design and feeding strategy design. Section IV presents and discusses the 

obtained results and finally conclusions are exposed. 



2. Materials and methods  

2.1. Production of  - endotoxins from bacillus thuringiensis. 

Bacillus thuringiensis is a bacteria that produces spores, and during this stage it also produces one or 

more adjacent crystalline protein bodies known as δ-endotoxins, used widely on industrial 

applications an ecological bioinsecticide. It has two stages on its life span: a first stage characterised 

by its vegetative growth, and a second stage named sporulation phase. When the vegetative growth 

finalises, the beginning of the sporulation phase is induced when the mean exhaustion point had 

been reached. Normally the sporulation is accompanied by the δ-endotoxin synthesis. After 

sporulation, the process is completed with the cellular wall rupture (cellular lysis), and the 

consequent liberation of spores and crystals to the culture medium. The plant is located in Medellín 

Colombia, and consists of a reactor with a nominal volume of 20 liters.  

 

The cultures were developed with an effective volume of 11 liters of culture medium, and they were 

inoculated to 10% (v/v) with the microorganism Bt. The temperature was maintained at 30 Cº by 

using a ON/OFF control; whereas the pH was controlled between 6.5-8.5 with a proportional 

controller. The foam formation was avoided by aggregating adequate antifoam. The air flow rate 

was set up at 22 [l/min] and the agitation speed at 400 rpm. The system pressure was set at 6 psig by 

a pressure valve controller. The dissolver oxygen percentage values, substrate concentration, pH and 

temperature were registered during the fermentation time by using a data acquisition system 

(Advantech®). The reagents concentration used for the pH control and foam formation was nitric 

acid (5N), potassium hydroxide (2N) and antifoam (33% v/v). 

 

2.2. Process model 

For this bioprocess a model based on first principles was proposed by [1] and [25]. This model is a 

modification to the Rivera model [26]. The work of [4]  has improved the process model by adding 

the dissolved oxygen (DO) dynamics, due to its importance in the biomass estimation problem and 

the posterior process control. Batch model was developed and validated using experimental data 

from four batch cultures with different initial glucose concentrations (8, 21, 32 and 40 g/L). Then, 

the four sets of parameters for batch models were identified and validated by considering that each 

batch model covers a region of an intermittent fed batch culture operation (see Table 2). The batch 

operation can be originated from any of the initial conditions mentioned above; Table 2 presents the 

sets of parameters according to the initial condition employed. 

 

The model equations are: 
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where vX  is the vegetative cell concentration, sX the sporulated cells concentration, S the 

substrate concentration and DOC  the dissolved oxygen concentration. The following equations 

define the specific growth speed  , the spore formation rate sk  and the death cell specific rate ek . 

For model parameters see Table 2. 

 

 

 

Table 1: Variables in the bioprocess model. 

 

Symbol Description 

S  Limiting substrate concentration [ ]/g L  

sT  Sampling time [ ]h  

sX  Sporulated cells concentration [ ]/g L  

vX  Vegetative cells concentration [ ]/g L  

DOC  Dissolved oxygen concentration [ ]/g L  

  Specific growth rate 1[ ]h  

max  Maximum specific growth rate 1[ ]h  

sm  Maintenance constant . /g subs gcells h    

sk  Kinetic constant representing the spore formation 1[ ]h  

ek  Death cell specific rate  1[ ]h  

/X S
Y  Growth yield / .gcells g subs    

sK  Saturation constant [ ]/g L  

1
K  Oxygen consumption constant by growth (dimensionless) 

2
K  Oxygen consumption constant for maintenance 1[ ]h  

3
K  Ventilation constant 1

[ ]L
  

*DO
C  O2 saturation concentration (DO concentration in equilibrium with 

the oxygen partial pressure of the gaseous phase) [ ]/ Lg  

air inF


 Air flow that enters to the bioreactor [ / ]L h  

 

 

 

 

 

Table 2:  Model Parameters. 

 

Symbol 10maxS 
  

10 20maxS 
  

20 32maxS 
 

32maxS 
 

max  0,8 0,7 0,65 0,58 

/X S
Y

 
0,7 0,58 0,37 0,5 

sK
 

0,5 2 3 4 



sm
 

0,005 0,005 0,005 0,005 

maxsk
 

0,5 0,5 0,5 0,5 

Gs  
1 1 1 1 

Ps  1 1 1 1 

maxek
 

0,1 0,1 0,1 0,1 

Ge  5 5 5 5 

Pe  4 4,7 4,9 6 

1K  9,75.10
-4

 4,502.10
-3

 3,795.10
-3

 1,597.10
-3

 

2K  1,589.10
-4

 0,046.10
-3

 0,729.10
-3

 0,561.10
-3

 

3K  4,636.10
-4

 0,337.10-3 2,114.10-
3
 1,045.10

-3
 

 

3. Estimators design 

3.1 – Estimator basics: Non Linear Filtering and Particle Filtering 

3.1.1 Nonlinear filtering Problem 

The main problem in the state estimation of a dynamic system can be interpreted as the nonlinear 

optimal filtering problem. In non-linear systems, a finite dimension filter that solves the optimal 

filtering problem does not exist (optimal state estimator), in the sense of Kalman filter for the linear 

case.  

 

The usual form to model the disturbances and the uncertainties is through the use of stochastic 

differential equations (SDE). Then, the equations that describe the states and outputs time evolution 

can be expressed by a system of stochastic differential equations or the Itô diffusion equations, in 

which the disturbances or uncertainties are expressed through diffusion components. 

 

To represent the dynamic process, suppose a system with states composed by an n - dimensional 

vector tx , and the system evolution is represented by a nonlinear vector differential equation called 

states equation, with the form of: 

 

   1, ,t t t tdx f x t dt x t dw            (5) 

  

Where the first term represents the deterministic drift part and the second is the diffusion term that 

models the process disturbances.  

 

The functions  ,f    and  1 ,    are called respectively, the drift and diffusion functions associated 

with the stochastic differential equation.  

 

The observations measurements ty  taken from the output system ty can be expressed in the same 

way as the states, by a non-lineal stochastic differential equation: 

 

   2, ,t t t tdy g x t dt x t dv           (6) 



In Eqs. 5-6, f , g , 1  and 2 are matrix or vector functions of convenient dimension and the 

vectors tv  and tw  are independent Wiener process.  

 

Basically, the nonlinear filtering problem, consists in obtaining the “best possible estimation” ˆ
tx , of 

the state vector tx  for all time t , from the available information of the observations ty until time t  , 

this is ;0sy s t  . The optimal state estimation, will be defined by the conditional expectation of 

the state vector applied to the available information, this is:  

 

ˆ ( ;0 )t t sx E x y s t  
                                                                                                              (7)

 

 

Obviously, to calculate the previous conditional expectation and consequently, the value for the best 

possible estimation ˆ
tx , it is necessary to know each time the conditional probability distribution 

function (pdf) of the states vector.  

 

This implies that, the optimal solution to the non-linear filtering is a problem of infinite dimension, 

due to the fact that linear stochastic partial differential equation for the un-normalized density of a 

hidden state (Zakai equation) must be solved [27]. 

 

3.1.2 Particle Filtering 

 

As previously addresses, estimation methods uses the model of the system in order to calculate the 

best approach for the unknown states the next sampling time, and also, uses a probability function 

to reach that goal. For nonlinear Non Gaussian systems, this probability function is not easy to 

obtain and the following idea illustrate the procedure. 

 

The method that establishes the basis for many developed filters is known as bootstrap, 

condensation algorithm, particle filtering, and survival fittest, among other names. This method uses 

the importance function ( )q x  defined as a probability distribution function that depends on the 

observations until discrete time k . This importance function will serve as a tool for the estimation 

of the probability density function of the states and has the advantage that can be easily sampled 

from observations.  

 

Following this idea, the posterior density understood as the conditional probability of the states to 

the measurements until time k-1, can be approached by the following expression: 

 

Ns

0: 1: 1 0: 0:

i=1

( / ) ( )i i

k k k k kp x y W x x            (8) 

Where sN  is number of samples, (.)  is the Dirac delta function applied to states and the weights 
i

kW  are chosen by importance sampling under considerations of:   

 

i) The probability density of the evaluation samples is proportional to the importance 

function ( ) ( )p x q x  and  

ii) The states can be sampled from the importance density function ( )ix q x . 



 

The algorithm consists on the recursive propagation of the weights i

kW  and support points when 

each measurement (output measurement) can be obtained sequentially. Some improvements are 

oriented to avoid the consideration of particles with no information contribution to the algorithm 

and the criteria to evolution will minimize the observer’s variance. The latter is a very important 

fact because of the algorithm should minimize the variance of the estimator in order to improve the 

performance of the particle filter.  

 

The resampling step should be performed by the observation of the degeneracy function and its 

comparison with a basis value. This step eliminates the particles with low weights and concentrates 

on the particles with large weights, it implies to generate a new set of samples generated by 

resampling or rejection with the form of  *

1

Ns
i

k i
x



 
  

.  

In this way, an approximate discrete representation of the posterior density function can be 

obtained. 

   

The resampling step can be perform under several variants: deterministic sampling, multinomial 

sampling, stratified sampling, residual sampling and systematic sampling among others. The 

resampling step reduces the effects of degeneration of particles but introduces some practical issues, 

limiting the opportunity of parallelism in to the algorithm because it combines all the set of particles 

and in addition, the particles with large weights are selected statistically in many times. This 

phenomenon carries on to a sample impoverishment, which is a lost in the diversity due to that the 

particles contain repeated points. This is a very important outcome when a process noise is low; and 

finally due to the particles patterns diversity reduction, any smoothing technique can be degenerate.  

 

Another possible solution to the weights degeneracy issue is to start the algorithm with an adequate 

importance function ( )q x  or else, evaluating its behavior into the algorithm.  

 

To make possible the use of this solution to the problem, some options arise like the ability to 

sample from the priori function 1( / , )i

n n np x x y ; or to evaluate the integral to the weights calculation in 

each new state. The optimal importance function is not always easy to find and for this reason, just 

a few cases can be performed as optimal. One of these is the case when states xk belong to a finite 

set, in that case the sampling from 1( / , )i

n n np x x y  is possible in that way. This is the case of Jump 

Markov Linear System [28]. 

 

3.2- Filter Model 

From the extended model equations (1-4) by [29], with dissolved oxygen dynamic incorporated, 

two filtering configurations were performed. First of all, it is assumed a stochastic component added 

to the deterministic models and the state space is now composed by stochastic differential 

equations. 

 

For the test of the estimators, two experiments were carried out: Figure 1 shows the first filter 

configuration, the discrete model of the process it is considered as the filter model, with 

uncertainties is characterized as measurement and state noise. Also, the continuous model with 
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different uncertainties component is considered as the real plant.  This approach was performed as a 

test previous to the second filter configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second configuration of the filter (Figure 2), replaces the continuous model used as real plan in 

the first approach and involves the data obtained from the real process. This way, the real data plays 

the role of real plant and the filter is improved by the use of a model with better uncertainties 

modeling. This is very important because by using real data, the problem solved is closer to the 

reality of estimation on line. 

 

In both cases the measurable states considered were substrate concentration ( )S  and dissolved 

oxygen concentration ( )DOC . It means substrate and dissolved oxygen data were used as information 

source for estimation of total biomass concentration during the fermentative process.  

 

Discrete approach to continuous differential equations that modeled the batch fermentation behavior 

was made through Euler numerical method. This kind of approach allows selecting the appropriate 

sample time in order to accurately reproduce the process dynamics. 

 

 

 

 

 

 

 

 

 

                       

 

 



 

Fig.1. Estimation Scheme: First filter configuration 

 

 

 
 

Fig.2. Estimation Scheme: Second filter configuration 

 

In the figures 1 and 2, the input u(t) and output y(t) are signals corresponding to “process model 

block” in the first filter configuration  or “real measurements of the plant” in the second 

configuration. These signals feed the “filter model” in both cases that make the estimation of the 

total cells and gives the information of total Biomass Concentration. These estimations are 

compared with the process model (considered the real process). Some tests at different sample times 

were performed, from 0.2 hours to 1 hour for batch fermentation; tests are done only during the first 

20 hours.  

 

3.2.1 First Filter Configuration 

Due to the unavoidable errors of the mathematical models and the existence of unpredictable 

internal or external perturbations, uncertainty models were added to the states and the measurable 

outputs. This uncertainty models have the features to be an independent and identically distributed 

(iid) diffusion terms. In Fig. 1 was showed the estimator block diagram, for the first case of 

simulation presented. 

 

Consequently, in the previously described model, equations (1-4), uncertainty and disturbances 

discrete time models were added under consideration of modeling uncertainties and measurements 

with noise of diverse nature. This way, the model presented became a stochastic differential 

equations model.  

 

The mathematical treatment of SDE’s has similarities, but also slight differences, to the usual theory 

of deterministic differential equations. One needs to be aware of these similarities and differences 

when considering numerical methods to solve them. Finding the exact solution of a (stochastic) 

nonlinear differential equation will usually be impossible; thus, only approximate sampled-data 

models will be obtained. 

 

The interest of this part of the work, relays in the use of SDE’s to model continuous-time stochastic 

systems (also called noise models), and from those models, to obtain sampled data which is 
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accurate in a well defined sense. In this particular case, authors are not interested into finding an 

exact solution of SDE, but are interested in the samples that can be obtained from its simulation 

behavior as a model. This procedure is done with the aim of calculating an approach to the 

probability density functions of the states, from Monte Carlo techniques for state estimation.  

 

To reach the sampled data model, it was necessary to approach the model defined by Eqs. 1-4 by 

means of a numerical method compatible with stochastic approach. Due to this part it is a simple 

model, the discrete deterministic model will appear in section 3.2.2. 

 

The discrete model used in the diffusion terms of both filter and process model in simulation was 

  5

1 ,  nx n  from eq. (5) as a multidimensional Gaussian Noise, dependent on a uniformly 

distributed intern variable ( )z n , updated each sample time particle by particle. The uncertainty 

model is a stochastic process defined by the following equations ([30]): 

 

 ( ) ( ( ) ( 1)), ( ) ,z n p z n z n z n U a b          (9) 

 1 , ( ( ) ( 1), ( 1))nx n p x n z n n x n            (10) 

 1 , ( ( ) ( 1), ( 1))n nx n p x n z n n x n w             (11) 

 

In Eqs. (9-11) the symbol  means “sampled from” the conditional probability density function p. 

The function   5

1 ,  nx n  corresponds to the second right term of eq. (5). Equation (12) 

illustrates the composition of the vectorial form of (11) that contains independent noise models for 

each state variable. 

 

           1 11 12 13 14 15, , , , , ,
T

n n n n n nx n x n x n x n x n x n         .     (12) 

Also, 5( )z n  and 5 nw is a white noise generated with different mean and variance vectors. The 

values for uniformly distributed variable a and b are chosen by the designer. As a measurements 

model, the uncertainty term was selected as  2 , 1tx t  combined with different Gaussian noise 

samples in the diffusion components. A simple white Gaussian Noise  tv  was used, consistent to 

the Brownian motion discrete approximation, generated with statistics that vary, depending on the 

test performed. 
 

3.2.2 Second Filter Configuration 

The second proposed configuration consists in the use of a discretized deterministic model as an 

information model into the filter, and augmented or completed by a model that represents the 

uncertainty  1 ,nx n between the data set and the phenomenological results.   

 

The uncertainty model tries to diminish the gap between model predictions and the reality of the 

process, with the aim of improving the biomass estimation. To reach the proposed objective, an 

adequate dynamical knowledge of the studied system is required. In this case, three sources bring 

reliable information: phenomenology, empirical input/output data and qualitative and quantitative 



heuristic knowledge of the system. All available information, is combined, processed and presented 

in many ways, and through different models (phenomenological or white box models, ARMAX 

time series, fuzzy or neural networks, and so on).  

 

Models themselves cannot represent completely the mechanisms that rule the dynamic behavior of 

systems and as a result their predictions are not always consistent with the real systems. In the 

works of ([31]) and ([32]) is suggested to pay special attention to the uncertainties modeling, when 

a physical system is modeled. 

 

The purpose of representing the uncertainty as a model is to find answers to the following 

questions: What influences the uncertainty dimension? How it can be reduced or compensated? 

Ideal goals should compensate the uncertainty through an adequate model, incorporating it to the 

filtering scheme proposed. 

 

The use of sample data models opens the discussion about the relationship between the discrete 

time samples and the original model described in continuous time obtained from the 

phenomenology modeled dynamics and differential equations. As a first approach, it is very 

common to sample frequently and then, replace the derivatives of the continuous time model by 

divided differences ([33]). Any sampled-data model for a nonlinear system will, in general, be an 

approximate description of the combination of two elements: the continuous-time system itself, 

together with the sample and hold devices.  

 

An exact discrete-time description of such a hybrid nonlinear system is, in most cases, not known or 

impossible to compute ([34]). Thus, one needs to be clear about the potential accuracy achieved by 

any model. In fact, the accuracy of the approximate sampled-data plant model has been proven to be 

a key issue in the context of control design. In the specific case that a controller designed to 

stabilize a system (based on an approximate model) fails to stabilize the exact discrete-time model, 

no matter how small the sampling period has been chosen ([35]).  

 

We supposed that the uncertainty can be modeled through the use of the first and second delay of 

the output and the first delayed error of the variable. This structure was used as an uncertainty 

model to complete the discrete version of the bioprocess model presented in equations (1-4) to build 

a reliable discrete model that describes properly the dynamics of the fermentation with the form (5) 

and (6) and also, completed by a noise model with the structure of equations (9-11). For this 

purpose we propose a set of Autoregressive Integrated Moving Average (ARIMA) models to model 

each fermentation uncertainties between phenomenological and real data A, B, C. An ARIMA 

model structure can be seen in equation 13.  

 

Ŷ t( ) = m +Y t -1( )+f Y t -1( ) -Y t -2( )( ) -qe t -1( )                                                            (13)    

     

In which m , f and q are parameters for estimation of the variable Y in terms of endogenous and 

exogenous variables. 

 

As it is desired, a general uncertainties model for fermentation was obtained from the ARIMA 

models. In this way the uncertainties modeling was complete with ARIMA and noise models 

calculated with Matlab to describe the three fermentation data used, named as Fermentation A, 

Fermentation B and Fermentation C. The complete model was applied into the filter to perform 



estimations of biomass, being fed by the “observable” real data of each fermentation. Subsequently, 

the results were compared with the real data of biomass. Of these models, the best ones are 

presented in this paper to reach a generalized uncertainty model. 

 

The model used for diffusion terms into the filter (for explanation see section 3.2.2) was a  1 ,tx t  

component, built as an ARIMA model (Auto Regressive Integrated Moving Average), identify the 

difference between real data and the output model ensuring the uncertainty modeling.  

 

ARIMA models are, in theory, the most general class of models for forecasting a time series, which 

can be stationarized by transformations such as differencing and logging. In fact, the easiest way to 

think of ARIMA models is as fine-tuned versions of random-walk and random-trend models: the 

fine-tuning consists on adding lags of the differenced series (AR) and/or lags of the forecast errors 

(MA), to the prediction equation, as needed to remove any last traces of autocorrelation from the 

forecast errors. ARIMA models that include only AR terms are special cases of linear regression 

models; hence they can be fitted by ordinary least squares. AR forecasts are a linear function of the 

coefficients as well as a linear function of past data. In principle, least-squares estimates of AR 

coefficients can be exactly calculated from autocorrelations in a single "iteration".  

 

In practice, one can incorporate an AR model in the Multiple Regression procedure on lags of itself 

(but you would get slightly different results from the ARIMA procedure) ARIMA models which 

include MA terms are similar to regression models, but can't be fitted by ordinary least squares: 

forecasts are a linear function of past data, but they are non-linear functions of coefficients--e.g., an 

ARIMA model without a constant is an exponentially weighted moving average in which the 

forecasts are a non-linear function of the MA parameter ("theta").  

 

3.3 Proposed substrate feeding Strategy 

 

As explained in section II, batch growth of Bt has two stages. In the first stage, nutrients are 

consumed and vegetative growth appears (each vegetative cell divides itself to form two new 

vegetative cells). When nutrients are consumed, the second stage begins and sporulation is initiated. 

In this stage each cell begins to form a spore and this cell cannot continue the cell division process. 

The process is completed with the rupture of the cell wall and the spore–crystal complex is released 

into the medium[1] and [25].  

 

In this work the author proposes a substrate feeding strategy with the aim to optimize the production 

in the bioprocess. The strategy feed consist in to generate two pulses of fresh substrate medium and 

add to the bioreactor. Each pulse was added before the growth phase had finished.  Something 

similar was used for the fed-batch bioprocess modeling, but initial concentrations used; the time 

when each pulse is applied and the final application are different. In this strategy the volumes added 

are controlled so that is does not exceed the permissible by the bioreactor.  It is working with the 

maximum allowable concentrations of substrate to achieve a good cell production but without 

substrate inhibition occurs during fermentation. 

 

The first pulse volume was 2 L and the second one was 5 L. A tangential filtration system 

containing 2 polyvinylidene fluoride membranes with pore size of 0.45 lm and a total filtration area 

of 1.0 m2 (Millipore Co) can be used to eliminate the exhausted culture medium (permeate). After 



each pulse addition the process continued as a batch culture.  The point in the fermentation with 

maximum nutrients concentration is the optimization objective. The maximum glucose 

concentration in the medium (Spmax) at any time of the process was used as the switching criteria 

among the estimated batch parameter sets (See Table 2). The Initial and operational conditions used 

to simulate the fed-batch operation of Bacillus thuringiensis subsp. kurstaki are exposed in Table 3. 

 

Table 3: Initial and operational conditions used to simulate the fed-batch operation of Bacillus 

thuringiensis subsp. kurstaki. 

 

Description value  

Initial glucose concentration (g/L) 25 

Initial vegetative cell concentration (g/L) 0.645 

Feed flow by each pulse (L/h) 60 

Culture medium inlet flow to tangential filter (provided by 

pump) (L/h) 

423.5 

Permeate flow before the first pulse 60 

Permeate flow before the second pulse (L/h) 27.27 

Glucose concentration fed in the first pulse (g/L) 47 

Glucose concentration fed in the second pulse (g/L) 40 

Duration of filtration process before the first pulse (h) 0.2 

Duration of filtration process before the second pulse (h) 0.6 

Time at which the first pulse was added 5 

Time at which the second pulse was added 6.9 

 

 

4. Results analysis and discussion 

4.1 – Simulation Results: 

 

As follows, the results from the approach obtained through particle filtering technique in simulation 

will be presented, and will be compared with real biomass data. In the first performed configuration, 

a complete model of bioreactor was used, in which full states are included; they are biomass 

concentration (vegetative and sporulated cells concentrations), substrate concentration and dissolved 

oxygen concentration,  
T

v s DOx X X S C . To the previously mentioned states, a simple diffusion 

component was added (Brownian movement) and the states considered as measurable outputs were 

substrate and dissolved Oxygen concentrations is  
T

DOy S C .  

 

For initial configuration, sample times from 1 to 0.01 hours were used.  

 

A set of 10 to 1000 particles and variations of random components (statistics features) were tested. 

The set of tests was used to measure the filter effectiveness compared to the application 

computational cost and to observe the efficiency of the resampling schemes used in this 

configuration. 

 



The test performed with the first filter configuration (previously described in section 3.2.1) are 

summarized in table 1, , using the discretized model of [29]; the results presented in the table 

highlight the influence of particle numbers in the augmenting or diminishing of the approach error 

over interest variables.  

 

Table 4 cites the estimation errors for some cases where reached estimation is accurate. In 

simulation (process model-filter model) different sample times were used to evaluate not only the 

dynamical filter behavior, but also the accuracy of the approach. The parameter to measure the 

estimator effectiveness is defined as: 

 

sup( max    )
resampling

error x x           (14) 

 

 

Table 4. Summary of state estimation error on initial tests, different diffusion features. 

 

Estimation Errors 

Sample time 1 hour 0.5 hour 

Particle Number 100 500 100 500 

Vegetative Cells (Xv) 0.0011 0.0005 0.0007 0.0024 

Sporulate Cells (Xs) 0.0007 0.0008 0.0003 0.0011 

 

 

From the information on Table 4, it can be observed that the estimation quality not only depends on 

resampling schemes involved, no matter how many particle numbers were used, but also, involves 

the measurements sample time. With the aim to illustrate the test performed, the simulation results 

will be shown for total biomass concentration (vegetative and sporulated cells) at sample time of 

0.01 with deterministic resampling and 1 hour with residual resampling, for a 500 particles 

configuration. An estimation error (for the total biomass concentration) minor than 1g/L is more 

than acceptable for this process and then we can ensure than the results are satisfactory and the 

algorithm converges for this kind of estimation. It is important to remark that the resampling 

schemes have influence over simulation time, but in regard to the quality of the results obtained the 

variations are not relevant. The results of tests performed with short sample times of 0.2 hours, for a 

deterministic resampling scheme, give the shortest execution time of filtering algorithm, for high 

noise power configuration. Estimations reached are adequate and satisfactory according to the 

estimation error magnitude, in comparison with larger sample times.  

 

 

4.2 – Experimental Results and Inputs Description: 

 

It was necessary to use the experimental information of substrate and dissolved oxygen 

concentrations to use a particle filter as state estimator.  Two fermentations were used: “A” and “B” 

of 18 hours duration. The sample time was fixed in 1/10sT hours by a Fourier frequency analysis. 

The dissolved oxygen data was acquired with a sample time of 0.01 hours. The previously selected 

sample time, as the most representative of this kind of dynamical system, was of 0.1 hours (6 

minutes); because even the oxygen data can be obtained at less sample time, the dynamic behavior 

into this interval doesn’t have important changes.  



 

The available experimental data is variable measurements taken from the mentioned fermentations; 

namely:  dissolved oxygen percentage ( DO ), substrate concentration ( S ), and total biomass 

concentration ( X ). The experimental data is sampled at different frequencies: 10 per hour for DO  

and Glucose S and 1 sample per hour for the biomass concentration (quantified through dry weight 

method). The experimental data of dissolved oxygen concentration collected from the process using 

a data acquisition system is immersed in high frequency noise. In order to remove these undesirable 

noise frequencies the original raw signal is filtered with a low-pass filter, as it is explained in the 

work of [29]  

 

For the filter dynamical model the discrete approach of the process model was used but improving 

with uncertainty models, i.e., the model used internally in the filter has been corrected through an 

uncertainty modelling, looking for compensation between real data and the model used. In figure 2 

the estimation scheme used for real data comparison is shown.  

 

 

The inputs used in the estimation scheme are present in Figs. 3-6, i.e. the output completed with the 

ARIMA model previously described, and for comparison the output model from the original model 

for the fermentations A and B. The uncertainty measure model for sensors considered was the same 

that in the simulation test. 

 

 

 
Fig. 3. Input for the Biomass Estimator (Substrate concentration for fermentation A): The dotted line 

represents the experimental data, the dashed line the output original model and the solid line 

represents the input to the particle filter (the discrete model plus ARIMA to model the uncertainties). 
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Fig. 4. Input for the Biomass Estimator (Substrate concentration for fermentation B): The dotted line 

is the experimental data, the dashed line represents the output original model and the solid line 

represents the input to the particle filter (the discrete model plus ARIMA to model the uncertainties). 

 

 
Fig. 5. Input for the Biomass Estimator (Dissolved Oxygen concentration for fermentation A): The 

dotted line represents the experimental data, the dashed line represents the output original model and 

the solid line represent the input to the particle filter (the discrete model plus ARIMA to model the 

uncertainties). 
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Fig. 6. Input for the Biomass Estimator (Dissolved Oxygen concentration for fermentation B): The 

dotted line represents the experimental data, the dashed line represents the output original model and 

the solid line represent the input to the particle filter (the discrete model plus ARIMA to model the 

uncertainties). 

 

The biomass estimation results with a SIR filter with different resampling schemes are presented in 

Fig 7 and 8. The structure used condenses the Basic Model developed by [4] and the uncertainty 

model developed and proposed in this work (eqs 9-11).  To validate those results, experimental data 

of biomass concentration was used, but due to the different sample frequency (1 per Hour), the 

biomass concentration’s experimental data was completed using Bayesian Gaussian Regression (see 

the work of [12]. 

 
Fig. 7. Biomass estimation for batch process (Fermentation A) through the particle filter 

with the use of the discrete model complemented with uncertainties modeled through 

ARIMA model. 
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Fig. 8. Biomass estimation for batch process (Fermentation B) through the particle filter 

with the use of the discrete model complemented with uncertainties modeled through 

ARIMA model. 

 

From the figures (7and 8) can be observed the acceptable performance of the biomass estimator for 

the fermentations A and B. The results are satisfactory, it reproduces the behavior of batch 

fermentation even if the initial conditions are the same or not. These results are an improvement for 

previous estimators [11, 36] and can be used in closed loop with advanced control strategies [29] 

[37] for the optimal control of fermentation process.  

 

The need to develop a methodology for the right implementation of particle filters in non-linear 

systems, rely on the particularities that these systems have; this features makes really difficult the 

task of characterizing them and makes difficult to find a correct solution path to these particular 

cases. Inside the methodology of particle filtering, by using the importance sampling, it is 

imperative to consider that, to reach the goal, it is necessary to propose an adequate importance 

function, and the filter designer should select it depending on each specific case. This causes that 

when doing the approach to the filter densities (objective densities functions) it will be extremely 

close to the good or bad choice of the importance function by the designer. An important remark is 

that the filter follows properly the model, and as it approaches to the real problem, the performance 

to online implementation was tested. To apply the SMC Particle Filtering methodology, the 

assumption of a sampled data model for the SDE´s was necessary; this way the set of equations are 

posed as new and improved models that include uncertainties and disturbances. SIR Filters are 

satisfactory but even if this is a novel application of the SMC, it may require a more advanced SMC 

method to the real data problem solution Briers, [38] [39] [40], [41].   

 

The results of the feed substrate strategy integrated with the particle filter proposed shown in Figure 

9. It can be seen that adding the proposed substrate pulses, the vegetative phase of the process 

becomes longer resulting in an increased productivity. 
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Fig. 9. Substrate feeding Strategy. 

 

 

5. Conclusions 

This work presented a state estimator based in nonlinear filtering techniques and its integration with 

a substrate feeding strategy. The application of the particle filters developed as state estimator can be 

used in nonlinear non Gaussian dynamical systems. The technique and methodology was illustrated 

in the case of a batch bio-reactor for production of δ-endotoxins of Bacillus thuringiensis (Bt).  In 

this work the performance results for this methodology were presented first under a simulation 

setting for different conditions and then, contrasted with real experimental data. 

Uncertainty modeling between the dynamical system and a basis model developed by [29] was 

also performed. The complete uncertainty model was developed through ARIMA models and 

diffusion components and this way, the existent model was completed, looking for the 

implementation of this particular estimator. 

Results were compared with real data from two fermentations with initial conditions around the 

same operation point. It is important to remark the relevance of the development of uncertainty 

models for the use of Bayesian techniques into information extraction of dynamical nonlinear non 

Gaussian systems. The application of the particle filtering as state estimator is acceptable and 

feasible for its implementation to solve the problem of on line biomass estimation in a batch 

process, due to its reliability and admissible computational cost. The substrate feeding strategy 

transforms the batch process into a fed batch process with the consequent increment (duplication) of 

the bioprocess productivity.  The feeding strategy resulted then in an increased productivity during 

the fed-batch cultivation. 
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