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In the present work a set of formal relations connecting different approaches to calculate relativistic
effects on magnetic molecular properties are proven. The linear response �LR� within the
elimination of the small component �ESC�, Breit Pauli, and minimal-coupling approaches are
compared. To this end, the leading order ESC reduction of operators within the minimal-coupling
four-component approach is carried out. The equivalence of all three approaches within the ESC
approximation is proven. It is numerically verified for the NMR nuclear-magnetic shielding tensor
taking HX and CH3X �X=Br, I� as model compounds. Formal relations proving the gauge origin
invariance of the full relativistic effect on the NMR nuclear-magnetic shielding tensor within the
LR-ESC approach are presented. © 2006 American Institute of Physics. �DOI: 10.1063/1.2162541�
I. INTRODUCTION

Relativistic effects on nuclear-magnetic-resonance pa-
rameters have shown to be of major importance. In particu-
lar, the absolute nuclear-magnetic shielding tensors in heavy
atom containing compounds are strongly affected by such
effects. Within four-component linear-response theory at the
random phase approximation �RPA� level a series of bench-
mark results were obtained.1,2 The first ones1 were obtained
within the Sternheim approximation.3 It has been shown
formally4,5 that the diamagnetic component of magnetic
properties is only recovered in the nonrelativistic limit when
electron-positron rotations are taken into account. Therefore
in the four-component linear-response theory the paramag-
netic term is identified with the linear-response related to
electron-electron rotations, while the diamagnetic one is
identified with the contribution associated to electron-
positron rotations. Since the early results of Visscher et al.,1

it has been recognized that electron-positron rotations must
be taken into account beyond the Sternheim3 approximation
in order to obtain correct results2 of the nuclear-magnetic
shielding tensor. However there are different definitions of
para- and diamagnetic contributions at the four-component
level yielding the same para- and diamagnetic separation in
the nonrelativistic limit. For instance, recently, Visscher6

analyzed the implementation and numerical results of the
nuclear-magnetic shielding within a method of “minimal
coupling” of large and small components proposed by
Kutzelnigg.7 In this method a unitary transformation of the
four-component Dirac Hamiltonian in the presence of a mag-
netic potential A is carried out. As a result, the magnetic
perturbation is expressed as a sum of a linear and a quadratic
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term in A, which closely resemble the nonrelativistic opera-
tors �plus additional terms�. Rather unexpectedly, however,
numerical results of the usual linear-response approach and
minimal-coupling approach show significant differences.6

Even though differences in the paramagnetic and diamag-
netic terms were to be expected, the total nuclear-magnetic
shieldings should be in close agreement. It has been
suggested6 that it would be interesting to compare the indi-
vidual terms in Kutzelnigg’s approach to the outcome of the
perturbative quadratic response by Manninen et al.8 and
Melo et al.9,10

Approximate two-component methods to calculate
nuclear-magnetic shieldings also yield different decomposi-
tions into para- and diamagnetic components of magnetic
properties.8–16 Among them, in the linear response within the
elimination of small component �LR-ESC� approach,9 the
separation into para- and diamagnetic terms is explicitly ob-
tained by considering separately the contributions from elec-
tronic excited states on one hand, and contributions from
electron-positron pair-creation terms on the other. This de-
composition is therefore fully consistent with the one carried
out in the four-component linear-response calculations1,2

which considers separately the contributions from electronic
and positronic states to a given positive-energy four-
component spinor in order to define the paramagnetic and
diamagnetic components. The Breit-Pauli approach, in which
the magnetic vector potential A is added to the canonical
momentum in the Breit-Pauli Hamiltonian, was first investi-
gated by Fukui et al.,17,18 and later expanded and completed
by Manninen et al.8 and Fukui et al.18 However, it is inter-
esting to remark the following point. It seems natural to iden-
tify the paramagnetic contribution as that originating in op-
erators linear in A, and to identify the diamagnetic one with

operators quadratic in A. This definition leads to a different
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separation into para- and diamagnetic components in the
Breit-Pauli approach to those of the LR-ESC one. In fact,
this definition applied to the Breit-Pauli approach does not
correspond to a decomposition into electron excitations and
electron-positron contributions at the four-component level.
A formal relation connecting the Breit-Pauli and LR-ESC
approaches was proven in Ref. 9. Kutzelnigg16 developed
two-component expressions of magnetic properties starting
from the Dirac equation in the presence of a magnetic field
and using direct perturbation theory. By carrying out a
double perturbation expansion �both in c−1 and the magnetic
potential� he arrived at formal perturbative expressions based
on the Lévy-Leblond Hamiltonian. In this way, some singu-
larities of the Foldy-Wouthuysen transformation are avoided.

In the present work, different formal relations allowing
to analyze different questions related to the leading-order
ESC approach are discussed. The ESC reduction of Viss-
cher’s nuclear-magnetic shielding based on Kutzelnigg’s
minimal-coupling approach is carried out. In this way a com-
parison of the LR-ESC, Breit-Pauli, and ESC-reduced
minimal-coupling approaches can be established. Formal re-
lations connecting the different para- and diamagnetic con-
tributions of each approach are explicitly proven. Numerical
results based on calculations of Ref. 10 are presented in or-
der to verify explicitly the fulfillment of such relations. HX
and CH3X �X=Br, I� are taken as model compounds. In a
second section, the gauge origin invariance of the LR-ESC
approach is analyzed. Formal relations connecting different
contributions to the nuclear-magnetic shielding for different
gauge origins are explicitly proven for all one-body opera-
tors of the LR-ESC formalism. Numerical results are pre-
sented for the calculation of the H nuclear-magnetic shield-
ing in HX �X=Br, I�, by considering a shift of the gauge
origin from the H nucleus to the X nucleus. Results thus
obtained fully explain differences found in previous works
between the closely related operators of the LR-ESC �gauge
origin at the H nucleus�10 and Breit-Pauli �gauge origin at the
heavy nucleus�8,19 approaches.

II. THEORY

A. Leading-order relativistic effects on molecular
magnetic properties within the ESC approach

1. Breit-Pauli approach

The Pauli Hamiltonian can be obtained as the leading-
order ESC approximation of the Dirac Hamiltonian, i.e.,

c�p�S + V�L = E�L, �1�

c�p�L + V�S = �2mc2 + E��S, �2�

where �L and �S stand for the large and small components of
a Dirac four-component spinor of positive energy mc2+E, �
stand for the 2�2 Pauli matrices, p is the momentum opera-
tor, and V is the Coulomb potential of the nuclei. In the ESC
scheme,

�S = �2mc2 + E − V�−1c�p�L �3�
and the leading-order relativistic approximation is
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�S = �1 −
E − V

2mc2 � �p

2mc
�L. �4�

Inserting this relation in Eq. �1� the following equation for
the large component is obtained that

��p�1 +
V

2mc2��p

2m
+ V��L = E�1 +

�p�p

4m2c2��L. �5�

Consistently up to order c−2, this equation is transformed to
an eigenvalue equation for the hermitian Pauli Hamiltonian
by means of the following transformation:

�̃ = �1 −
�p�p

8m2c2��L �6�

The one-body Pauli Hamiltonian takes the form,

H0
P =

�p�p

2m
+ V +

1

4m2c2�pV�p

−
1

8m2c2	�p�p

2m
+ V;�p�p
 , �7�

where the curly brackets stand for the anticommutator. The
first two terms yield the Schrödinger Hamiltonian H. There-
fore, relativistic effects on molecular states can be obtained
from Rayleigh-Schrödinger perturbation theory �RSPT� for
the Hamiltonian,

H0
P = H + HR, �8�

where HR gathers the well-known relativistic spin-orbit �SO�,
Darwin �Dw�, and mass-velocity �MV� operators.

Two-body interaction terms in this approximation are
obtained by considering the Coulomb and Breit interaction
operators between positive-energy four-component spinors
and carrying out the ESC procedure in order to express the
leading-order contributions �up to order c−2� in terms of Pauli
two-component spinors �̃. This procedure yields the Breit-
Pauli Hamiltonian �see, e.g., Ref. 20�. In the present work we
restrict ourselves to the analysis of one-body operators and
therefore two-body operators are not presented explicitly.

In the presence of a magnetic field described by a vector
potential A the operator p in the Dirac Hamiltonian is re-
placed by operator �= p+ �1/c�A �in a.u.�. All steps of the
previous derivation remain valid and the Pauli Hamiltonian
in the presence of a magnetic field is obtained making the
same replacement in Eq. �7�. It is obtained that

HP = H0
P + O1 + ODiam,NR + O3,BP + ODiam,BP, �9�

where

O1 = 1/2mc��p,�A� , �10�

ODiam,NR =
1

2mc2A2, �11�

are the “nonrelativistic” magnetic operators, and

O3,BP = −
1
2 2 �p2,O1� +

1
2 3 ���p,�A�,V� , �12�
4m c 8m c
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ODiam,BP = −
1

8m3c4 ���p,�A�2 + �p2,A2�� , �13�

yield the leading-order relativistic field-dependent correc-
tions. It is worthy to note that the commutator in Eq. �12�
yields

1

8m2c3 ���p,�A�,V� =
1

4m2c3���V � A� , �14�

i.e., it is the “field-induced” spin-orbit operator considered in
different works.8,17,21,22 As a consequence, relativistic effects
on magnetic properties within the Breit-Pauli approximation
can be expressed as first-, second-, and third-order RSPT
corrections to the Schrödinger molecular energy.

2. Linear response „LR… within the ESC approach

Within the LR-ESC approach9 the starting point is an
RSPT �2�-like expression of the magnetic properties bilinear
in the magnetic potential, based on the Breit Hamiltonian in
the four-component Dirac-Fock space.20,23 The perturbation
operator is W=� ·A �where � are the 4�4 Dirac vector ma-
trices�. Within the no-pair approximation, the ground state
0N� of an N-electron system can be expressed as a combina-
tion of determinants containing only “electronic” four-
component spinors, i.e., positive-energy eigenvectors of the
one-body Dirac Hamiltonian. The magnetic perturbation can
connect such state with excited states of the same type,
�nN��, and with states which have an electron-positron pair
created on 0N�. Considering contributions from different
particle number manifolds in Dirac-Fock space, the para
�Epara� and diamagnetic �Edia� contributions can be defined
as9

Epara = �
n�0

�0N� · AnN��nN� · A0N�
E0 − En

, �15�

Edia = �
n

�0N� · AnN+2��nN+2� · A0N�
E0 − En

−
��ac� · 1n2��n2� · A�ac�

Evac − En
. �16�

The last term in Edia takes account of a renormalization of
the vacuum energy due to the magnetic potential. This sepa-
ration into para- and diamagnetic contributions is consistent
with that of Refs. 1, 2, 4, and 5 in the context of the linear-
response four-component �RPA� approach. In the LR-ESC
approach the lowest-order relativistic corrections are ob-
tained by applying the leading-order ESC approximation to
all terms in Eqs. �15� and �16�. As a result a set of operators
describing relativistic effects on magnetic properties is
obtained.9,10 Magnetic-field-dependent operators entering the
“paramagnetic” contribution, Eq. �15�, are obtained when the
matrix elements of the magnetic interaction between

positive-energy four-component spinors are considered
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��i
4� · A� j

4� = ��i
Lc�� · p�Ri

−1�� · A�

+ �� · A�Rj
−1�c� · p�� j

L� , �17�

where, consistently in the leading-order ESC scheme it holds

Ri
−1 �

1

2mc2�1 +
V − Ei

2mc2 � , �18�

and the relation between the large component and the two-
component spinors of the unperturbed Pauli Hamiltonian is

�i
L� = �1 −

p2

8m2c2��̃i� . �19�

Explicit third-order field-dependent operators were obtained
in Ref. 9 from the relation Eq. �17�. A brief account is given
here. The following relation is correct up to order c−3:

�V − E���p��̃� = ��p��− p2

2m
��̃� − ���p�,V��̃� �20�

Taking Eqs. �17�–�20� into account, the following operators
can be defined as

O1 = 1/2mc��p,�A� , �21�

O3,LR =
− 1

8m2c2 �p2,O1� −
1

8m3c3 ��A�pp2 + p2�p�A�

+
1

4m2c3 ���p,�A�,V� , �22�

where the superscript LR indicates that this is the form of the
field-dependent operator in Ref. 9.

In addition to the nonrelativistic diamagnetic operator,
the leading-order relativistic correction to the “diamagnetic”
term was obtained by expressing the electron-positron con-
tribution to magnetic properties, Eq. �16�, in terms of Pauli
two-component spinors consistently with the ESC approach.
The detailed derivation of the resulting operators is presented
in Ref. 9. A brief summary is presented in Appendix A. As a
consequence, the following operator bilinear in the magnetic
potential was obtained:

ODiam,LR = −
1

8m3c4 ���p�A�2 + 2�Ap2�A + ��A�p�2

+ �p2,A2�� , �23�

where the superscript LR indicates that this is the form of the
diamagnetic operator in the LR-ESC scheme.

3. Leading-order ESC-reduced “minimal-coupling”
approach

Recently, a unitary transformation of the Dirac Hamil-
tonian in the presence of a magnetic potential yielding a
minimal coupling between the large and small components
of four-component spinors was proposed by Kutzelnigg.7
The unitary operator:
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U = exp��� · A

2c2 � , �24�

is applied to the Dirac one-body Hamiltonian in the presence
of a magnetic potential A,

HD = c�p + �mc2 + V + �A , �25�

in order to obtain the minimal-coupling-transformed Hamil-
tonian,

HK = UHDU+. �26�

It was shown in Ref. 7 that expansion of HK in powers of the
magnetic potential up to second-order yields the following
Hamiltonian:

HK � H0
D + D�1� + D�2�, �27�

where H0
D is the unperturbed Dirac Hamiltonian �A=0 in Eq.

�25��, and

D�1� = �O1, �28�

D�2� =
1

2mc2�A2 −
1

4m2c3 ��A,pA� . �29�

In this way, the odd terms �A are removed from the Hamil-
tonian. Within this approach, magnetic properties bilinear in
the magnetic potential are obtained from first- and second-
order four-component perturbation theory considering opera-
tors D�2� and D�1�, respectively, i.e.,

E�2� = ��D�1�;D�1��� + �0D�2�0� , �30�

where ��A ;B�� is a shorthand notation for a second-order
correction to the molecular energy and the second term is an
expectation value for the unperturbed molecular relativistic
ground state. This approach was implemented by Visscher
for the calculation of the magnetic shielding tensor6 within
the four-component linear-response RPA formalism.

The contributions to the molecular energy given in Eq.
�30� are related to the second-order expression for the usual
magnetic interaction,1

E�2� = ���A;�A�� . �31�

by a formal relation provided by the proposed unitary trans-
formation itself. At the four-component level, this relation is
as follows:

��� · A;�K,H0
D��� + ���K,H0

D�;� · A�� = − �0�K,� · A�0� ,

�32�

where

K = �� · A/2c2. �33�

If the leading-order ESC approximation �Eqs. �17�–�20��
is applied to operators D�1� and D�2�, the following linear and
quadratic operators are found

O3,K = −
1
2 2 �p2,O1� −

1
2 2�pO1�p , �34�
8m c 4m c
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ODiam,K = −
1

8m2c4 ���p�A�2 + ��A�p�2 + 2�pA2�p

+ �p2,A2�� �35�

where the superscript K indicates that these are the ESC-
reduced operators of the minimal-coupling formalism. A
brief derivation of these operators is presented in Appendix
B, as a detailed account of leading-order effects can be found
in Ref. 7.

B. Relations connecting the Breit-Pauli, LR-ESC,
and ESC-reduced minimal-coupling approaches

Within the leading-order ESC schemes presented in the
previous sections, relativistic effects on magnetic properties
which are bilinear in the magnetic potential can be expressed
as first-, second-, and third-order RSPT corrections to the
Schrödinger molecular energy. Two kinds of relativistic ef-
fects can be distinguished: �i� “passive” effects, in which
relativistic corrections to the unperturbed molecular states
are considered by means of the spin-orbit, Darwin, and mass-
velocity operators in HR, Eq. �8�, and lowest-order magnetic
operators O1, and ODiam,NR �Eqs. �10� and �11��; and �ii� “ac-
tive” effects, in which the explicit field-dependent operators
O3,X and ODiam,X �X=BP, LR, or K� are considered. This
terminology has become conventional in the bibliography,8,19

and is therefore applied in the present work.
Passive effects are exactly the same in the Breit-Pauli,

LR-ESC, and minimal-coupling formalisms. Active effects
are obtained by considering, on one hand, second-order
RSPT corrections to the molecular energy for operators O1

and O3,X,

E�O1,O3,X� = �
n�0

�0O1�N�n��nO3,X�N�0�
E0 − En

+
�0O3,X�N�n��nO1�N�0�

E0 − En
, �36�

where O�N� stands for the one-body operator A in the N
particles states space

O�N� = �
i

Oi. �37�

On the other hand, the relativistic active correction to the
diamagnetic contribution within each formalism is obtained
as a first-order RSPT energy correction for the corresponding
ODiam,X operator, i.e.,

E1 = �0ODiam,X0� . �38�

In order to analyze the relations between the different
ESC approaches for the calculation of molecular magnetic
properties, the commutator in Eq. �39� is considered

O3�H� =
1

8m2c3 ���p,�A�,H� , �39�

where H is the many-body Schrödinger Hamiltonian. The
second-order RSPT correction to the molecular energy in-

volving a commutator with H can be reexpressed as
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E�O1;O3�H�� =
1

8m2c3 �0�O1,��p,�A��0� , �40�

i.e., as an expectation value for an operator bilinear in the
magnetic potential. Results Eqs. �39� and �40� show that by
means of these formal relations, paramagnetic contributions
to magnetic properties involving operator O3�H� can be
transformed into diamagnetic contributions, i.e., contribu-
tions which are obtained as an expectation value for an op-
erator bilinear in the magnetic potential.

Explicit relations among the different ESC formalisms
are hereby proven.

By a simple rearrangement of terms in Eq. �22� O3,LR

can be expressed as

O3,LR = −
1

4m2c2 �p2,O1� −
1

16m3c3 �p2,��p,�A��

+
1

4m2c3 ���p,�A�,V�

= −
1

4m2c2 �p2,O1� +
1

8m2c3 ���p,�A�,V�

+
1

8m2c3���p,�A�,� p2

2m
+ V�� , �41�

and, therefore,

O3,LR = O3,BP −
1

8m2c3 ���p,�A�,U�

+
1

8m2c3 ���p,�A�,H� , �42�

�see Eq. �12�� where U stands for the two-body Coulomb
interaction in the Schrödinger Hamiltonian. The second-
order RSPT expression involving the third term in Eq. �42�
can be taken into account as indicated in Eq. �40�, yielding a
modified diamagnetic operator of the form,

1

8m2c3 �O1,��p,�A�� + ODiam,LR

= −
1

8m3c4 ���p,�A�2 + �p2,A2��

= ODiam,BP, �43�

i.e., the operator of the Breit-Pauli scheme, Eq. �13�, is
readily obtained. Therefore, we have obtained a formal ex-
pression relating the operators of the LR-ESC scheme and
those of the Breit-Pauli one.9 In Eq. �42� there is a two-body
contribution which should be taken into account in order to
make the relation between both approaches exact. Such con-
tribution is neglected in the present work. It is seen that the
separation into paramagnetic and diamagnetic contributions
associating the linear operators to the first one and the qua-
dratic to the second in the Breit-Pauli approach does not
correspond to the separation into electronic excitations and
electron-positron rotations, as does the LR-ESC scheme. In
the present work the fulfillment of these relations is analyzed

numerically taking HBr and HI as model examples.
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The ESC-reduced minimal-coupling operators can also
be obtained starting from the LR-ESC ones, Eqs. �22� and
�23�, and reexpressing them in a convenient way. The term
containing V in O3,LR in Eq. �22� can be replaced in terms of
O3�H�, Eq. �39�, yielding the following formal expression:

O3,LR = −
1

8m2c2 �p2,O1� −
1

8m3c3 ��A�pp2 + p2�p�A�

−
1

8m3c3 ���p,�A�,p2� +
1

4m2c3 ���p,�A�,H�

−
1

4m2c3 ���p,�A�,U� . �44�

Taking into account that the second and third terms in Eq.
�44� can be written as

−
1

8m3c3 ��A�pp2 + p2�p�A� −
1

8m2c3 ���p,�A�,p2�

= −
1

4m2c2�p · O1 · �p , �45�

it is seen that

O3,LR = O3,K + 2O3�H� − 2O3�U� , �46�

where O3,K is the ESC-reduced operator of Eq. �34�. Once
again, the contribution of the second term of Eq. �46� to the
molecular energy can be reexpressed as an expectation value
for the operator in Eq. �40�. Therefore the form of the qua-
dratic operator in this approach is

1

4m2c3 �O1,��p,�A�� + ODiam,LR = ODiam,K, �47�

i.e., precisely the ESC-reduced operator of Kutzelnigg’s for-
malism, Eq. �35�. It is interesting to remark that in this con-
text there are no operators involving the one-body Coulomb
potential V.

C. The nuclear-magnetic shielding tensor
in the Breit-Pauli, LR-ESC, and ESC-reduced
minimal-coupling approaches

The NMR nuclear-magnetic shielding tensor can be cal-
culated as

�N,ij =� �2E

��N,i�Bj
�

�N,B=0
, �48�

where E is the molecular energy in the presence of the mag-
netic moment of nucleus N, �N, and a uniform magnetic field
B. The lowest-order relativistic corrections to the magnetic
shielding tensor of nucleus N arising from passive operators
are the same for all approaches, as they involve the nonrel-
ativistic magnetic operators and relativistic effects are only
included in the molecular magnetically unperturbed states.
Relativistic corrections due to active operators within the
different approaches considered are obtained from the RSPT

expressions bilinear in �N and B, i.e.,
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E�2� = E�O1��N�;O3X�B�� + E�O1�B�;O3X��N��

+ �ODiam,X��N;B�� , �49�

where the last term represents an expectation value for the
Schrödinger molecular ground state, X stands for the Breit-
Pauli �X=BP�, LR-ESC �X=LR�, or minimal-coupling �X
=K� approach, and

O1��N� =
LN�N

mcrN
3 +

�

2mc
BN �50�

gathers the paramagnetic �nuclear� spin-orbit �PSO� and
Fermi contact �FC� and spin-dipolar �SD� operators,

BN = � � AN, �51�

AN =
�N � rN

rN
3 , �52�

where rN is the electron position with respect to nucleus N;
and

O1�B� =
1

2mc
L · B +

�

2mc
B �53�

contains the orbital Zeeman �OZ� and spin Zeeman �SZ� op-
erators,

B = � � AB = � � � 1
2B � r� . �54�

In this section, LR-ESC operators will be considered in
first place. The only third-order operators contributing to the
nuclear-magnetic shielding tensor are

O3S,LR��N� = −
1

4m2c3	p2,
LN�N

rN
3 
 , �55�

hereafter identified as PSO-K �it combines the PSO and
kinetic-energy operators�

O3S,LR�B� = −
1

4m2c3 p2B · L , �56�

identified as OZ-K, and

O3T,LR�B� = −
3

8m2c3 p2�� · B� +
1

8m2c3 �� · p��B · p�

+
�

2m2c3 ��V � AB� , �57�

where the first two terms are dubbed SZ-K and the last one is
dubbed BSO �field-induced spin-orbit�. The superscript S
and T in Eqs. �55�–�57� stand for singlet and triplet opera-
tors, respectively. As indicated in Sec. II B the relation be-
tween different approaches is based in the subtraction of a
term proportional to O3�h� to the LR-ESC operators �where h
stands for the one-body part of the Schrödinger Hamil-
tonian�. O3�h� is a purely triplet operator, and therefore the
different approaches yield different expressions for operator
O3T�B�, while all other operators Eqs. �50�, �53�, �55�, and

�56� remain unchanged. Explicitly, we have
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O3�h,B� = −
1

8m3c3 p2�� · B� +
1

8m3c3 �� · p��B · p�

−
�

4m2c3 ��V � AB� , �58�

where O3�h ,B� is the commutator of Eq. �39� specialized to
the case of the uniform magnetic field. Consistently with
results in Eq. �40�, it holds

E�O1��N�,O3�h,B�� =
1

8m2c3 ��O1��N�,�� · p,� · AB���

− E�O1��N�,O3�U,B�� , �59�

where O3�U ,B� is the commutator Eq. �39� with the two-
body Coulomb potential U and the uniform magnetic-field
vector potential, and

��O1��N�,�� · p,� · AB��� =
1

mc
�AB�� � BN�� . �60�

On the other hand, ODiam��N ;B� collects terms bilinear in �N

and B from the quadratic operator ODiam. Within the LR-ESC
approach it is obtained that

ODiam,LR��N;B� = −
1

4m3c4�4�AN · p��AB · p� + B · BN

+
1

2
AB�� � BN� + 2�AN · AB�p2� . �61�

For the sake of clarity, each term in Eq. �61� will be referred
to as Wi

LR �i=1,4�, respectively, in order to be able to iden-
tify each contribution separately. For a real ground state �in
coordinate representation� it holds

�AB�� � BN�� = 4����N · B	�rN� + iAB�RN�

�	�rN���N � p��� , �62�

where AB�RN� is the vector potential of the uniform magnetic
field at the position of nucleus N and vanishes if the gauge
origin is placed at the nucleus site. The expectation value in
Eq. �59� contains exactly the operator Eq. �62�.

In Table I we present a summary of the contributions of
active operators to both the paramagnetic and diamagnetic
terms of the nuclear-magnetic shielding tensor in the LR-
ESC, Breit-Pauli, and ESC-reduced minimal-coupling ap-
proaches. The numerical factors indicate the scaling of a
given term with respect to its value in the LR-ESC method.
Second-order contributions are identified by the two opera-
tors combined in E�A ,B� and first-order ones are separated
into two terms: �1�Dia−K� collects those terms containing a
delta-type operator at nucleus N �W2 and W3 in Eq. �61��;
and �2�Dia−K� contains contributions from W1 and W4 of
Eq. �61�.

In Table II numerical results are presented taking HI as
model compound. Relativistic corrections to the magnetic
shielding constant of the I nucleus are presented. Numerical
values are taken from Ref. 10 and rescaled according to fac-
tors in Table I to yield the values corresponding to different
approaches. The gauge origin is placed at the I nucleus po-

sition.
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Results in Table II deserve several comments. It is seen
that results of the Breit-Pauli approach as obtained from the
LR-ESC ones by applying the sum rule Eq. �40� are in ex-
cellent agreement with those of Refs. 8 and 19. For instance
the �1

BP�Dia−K� term in the second column of Table II must
be compared to the one dubbed �con in Ref. 19. The agree-
ment between both calculated values is excellent, despite the
use of the “resolution of the identity” approximation in Ref.
10. The only exception occurs for E�OZ,PSO−KBP�. The
present value nearly doubles that of Ref. 19 �63.63 ppm�.
This last value should be preferred. Comparison of the
present ESC-minimal-coupling results in Table II to four-
component ones of Visscher6 is only possible for the full
relativistic correction, as the individual contributions of Ref.

TABLE I. Second-order �paramagnetic� EX �A ,B� an
tions to the nuclear-magnetic shielding tensor in the L
coupling �X=K� approaches, originating in active �i.

Aa BX b

Paramagnetic
terms
E�A ,BX�

OZ PSO−K
PSO OZ−K
FC SZ−KX

SD SZ−KX

FC BSOX

SD BSOX

Diamagnetic
termsc

�1
X�Dia−K�

=W2
X+W3

X

�2
X�Dia−K�

=W1
X+W4

X

aPSO: paramagnetic �nuclear� spin-orbit; FC: Fermi
SZ: spin Zeeman �Eq. �53��.
bK indicates combination of a magnetic operator wit
Eq. �56�; SZ−K and BSO: Eq. �57�.
cOperators W1

X are defined after Eq. �61�.

TABLE II. Relativistic corrections to the nuclear-magnetic shielding con-
stant ��I� in HI. E�A ,BX�: RSPT�2� expressions involving operators A and
BX; Wi

X �i=1,4�: expectation values for operators ODiam,X. Values obtained
by the LR-ESC �X=LR�, Breit-Pauli �X=BP�, and ESC minimal-coupling
�X=K� approaches �Numerical values taken from Ref. 10 and rescaled ac-
cording to numerical factors in Table I�. Gauge origin at I. Values in ppm.

X=LR X=BP X=K

E�OZ;PSO−KX�a 142.16 142.16 142.16
E�PSO;OZ−KX� 112.59 112.59 112.59
E�FC;SZ−KX� 2579.32 1934.49 1289.66
E�SD;SZ−KX� 70.08 0 −70.08
E�FC,BSOX� −661.97 −330.99 0
E�SD,BSOX� 111.50 55.75 0

Passive −105.92 −105.92 −105.92
Total paramagnetic

correction
2247.76 1808.08 1368.41

�1
X�Dia−K� −1092.90 −624.51 −156.13

�2
X�Dia−K� −564.51 −564.51 −564.51
Passive 415.68 415.68 415.68

Total diamagnetic
correction

−1241.73 −773.34 −304.96

Total relativistic
effect

1006.03 1034.74 1063.45

Total shielding 5548.72 5577.43 5606.14

a
See footnote to Table I for operators acronyms.
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6 are not related to the ones in Table II in a simple way �not
even the dia- and paramagnetic separation refer to the same
terms�. The minimum coupling of large and small compo-
nents in Kutzelnigg’s approach yields the smaller �in abso-
lute value� paramagnetic and diamagnetic relativistic correc-
tions. The problem of the inconsistency between the four-
component calculations based on the standard RPA
formalism1,2 and Kutzelnigg’s minimal-coupling one is not
present at this level of approximation and confirms the sus-
picion that the difficulties are related to the positron rotation
terms as considered in the four-component RPA calculations.

As it can be seen in Tables I and II the equivalence
between the different methods relies on the following iden-
tity, extracted from Eq. �40�

−
1

4
E�FC;SZ − KLR� − E�SD;SZ − KLR�

−
1

2
E�FC + SD;BSOLR�

=
3

7
�1

LR�Dia − K� + E�O1��N�;O3LR
�U,B�� . �63�

It is seen that in the right-hand side �rhs� of Eq. �63�
there is a two-body contribution, which is automatically
taken into account in the left-hand side �lhs� in terms of
one-body operators only. Such two-body contribution must
be present in the context of the Breit-Pauli approach. It rep-
resents the two-body part of the second-order spin-orbit op-
erator found in Refs. 17 and 22. Unfortunately, no numerical
estimates of this two-body term are found in the bibliography
for the systems under study in the present work. It is inter-
esting to emphasize that such contribution is automatically
contained in the LR-ESC approach as part of calculations
involving only one-body operators. As it is seen in Eq. �63�,
such contribution is needed to make the identity exact.
Therefore, the difference in the total relativistic correction
calculated with the LR-ESC, Breit-Pauli, and ESC-minimal-

t-order �diamagnetic� �i
X �Dia−K� �i=1,2� contribu-

C �X=LR�, Breit-Pauli �X=BP�, and ESC-minimal-
ld-dependent� operators.

X=LR−ESC X=BP X=K

1 1 1
1 1 1
1 3/4 1/2
1 0 −1
1 1/2 0
1 1/2 0
1 4/7 1/7

1 1 1

ct; SD: spin-dipolar �Eq. �50��. OZ: orbital Zeeman;

kinetic-energy operator. PSO−K: Eq. �55�; OZ−K:
d firs
R-ES

e., fie

conta

h the
coupling approaches retaining only one-body operators has
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two sources: on one hand, the lack of the two-body term just
mentioned and, on the other hand, differences due to the
incompleteness of the basis set. The difference of 28.71 ppm
found for I in HI between different approaches arises from
these sources of error, and it can be considered very small
compared to the total relativistic effect of ca. 1000 ppm.

In Table III the verification of the identity Eq. �63� is
explicitly checked for X in HX and X and C in CH3X �X
=Br, I�. Values presented correspond to the right-hand side
of Eq. �63� compared to those of the left-hand side of Eq.
�63�, neglecting the two-body contribution. Numerical values
are taken from Ref. 10.

The fact that the difference is larger for the heaviest
nucleus, I, significant for Br, and negligibly small for C
could be an indication that it is really a measure of the im-
portance of the two-body term and basis set incompleteness
errors are negligibly small.

D. Gauge origin invariance of the LR-ESC approach

When considering magnetic molecular properties, the
problem of the gauge origin of the vector potential of the
uniform magnetic field must be addressed, as quantities of
physical significance must be gauge origin invariant. In non
relativistic theory, the numerical values of the paramagnetic
and diamagnetic terms of molecular properties depend on the
gauge origin considered, but the total value of the magnetic
property under study is gauge origin independent. The can-
cellation of the change in the paramagnetic and diamagnetic
terms is demonstrated formally proving the existence of a
formal relation connecting the contribution to the energy of
operators containing the shift from one gauge origin to the
other.

In the present section the gauge origin invariance of the
LR-ESC nuclear-magnetic shielding is analyzed. All one-
body operators yielding both active and passive corrections
are considered. The superindex LR is dropped from all op-
erators for brevity. Two-body terms are not taken into ac-
count, as no actual calculations have been carried out for
them. Active relativistic corrections are summarized in Eq.
�49�. Passive relativistic effects are obtained by considering
relativistic corrections to the unperturbed molecular states in

TABLE III. Numerical verification of relations connecting the LR-ESC,
Breit-Pauli, and ESC-minimal-coupling formalisms. As a consequence of
such relation the numerical values of the lhs and rhs of Eq. �63� must be
equivalent, except for a two-body contribution. All values in ppm.

lhs of Eq. �63� rhs of Eq. �63� Difference

BrH Br −122.03 −131.84 9.81
CH3Br Br −122.05 −131.84 9.79

IH I −439.68 −468.39 28.71
CH3I I −439.70 −468.39 28.69

CH3Br C −0.45 −0.56 0.11
CH3I C −0.56 −0.56 0.00
the presence of the nonrelativistic magnetic operators, i.e.,
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Epassive = E�O1��N�;O1�B�;HR� + E� 1

mc2AN · AB;HR�
�64�

where E�A ;B ;C� represents a third-order RSPT energy cor-
rection,

E�A;B;C� = �
n�0

�0An��nB − �B�m��mC0�
�E0 − En��E0 − Em�

+
�0Bn��nC − �C�m��mA0�

�E0 − En��E0 − Em�

+
�0Cn��nA − �A�m��mB0�

�E0 − En��E0 − Em�
+ c.c., �65�

and HR represents the relativistic corrections to the
Schrödinger Hamiltonian as given in the Pauli Hamiltonian,

HR = −
1

8m3c2 p4 +
1

8m2c2 ��2V� +
1

4m2c2���V � p� �66�

The first term is the mass-velocity operator �MV�, the second
one is the Darwin operator �Dw�, and the third one is the
spin-orbit operator �SO�. In Eq. �66�, only the one-body
terms of HR are retained, in order to be consistent with the
purpose of obtaining connections between one-body opera-
tors only.

If a change of gauge origin of the uniform magnetic
potential is carried out, given by a displacement vector RG,
the change in the individual contributions of Eqs. �49� and
�64� can be expressed in terms of the change in AB,

	AB = 1
2B � RG, �67�

	O1�B� =
1

mc
	AB · p =

i

c
�h,	AB · r� , �68�

where h is the one-body Schrödinger Hamiltonian,

	O3�B� = −
1

2mc2 p2	O1�B� +
�

2m2c3 ��V � 	AB� . �69�

The difference in the contribution of each term can be ex-
pressed as


E�O1��N�;O3�B�� = E�O1��N�;	O3�B�� , �70�


E�O1�B�;O3��N�� = E�	O1�B�;O3��N�� , �71�


�ODiam,LR��N;B�� = −
1

4m3c4 ��4�AN · p��	AB · p�

+ 1
2	AB�� � BN� + 2�AN · 	AB�p2�� .

�72�

Changes in the diamagnetic contributions Wi of Eq. �61� in-
dicated in Eq. �72� are dubbed 
Wi. It is readily seen that

W2=0. For passive contributions it is obtained that

1 1 R 1 1 R

E�O ��N�;O �B�;H � = E�O ��N�;	O �B�;H � �73�
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E� 1

mc2AN · AB;HR� = E� 1

mc2AN · 	AB;HR� . �74�

In order to establish a connection among the changes of dif-
ferent terms, it is worthy to note that

E�A;�B,H�� = ��A,B�� , �75�

E�A;�B,H�;C� = E��A,B�;C� − E�A;�B,C�� , �76�

where H stands for the full �i.e., many-body� Schrödinger
Hamiltonian.

In Eqs. �71� and �73� the commutator of Eq. �68� is
involved. In order to make use of Eqs. �75� and �76�, the
one-body Hamiltonian h should be replaced by the many-
body Hamiltonian H. This can be done without the ap-
pearence of extra two-body terms, because the operator r in
Eq. �68� commutes with the two-body Coulomb interaction
operator. Therefore, making use of Eqs. �75� and �76� the
following relations are found to hold exactly.

In the case of Eq. �71� it is obtained that


E�O1�B�;O3��N�� =
1

4m3c4 �4�AN · p��	AB · p�

+ 2�	AB · AN�p2�

= − 
W1 − 
W4. �77�

Details of the derivation are presented in Appendix C �iden-
tity 1�. In the case of Eq. �73�, it is useful to separate it into
two terms: one, HR,S, containing the scalar relativistic mass-
velocity and Darwin operators, and a second one, HR,T, con-
taining the spin-orbit one �SO� �see Appendix C, identities 3
and 4�,


E�O1��N�;O1�B�;HR,S� = − E� 1

mc2AN · 	AB;HR,S�
− 
E�O1��N�;O3S�B�� , �78�


E�O1��N�;O1�B�;HR,T� = −
1

8m3c4 �	AB · � � BN�

= 
W3 �79�

In the rhs of Eq. �78� the change in the contribution from
singlet operators of Eq. �69�, Eq. �70�, is already included.
Therefore, only the term containing triplet operators in Eq.
�70� must be considered explicitly. To this end it is useful to
observe that the triplet operator in Eq. �69� can be expressed
as the following commutator:

�

2m2c3 � V � 	AB = −
i

2m2c3 ���p � 	AB�,h� . �80�

In order to apply Eq. �75�, the one-body Hamiltonian h must
be replaced by the many-body Hamiltonian H. The differ-
ence between them is given by the two-body Coulomb inter-
action and leads to a two-body contribution to Eq. �70�. Such
term is neglected in the present work. Therefore, application

of Eq. �75� yields �see Appendix C, identity 2�
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E�O1��N�;O3T�B�� =
1

4m3c4 �	AB · � � BN� = − 2
W3.

�81�

In Table IV the changes in different contributions and the
cancellation of all terms showing the gauge origin invariance
of the full one-body relativistic correction to the nuclear-
magnetic shielding are summarized.

In numerical results of relativistic corrections to the
nuclear-magnetic shielding within different approaches, dif-
ferent gauge origins were used for the calculation of the
nuclear-magnetic shielding of the H nucleus in HX
compounds.8,10,19 It is thus interesting to compare numeri-
cally the fulfillment of the formal relations found in the
present work connecting results with different gauge origins.
We present numerical values taken from Ref. 10. As the for-
mal fulfillment of such relations was proven, two sources of
error can be expected. On one hand, numerical errors due to
incompleteness of the basis sets used in the calculations, or
numerical errors introduced due to the approximate proce-
dure used to calculate matrix elements of some operators in
Ref. 10. On the other hand, differences may also be expected
whenever the fulfillment of a given formal relation depends
on contributions from two-body operators. This is the case of
Eq. �81�. Numerical results are presented in Table V for HBr
and in Table VI for HI.

From Tables V and VI the following conclusions can be
obtained. All relations are fulfilled to a large extent in both
cases. When small differences are found, they are surely due
to basis set incompleteness errors, as they are of the same
order of magnitude as the differences found in final results
obtained with different basis sets in Ref. 10. The relation in
Eq. �81� holds almost exactly. This feature indicates that
two-body effects are really small in these calculations. When
the gauge origin is changed from the X center to the H one in
the calculation of the H nuclear magnetic shielding, the larg-
est changes are found for the scalar third order, the OZ-K,
the PSO-K, and “active” diamagnetic terms Wi. All these
terms yield negligibly small results when the gauge origin is

8,19

TABLE IV. Relations among the gauge origin dependence of different terms
yielding the relativistic correction to the nuclear-magnetic shielding tensor
in the LR-ESC approach. The cancellation of all terms in the last column
shows the �formal� gauge origin independence of the �one-body� total result.

Equation
number Change 
 of Equivalent change

Passivea �78� E�PSO;OZ;MV+Dw� −E�Dia;MV+Dw�
−E�PSO,OZ−K�

�79� E�FC+SD;OZ;SO� 
W3

¯ E�Dia;MV+Dw� E�Dia;MV+Dw�
Activeb �77� E�OZ;PSO−K� −�
W1+
W4�

¯ E�PSO;OZ−K� E�PSO;OZ−K�
�81� E�FC+SD;BSO� −2
W3

�72� ODiam��N ;B� 
W1+
W3+
W4
c

Total change 
E 0

aEquation �64�.
bEquation �49�.
c
W2=0.
placed at the X nucleus. When the gauge origin is placed
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at the H nucleus, all these terms take non-negligible values
that cancel each other, confirming the importance of taking
them all into account in a consistent way.

III. CONCLUDING REMARKS

In this work a series of formal relations connecting dif-
ferent approaches to calculate relativistic effects at the
leading-order ESC level of approximation were proven. In
addition, the gauge origin invariance of the LR-ESC theory
has been established. It is worthy to mention that although
the main goal has been to establish these relations theoreti-
cally, numerical results are also presented in order to verify
their fulfillment explicitly in practical applications. As a con-
sequence several aspects of the relativistic calculation of
nuclear-magnetic shieldings at the ESC level have been clari-
fied. In particular, differences in numerical results of the LR-
ESC and Breit-Pauli approaches in HI are explained for both
the heavy and H nuclei. Full consistency between the LR-
ESC, Breit-Pauli, and ESC-minimal-coupling approaches

TABLE V. Gauge origin dependence of the LR-ESC relativistic corrections
to the nuclear-magnetic shielding of H nucleus in HBr. Numerical values
correspond to the difference in a given contribution when the gauge origin is
shifted from the Br nucleus to the H nucleus.

Change 
 of Equivalent change

E�PSO,OZ;MV+Dw� −1.62 −E�Dia;MV+Dw�
−E�PSO,OZ−K�

Eq. �78�

−1.43

E�FC+SD;OZ;SO� −0.02 
W3

Eq. �79�
0.0

E�Dia;MV−Dw� 0.08 E�Dia;MV+Dw� 0.08
E�OZ;PSO−K� 1.34 −�
W1+
W4�

Eq. �77�
1.55

E�PSO;OZ−K� 1.35 E�PSO;OZ−K� 1.35
E�FC+SD;BSO� 0.02 −2
W3

Eq. �81�
0.01

ODiam��N ;B� −1.52 
W1+
W3+
W4

Eq. �72�
−1.52


E −0.36 0 0.0

TABLE VI. Gauge origin dependence of the LR-ESC relativistic corrections
to the nuclear-magnetic shielding of H nucleus in HI. Numerical values
correspond to the difference in a given contribution when the gauge origin is
shifted from the I nucleus to the H nucleus.

Change 
 of Equivalent change

E�PSO,OZ;MV+Dw� −3.75 −E�Dia;MV+Dw�
−E�PSO,OZ−K�

Eq. �78�

−3.20

E�FC+SD;OZ;SO� −0.07 
W3

Eq. �79�
0.0

E�Dia;MV+Dw� 0.20 E�Dia;MV−Dw� 0.20
E�OZ;PSO−K� 2.98 −�
W1+
W4�

Eq. �77�
3.23

E�PSO;OZ−K� 3.00 E�PSO;OZ−K� 3.00
E�FC+SD;BSO� 0.04 −2
W3

Eq. �81�
0.0

ODiam��N ;B� −3.23 
W1+
W3+
W4

Eq. �72�
−3.23


E −0.83 0 0.0
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was found. Differences in numerical values found at the
four-component level are not present within the ESC ap-
proximation. A deeper comparison between the LR-ESC and
minimal-coupling methods would be possible by carrying
out explicitly the ESC reduction of each individual contribu-
tion of the nuclear-magnetic shielding in Ref. 6. A compari-
son with Kutzelnigg’s direct perturbation-theory approach16

would also be very interesting, as final expressions of such
formalism are very different to ESC ones. Work along these
lines is being carried out by our research group.
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APPENDIX A: THE DIAMAGNETIC TERM
IN THE LR-ESC APPROACH

The starting point is the pair-creation contribution Edia,
Eq. �16�. Consistently up to order c−4, the following approxi-
mation holds

�nN+2�A0N�
E0,N − En,N+2

� −
1

2mc2�1 −
En,N+2 − E0,N − 2mc2

2mc2 �
��nN+2�A0N�

= −
1

2mc2 �nN+2�A0N�

+
1

4m2c4 �nN+2��HB,�A� − 2mc2�A�0N� ,

�A1�

with similar expressions for the term involving the vacuum
state in Eq. �16�. In Eq. �A1� the first �second� term is of
order c−2 �c−4� or lower. HB stands for the Breit Hamiltonian
in the Dirac-Fock space. For the purpose of the present work,
HB can be replaced by the one-body Dirac hamiltonian H0

D

and we have

X�1� =
1

2mc2 ��H0
D,�A� − 2mc2�A�

= �� − 1��A +
1

2mc
��p,�A� . �A2�

Within the approximation Eq. �A1�, the intermediate states in
Edia act as a projection operator on the N+2 particles state
space PN+2 �and two-particle states for the term involving the

vacuum, P2�. Therefore it is obtained that
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Edia = −
1

2mc2 �0N�APN+2�A0N�

+
1

2mc2 �0N�APN+2X0N�

+
1

2mc2 �vac�AP2�Avac�

−
1

2mc2 �vac�APN+2Xvac� . �A3�

These expectation values can be evaluated as follows:

�0N�APN+2�A0N� − �vac�APN+2�Avac�

= �
e,p,e�,p�

��A�p�e���A�ep��0Np�e�e+p+0N�

− �vacp�e�e+p+vac��

= �
e,p,e�,p�

��A�p�e���A�ep	pp���0N	e�e − e+e�0N�

− 	e�e� = − �0N�
e,e�

��APp�A�e,e�e
+e�0N� , �A4�

where the second-quantized forms of the operators was used,
e�p� stand for “electronic” �positronic� four-component
Dirac spinors, and Oep= �eOp� represent matrix elements of
one-body operator O. Similar steps can be carried out for the
second and fourth terms in Eq. �A2�. It is concluded that Edia

can be expressed as an expectation value for the following
one-body operators:

Edia =
1

2mc2 �0N�APp�A0N� −
1

2mc2 �0NXPp�A0N� ,

�A5�

where the first term yields the diamagnetic term in the non-
relativistic limit. In order to carry out the leading-order ESC
reduction of Eq. �A5�, the projector Pp in the space of four-
component Dirac spinors �splitted into 2�2 blocks� can be
written as

Pp = � x2 − x

− x 1 − x2� , �A6�

where x=�p /2mc. Therefore

�APp�A = ��A�1 − x2��A − �Ax�A

− �Ax�A �Ax2�A
� �A7�

and

XPp�A = � − �x,�A�x�A 0

2�Ax�A + �x,�A��A 0
� , �A8�

where only terms up to quadratic in x were retained. In order
to evaluate the expectation values in Eq. �A5� it is necessary
to consider expectation values of all operators between

positive-energy four-component spinors,
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��4O�4� = ��LOLL�L� + ��LOLS�S�

+ ��SOSL�L� + ��SO�1��S�

= ��̃OLL − 	OLL,
x2

2

 + OLSx + xOSL

+ xOSSx�̃� , �A9�

where only terms up to order x2 need be retained, and the
expectation values are now to be carried out for the two-
component Breit-Pauli spinors. Summing up, Eq. �A5� is re-
expressed as

Edia =
1

2mc2 �0̃A20̃� + �0̃ODiam,LR0̃� , �A10�

where

ODiam,LR = −
1

8m3c4 ���p�A�2 + 2�Ap2�A + ��A�p�2

+ �p2,A2�� , �A11�

as indicated in Eq. �23�. Due to the factor c−4, the corre-
sponding expectation value must be carried out for the non-
relativistic �i.e., Schrödinger� ground state.

APPENDIX B: ESC REDUCTION OF OPERATORS OF
THE MINIMAL-COUPLING APPROACH

The ESC reduction of operators of the minimal-coupling
approach is as follows. In the case of the linear operator Eq.
�28�, matrix elements between different four-component
spinors are considered

��i
4�O1� j

4� � ��i
LO1� j

L� − ��i
SO1� j

S� . �B1�

Consistently to order c−3, making use of Eqs. �17�–�19�, Eq.
�B1� can be expressed as

��i
LO1� j

L� − ��i
SO1� j

S�

� ��̃i�1 −
p2

8m2c2�O1�1 −
p2

8m2c2��̃ j�

− ��̃i
�p

2mc
O1 �p

2mc
�̃ j�

� ��̃iO1 − 	 p2

8m2c2 ,O1
 −
1

4m2c2�p · O1 · �p�̃ j� , �B2�

yielding the final result, Eq. �34�.
In the case of the bilinear operator Eq. �29�, the expec-

tation value is considered.

��4
1

2mc2�A2 −
1

4m2c3 ��A,pA��4�

= ��L
1

2
A2�L� − ��S

1

2
A2�S�

−
1

4m2c3 ���L��p,�A��S� + ��S��p,�A��L�� , �B3�

where we have used that

pA = 1 ���p,�A� − �B� , �B4�
2
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A · B = 0. �B5�

Inserting the relation of the small and large components with
the Pauli two-spinors, Eqs. �17�–�19� consistently to the or-
der c−3 the operator Eq. �35� is obtained.

APPENDIX C: FORMAL RELATIONS PROVING
THE GAUGE ORIGIN INVARIANCE OF THE LR-ESC
APPROACH

Formal relations for gauge invariance are hereby proven.

�a� Identity 1:


E�O1�B�;O3��N�� = E� 1

mc
	AB · p;O3��N��

=
1

c
	AB,�E�i�H,r��;O3��N��

=
i

c
	AB,���r�;O3S��N��� , �C1�

where the Greek indices refer to Cartesian components
and a sum over repeated indices is implied in all ex-
pressions. The commutator,

�r�;p2�N · LN

rN
3 � = p2�r�;

��N � rN� · p

rN
3 �

+ �r�;p2�
�N · LN

rN
3

= ip2AN,� + 2ip��AN · p� , �C2�

can be used to obtain

i

c
	AB,���r�;O3S��N��� =

1

4m3c4 �4�	AB · p��AN · p�

+ 2�	AB · AN�p2� , �C3�

as given in Eq. �77�.
�b� Identity 2:


E�O1T��N�;O3T�B�� =
1

2m2c3E�O1T��N�;���VC

� 	AB�� . �C4�

The second operator can be rewritten as

���VC � 	AB� = ���p,VC� � 	AB�

= ���p,H� � 	AB�

= �	AB�� � p�;H� . �C5�

Applying Eq. �75�, it is obtained that


E�O1T��N�;O3T�B��

=
i

2m2c3 ��O1T��N�;	AB�� � p���

=
i

4m3c4 ��� · BN;��p � 	AB���

=
i
3 4 ��BN,�;�p � 	AB����
4m c
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=
1

4m3c4 �	AB · � � BN� = − 2
W3, �C6�

as given in Eq. �81�.
�c� Identity 3:


E�O1T��N�;O1S�B�;HR,T�

=
1

mc
E�O1T��N�;	AB · p;HR,T�

= − iE��O1T��N�,	AB · r�;HR,T�

+ iE�O1T��N�;�	AB · r,HR,T�� . �C7�

Now taking into account that

�O1T��N�,r� = 0, �C8�

�r,HR,T� = −
1

4m2c2 �� � p,H� , �C9�

it is finally obtained �see Eq. �A11��


E�O1T��N�;O1S�B�;DT� = −
1

8m3c4 �	AB · � � BN�

= 
W3, �C10�

as indicated in Eq. �79�.
�d� Identity 4:


E�O1S��N�;O1S�B�;HR,S�

=
1

mc
E�O1S��N�;	AB · p;HR,S�

= −
i

c
E��O1S��N�,	AB · r�;HR,S�

+
i

c
E�O1S��N�;�	AB · r,HRS�� . �C11�

Taking into account that

�O1S��N�,r� =
1

mc
�AN · p,r� = −

i

mc
AN, �C12�

�r�,HR,S� = −
i

2m3c2 p2p�, �C13�

it is obtained that


E�O1S��N�;O1S�B�;DS�

= −
1

mc2E�	AB · AN;DS�

+
1

2m3c3E�O1S��N�;p2�p · 	AB��

= −
1

mc2E�	AB · AN;DS�

− 
E�O1S��N�;O3S�B�� , �C14�
which is the result Eq. �78�.
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