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Abstract

We show a completely analytical approach to the decoherence induced by a zero temperature environment on a
test particle. We consider an Ohmic environment bilinearly coupled to an oscillator and compute the master equation. Fr
diffusive coefficients, we evaluate the decoherence time for the usual quantum Brownian motion and also for an ups
oscillator, as a toy model of a quantum phase transition.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The emergence of classical behavior from a quantum system is a problem of interest in many b
of physics[1]. As it is well known, the quantum to classical transition involves two necessary and r
conditions: correlations, i.e., the Wigner function of a quantum system should have a peak at the c
cal trajectories; anddecoherence, that is, there should be no interference between classical trajectorie
study quantitatively the emergence of classicality, it is essential to consider the interaction of the
with its environment, since both, the loss of quantumcoherence and the onset of classical correlations,
pend strongly on this interaction[2]. Using this point of view, classicality is an emergent property of
open quantum system. The strength of the coupling between system and environment sets the
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cal [3].

The very notion of quantum open system implies the appearance of dissipation and decoherence as an
quitous phenomena and plays important roles in different branches of physics (from quantum field theor
body and molecular physics to theory of quantum information), biology and chemistry. Oftentimes, a lar
tem can be described adequately as a composite system, consisting of two or a few subsystems (d
freedom) interacting with their environment (thermal bath) comprising a large number of degrees of fr
Examples include electron transfer in solution, large biological molecules, vibrational relaxation of molecules in
solution, excitons in semiconductors coupled to acoustic or optical phonon modes. Quantum processes in
densed phases are usually studied by focusing on a small subset of degrees of freedom and treating th
bath.

Decoherence is the main ingredient in order to find classicality. The interaction between the system
environment induces a preferred basis which is stable against this interaction, and becomes a classical bas
the Hilbert space of the coupled system. Preferred pointerstates are resilient to the entangling interaction with
the bath. This “einselection” (environment induced superselection) of the preferred set of resilient pointe
is the essence of the environment. It is accepted that a rapid loss of coherence caused by the coupling with
environment is at the root of the non-observation of quantum superpositions of macroscopically different quan-
tum states[3]. A relevant property of the pointer states is their insensitivity to being monitored by the inter
with environment (and, therefore, are resistant to the entanglement caused by the environment). The less the s
entangle, the more stable they are. All other states evolve into joint system–environment states, preserv
purity.

Our concern in this Letter is to analyze the effect of the zero-point fluctuations of the environment, as a
of decoherence. The coupling of a quantum system to an environment generally leads to energy fluctuatio
test particle even at zero temperature[4]. Since phases are time integrals of energy, zero-point energy fluctua
make possible that decoherence occurs even at zero temperature. These fluctuations are a consequence of the fi
coupling energy between the test particle (system) and the bath, and of the fact that the Hamiltonian of the
system does not commute with the interaction Hamiltonian.

Vacuum fluctuations have several observable effects. The Lamb shift is a widely known example. Anot
is the Casimir effect. In these examples the effect of vacuum can be thought in terms of the renormalizatio
original parameters characterizing the system. In contrast, the fluctuations we deal with in this Letter are
absorbed into renormalized parameters of the test particle. Not only does the environment renormalize, b
is a source of dissipation and noise for the system. Therefore, we are considering the effect of quantum flu
of the environment over a quantum system, as the only source of decoherence (meaning that there is no poss
thermal fluctuations inducing classicality).

The question about the influence of zero temperatureenvironment on the interference phenomena has b
discussed in the last years[5–7]. There have been studies on the temperature-dependent weak localization measu
ments[8], reporting residual decoherence in metals at zero temperature, in contradiction to theoretical predictio
[9], and on the zero-point decoherence induced by Coulomb interactions in disordered electron system
mention a few examples.

In previous works (see, for example,[10] for an excellent review of thestate of the art of decoherence) abou
decoherence in quantum Brownian motion, most of the conclusions are simply numerical or analytical on
high temperature limit[11]. Low temperature case was discussed in[10,12] showing a numerical estimation o
the decoherence rate. Sinha in Ref.[7] studied the zero temperature case analytically. Under some approxim
the author found an expression for the time dependence of the off-diagonal terms of the density matrix. In th
Letter, we complete that study showing an exact calculation of diffusive terms, and also providing the d
ence timescale for different situations of interest. In addition, we solve the master equation for an upsid
Brownian particle to emphasize the role of zero temperature fluctuations during a second order phas
tion [13,14].
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2. The master equation at T = 0

Let us consider a quantum particle (characterized by its massM and its bare frequencyΩ) linearly coupled to
an environment composed of an infinite set of harmonic oscillators (of massmn and frequencyωn). We may write
the total action corresponding to the system–environment model as (we seth̄ = 1)

S[x, qn] = S[x] + S[qn] + Sint[x, qn]

(1)=
t∫

0

ds

[
1

2
M

(
ẋ2 − Ω2x2) +

∑
n

1

2
mn

(
q̇2
n − ω2

nq
2
n

)] −
∑
n

Cnxqn,

wherex andqn are the coordinates of the particle and the oscillators, respectively. The particle is coupled linearly
to each oscillator with strengthCn.

The relevant objects to analyze the quantum to classical transition in this model are the reduced densi
(obtained from the full density matrix integrating out all the degrees of freedom of the environment notedq̄),
and the associated Wigner function

(2)ρr(x, x ′, t) =
∫

dq̄ ρ(x, q̄, x ′, q̄, t), Wr(x,p, t) = 1

2π

+∞∫
−∞

dy eipyρr

(
x + y

2
, x − y

2
, t

)
.

The reduced density matrix satisfies a master equation. Hu–Paz–Zhang[15] have evaluated the master equation
the quantum Brownian motion problem (alternatively, one can write an equation of the Fokker–Planck type
reduced Wigner function[11] in order to study the dynamics in phase space)

(3)ρ̇r = −i

[
Hsyst+ 1

2
MΩ̃2x2, ρr

]
− iγ (t)

[
x, {p,ρr}

] − D(t)
[
x, [x,ρr]

] − f (t)
[
x, [p,ρr]

]
.

The time-dependent coefficients (in the case of weak coupling to the bath) are given by

δΩ2(t) = − 2

M

t∫
0

ds cos(Ωs)η(s), γ (t) = 1

MΩ

t∫
0

ds sin(Ωs)η(s),

(4)D(t) =
t∫

0

ds cos(Ωs)ν(s), f (t) = − 1

MΩ

t∫
0

ds sin(Ωs)ν(s),

whereδΩ2(t) is the shift in frequency, which produces the renormalized frequencyΩ̃2 that appears in the mast
equation.γ (t) is the dissipation coefficient related tothe friction kernel defined below, andD(t) andf (t) are the
diffusion coefficients, which produce the decoherence effects. Diffusion coefficients come from the noise
source of stochastic forces in the associated Langevin equation.f (t) is named anomalous in the literature sinc
generates a second derivative term in the phase space representation of the evolution equation, just like the ordin
diffusion term[2]. η(t) andν(t) are the dissipation and noise kernels, respectively,

η(t) =
∞∫

0

dω I (ω)sinωt, ν(t) =
∞∫

0

dω I (ω)coth
βω

2
cosωt,

I (ω) is the spectral density of the environment, defined asI (ω) = (2/π)Mγ0Λ
2ω/(ω2 + Λ2) (whereΛ is the

physical high-frequency cutoff, which represents the highest frequency present in the environment). In the h
temperature limit of an Ohmic environment (whereI (ω) ∝ ω) the coefficients in Eq.(4) become constants. In pa
ticular, the diffusion coefficient can be approximated byD � 2γ0kBT M, whereγ0 is the dissipation coefficien



F.C. Lombardo, P.I. Villar / Physics Letters A 336 (2005) 16–24 19

rm
erence.
, we set

ral
[15]. In this limit, whileγ0 is a constant andD ∝ T , the coefficientf ∝ T −1 can be neglected. Therefore, the te
proportional toD is the relevant one in the master equation at high temperatures in order to evaluate decoh

We will evaluate the time-dependent coefficients of the master equation at zero temperature. For this
cothβh̄ω/2 = 1.

The shift in frequencyδΩ2(t) is

(5)δΩ2(t) = −4γ0

π
Λ2

∞∫
0

dω

t∫
0

ds
ω

ω2 + Λ2
sinωs cosΩs,

performing integrations, we obtain

(6)δΩ2(t) = −2γ0
Λ3

Λ2 + Ω2

[
1− e−Λt

(
cosΩt − Ω

Λ
sinΩt

)]
,

for times such thatΛt > 1 the shift reads (seeFig. 1(a))

(7)δΩ2 = −2γ0
Λ3

Λ2 + Ω2
.

Dissipation coefficient (Fig. 1(b)) comes from the integral

(8)γ (t) = 2γ0

πΩ
Λ2

∞∫
0

dω

t∫
0

ds
ω

ω2 + Λ2 sinωs sinΩs,

and it is given by

(9)γ (t) = γ0
Λ2

Λ2 + Ω2

[
1− e−Λt

(
cosΩt + Λ

Ω
sinΩt

)]
,

which has the following asymptotic behavior

(10)γ (t) = γ0
Λ2

Λ2 + Ω2 .

The normal diffusive coefficient (normally connected with decoherence effects) is coming from the integ

(11)D(t) = 2Mγ0

π
Λ2

∞∫
0

dω

t∫
0

ds
ω

ω2 + Λ2
cosωs cosΩs.

This integral can be exactly solved. The result is:

D(t) = 2Mγ0

π

Λ2Ω

Ω2 + Λ2

[
Shi(Λt)

(
Λ

Ω
cosΩt coshΛt + sinΩt sinhΛt

)

(12)− Chi(Λt)

(
Λ

Ω
cosΩt sinhΛt + sinΩt coshΛt

)
+ Si(Ωt)

]
,

where Chi(x) and Shi(x) are the hyperbolic CosIntegral and SinIntegral, respectively; Si(x) is the SinIntegral.
The expression can be very well approximated, whenΛt > 1, by

(13)D(t) = 2Mγ0

π

Λ2Ω

Ω2 + Λ2 Si(Ωt).
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Fig. 1. Time dependence of the coefficients of the master equation atT = 0. On top we show frequency renormalization (a) and dissipa
coefficients (b). Plots below show the normalD (c) and anomalousf (d) diffusion coefficients for short times in order to show the init
transient. Asymptotic values of diffusion are shown in (e) and (f). The parameters used in the plot areγ0 = 0.05,Λ = 100,Ω = 1.

This coefficient is the normal diffusion atT = 0. This is for any value ofΩ . We are interested in timescales long
than the memory time 1/Λ. This coefficient is an oscillatory function of time. In fact, only in the limitΩt � 1, as Si
goes toπ/2, we can have an asymptotic valueD∞ ∼ Mγ0Λ

2Ω/(Λ2 + Ω2), independent of time[10] (Fig. 1(e)).
In any other case, the coefficient has an initial transient and approaches the asymptotic valueD∞ as the Si (see
Fig. 1(c)). It is important to note, that in the opposite case, whenΩt � 1, normal diffusion is a linearly growin
function of time,D ∼ 2M(γ0/π)Λ2Ω2t/(Λ2 + Ω2), similar to the result obtained in Ref.[7].

The anomalous diffusion coefficient is given by the integral

(14)f (t) = 2γ0

πΩ
Λ2

∞∫
0

dω

t∫
0

ds
ω

ω2 + Λ2 cosωs sinΩs.

It reads as

f (t) = 2γ0
Λ2

Ω2 + Λ2

[
Shi(Λt)

(
Λ

Ω
sinΩt coshΛt − cosΩt sinhΛt

)

(15)+ Chi(Λt)

(
− Λ

Ω
sinΩt sinhΛt + cosΩt coshΛt

)
− Ci(Ωt) − log

Λ

Ω

]
.

Again, forΛt > 1, this coefficient can be written as (Fig. 1(d))

(16)f (t) = 2γ0
Λ2

Ω2 + Λ2

(
−Ci(Ωt) − log

Λ

Ω

)
,

coefficient f (t) also approaches an asymptotic value whenΩt � 1, f∞ ∼ −2γ0(Λ
2/(Λ2 + Ω2)) logΛ/Ω

(Fig. 1(f)); and it does tof (t) ∼ −2γ0(logΛt + Γ ), whenΩt � 1 (Γ is the Euler Gamma number).
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In Fig. 1, we show the time behavior of these coefficients. It is easy to probe asymptotic behavior als
analytical expressions.

It has been noted that the master equation in the high temperature limit (or even in theγ ∼ constant approxima
tion) has the pathology that the density matrix loses its positivity at short times (shorter than 1/kBT ). This violation
is essentially due to the action of the friction term. Master equation(3) does not have the pathological behavior
the master equation at high temperature[15]. The dissipation coefficient is a time-dependent function that vani
initially together with its first derivative. Therefore, the initial behavior of the density matrix is diffusion domin
and positivity is preserved, even in the perturbative case, up to second order with respect to the coupling
between system and environment.

With these coefficients at hand, we will evaluate the decoherence time following Refs.[10,11].

3. Decoherence time at T = 0

We will analyze the decoherence process in a simple case. We prepare an initial superposition of deloca
position or momentum) states. We consider two wave packets symmetrically located in phase space, of
[11]: Ψ (x, t = 0) = Ψ1(x) + Ψ2(x), where

(17)Ψ1,2 = N exp

(
− (x ∓ L0)

2

2δ2

)
exp(±iP0x),

(18)N2 = Ñ2

πδ2
= 1

2πδ2

[
1+ exp

(
−L2

0

δ2
− δ2P 2

0

)]−1

,

whereN is normalization, andδ is the initial width of the wave packet. In terms of the Wigner function, the s
at timet is W(x,p, t) = W1(x,p, t) + W2(x,p, t) + Wint(x,p, t), where

(19)W1,2 = Ñ2

π

δ1

δ2
exp

(
− (x ∓ xc)

2

δ2
1

)
exp

(−δ2
2

[
p ∓ pc − β(x ∓ xc)

]2)
,

and

(20)Wint = 2Ñ2

π

δ1

δ2
δ2

2(p − βx)2 cos
(
2kpp + 2(kx − βkp)x

)
.

All the coefficients are functions of time, determined by the evolution propagator of the reduced density
and the initial state. The explicit form can be found in Ref.[11]. The initial state is such thatδ2

1 = δ2
2 = δ2,

kx = P0 = pc , kp = L0 = xc. kp andkx indicate the evolution of the fringes in the momentum and coordin
directions of the phase space.

As it was defined in the previous literature (see, for example,[10]), the effect of decoherence is produced by
exponential factor exp(−Aint), defined as

(21)exp(−Aint) = 1

2

Wint(x,p)|peak

[W1(x,p)|peakW2(x,p)|peak]1/2
.

Initially, Aint = 0, and it is always boundedAint � L2
0/δ

2 + δ2P 2
0 = Aint|max. The fringe visibility factorAint

evolves in time asȦint = 4D(t)k2
p − 4f (t)kp(kx − βkp). In the high temperature approximation, the anomal

coefficient is neglected and we obtain the very well-known decoherence rate considering only the constant
term, proportional toT . In our present case, at zero temperature, both coefficientsD andf contribute to the fringe
visibility factor. A conservative choice is to assume fringes always stay more or less frozen at the initial
and we can setkp = L0 andkx = 1/(2L0). Neglecting the initial transient (i.e.,Λt > 1), we use Eqs.(13) and (16)
to evaluateAint. In order to have the simplest analytical expression for the decoherence rate, we use a sh
approximation to evaluateβ , giving β ∼ 0 (see[11]). Thus, we get
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(22)Ȧint ≈ 4L2
0D(t) − 2f (t).

In order to evaluate the decoherence timetD , we have to solve 1≈ Aint(t = tD). From Eq.(22) it is not possible
to find a global decoherence timescale atT = 0. Nevertheless, we can find limits in which we are able to g
different scales for decoherence.

For example, for large natural frequencyΩ , such asΩ ∼ Λ (Ωt � 1), it is easy to see that

(23)Aint ∼ 2L2
0Mγ0Λt + 4γ0

(
t Ci(Λt) − sinΛt

Λ

)
,

giving a very short decoherence timescale,

(24)tD ∼ 1

2ML2
0γ0Λ

.

This result will be valid as long as the productML2
0γ0 � 1, in order to be able to neglect the initial transie

It coincides with the decoherence time evaluated directly fromD∞ as in Ref.[10]. In this limit, the anomalous
coefficient does not play any role (as we could check usingf∞ in (24)).

In the opposite limit, whenΩt � 1 (for times 1
Λ

< t < 1
Ω

), we can approximateAint using asymptotic limit of
Si and Ci by

(25)Aint ≈ 8Λ2

Λ2 + Ω2γ0

[
ML2

0

2π
(Ωt)2 + t (logΛt + Γ − 1)

]
,

resulting in a decoherence time bound,tD � 1
8γ0

, which could be large for very underdamped systems. Here
logarithmic correction is due to thef (t) diffusion term (unlike Ref.[7], where anomalous diffusion was neglecte
This scale is longer than the decoherence time in the high temperature, even in the case of low temperatur
natural frequency of the Brownian particle. Our result is still smaller than the saturation timetsat= γ −1

0 , the time
in whichAint reaches its maximum value.

In the case we can neglect the second term in(25) (for example, considering “macroscopic” trajectories (la
ML0)), we can show

(26)tD ≈ 1

2L0Ω

√
π

Mγ0
.

Summarizing, in this section we have shown analytical expressions for the decoherence rate at zero tem
We were able to extract the decoherence timescales in different cases, giving new results respect to previous w
[7,10] and showing how to get known numerical results.

4. Decoherence for the upside-down harmonic oscillator

In this section we are concerned with the analysis of the quantum to classical transition of the order pa
during a second order phase transition[14]. In a realistic model one should address this problem in the conte
quantum field theory[16]. This is a very difficult task since non-Gaussian and non-perturbative effects are re
For this reason, we will only concentrate here in a toy model in ordinary quantum mechanics.

Guth and Pi[13] considered an upside-down harmonic oscillator as a toy model to describe the quant
havior of this unstable system. This toy model should be a good approximation for the early time evolutio
phase transition, as long as one can neglect the non-linearities of the potential[14]. In this section, we will analyze
the decoherence effects during a quantum phase transition in which the environment is atT = 0.

Let us consider the unstable quantum particle (characterized by its massM and its bare frequencyΩ) linearly
coupled to a zero temperature environment composedof an infinite set of harmonic oscillators (of massmn and
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frequencyωn). As the coupling between system and environment is linear, the result is exact, and can be ea
obtained by replacingΩ by iΩ in the Hu–Paz–Zhang equation. If the initial wave function is Gaussian, it
remain Gaussian for all times (with time-dependent parameters that set its amplitude and spread).

Let us solve Eq.(3) using a Gaussian ansatz for the reduced density matrix

(27)ρr(Σ,∆, t) = N(t)e−(2a−C)∆2
e−(2a+C)Σ2

e−4ibΣ∆,

while the reduced Wigner function is exactly evaluated as

(28)Wr(x,p, t) = 1

π

√
2a + C

2a − C
e−(2a+C)x2

e− (p−2xb)2

2a−C ,

whereC(t) is a real function; and whereΣ = 1
2(x + x ′) and∆ = 1

2(x − x ′).
The master equation, in the zero temperature limit, becomes

ȧ = 4ab − γ (t)(2a − C) + D(t) + 2bf (t),

ḃ = −2

(
a2 − 2b2 − C2

2

)
− 1

2

(
Ω2 + δΩ2) − 2bγ (t) − (2a − C)f (t),

Ċ = 4Cb + 2(2a − C)γ (t) − 2D(t) − 4bf (t),

(29)Ṅ = 2Nb.

In this case, the temporal coefficients are given by (in theΛt > 1 limit)

δΩ2 = − 2γ0Λ
3

Λ2 − Ω2 , γ = γ0Λ
2

Λ2 − Ω2 ,

(30)D(t) = 2Mγ0

π

ΩΛ2

Λ2 − Ω2 Shi(Ωt), f (t) = − 2γ0Λ
2

Λ2 − Ω2

(
Chi(Ωt) + log

Λ

Ω

)
.

From Eqs.(27) and (28)we see that the relevant function to describe correlations and decoherence
2a − C. For 2a − C = O(1) we have both correlations and decoherence. The set of equations(29) can be solved
numerically. InFig. 2we show the behavior of 2a − C as a function of time. We see that it tends asymptoticall
a constant of order one (of course the asymptotic value depends on the properties of the environment).

Fig. 2. This coefficient measures the importance of the non-diagonal terms in the density matrix. Alternatively, it is the width of the Wigner
function. Is shows the rapid decoherence of the unstable particle coupled to a zero temperature environment. Parameters areγ0 = 0.01,Ω = 1,
andΛ = 100.
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The main conclusion of this section is the following.In order to study a sudden quench quantum phase
sition, at early times we can use the upside-down potential[13,16,17]. When the system is isolated, due to t
high squeezing of the initial wave packet,x andp become classically correlated[14]. The density matrix is no
diagonal. The “correlation time” depends on the shape of the potential. However, when the particle is co
an environment, a true quantum to classical transition takes place. The Wigner function becomes peaked aro
a classical trajectory and the density matrix diagonalizes. The decoherence time atT = 0 depends on the diffu
sion coefficientsD andf and plays an important role in the early stages of a quantum phase transition, in
classicality of the order parameter. Quantum aspect could be relevant if non-linearities are taken into account[18].
Decoherence allows a classical description even in the non-linear regime.
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