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Abstract
The sudden Coulomb–Volkov theoretical approximation has been shown to well
describe atomic ionization by intense and ultra-short electromagnetic pulses,
such as pulses generated by very fast highly-charged ions. This approach
is extended here to investigate single ionization of homonuclear diatomic
molecules by such pulses in the framework of one-active electron. Under
particular conditions, a Young-like interference formula can approximately be
factored out. Present calculations show interference effects originating from
the molecular two-centre structure. Fivefold differential angular distributions
of the ejected electron are studied as a function of the molecular orientation
and internuclear distance. Both non-perturbative and perturbative regimes are
examined. In the non-perturbative case, an interference pattern is visible but
a main lobe, opposite to the electric field polarization direction, dominates the
angular distribution. In contrast, in perturbation conditions the structure of
interferences shows analogies to the Young-like interference pattern obtained
in ionization of molecules by fast electron impacts. Finally, the strong
dependence of these Young-like angular distributions on the internuclear
distance is addressed.

1. Introduction

In the immense field of processes induced by laser beams in matter, the ionization of
molecules by ultra-short and intense laser pulses offers a vast menu of new phenomena such
as interferences (Lein et al 2002a, Spanner et al 2004), molecular orientation dependence of
angular distribution including alignment (Litvinyuk et al 2003, Lein et al 2002b, Ellert and
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Corkum 1999, Seideman 2002, Reid 2003), and inhibition of the ionization of a molecule in
conditions where an atom with the same ionization potential would be ionized (Muth-Böhm
et al 2000, Wells et al 2002). In laser physics, short pulses means subfemtosecond pulses.
However, relativistic highly-charged ions can generate both the shortest and the most intense
pulses ever achieved (Moshammer et al 1997). Then, one speaks of attosecond pulse times. In
the present paper, we are interested in ionization of homonuclear molecules by such attosecond
pulses. Indeed, one expects interference effects to show up.

Interference phenomena should occur when electrons are released from molecules
interacting with a short electromagnetic pulse. Just like in a Young experiment, we can
regard the atoms as photon absorbers, which play the role of separate and coherent sources
of photoelectrons, thus leading to electronic interference patterns. For diatomic molecules,
these patterns should show a periodicity that depends on the ratio of the internuclear distance
to the photoelectron wavelength. Such electronic interferences can modulate the ionization
cross sections. In the case of photoionization, interference phenomena have been identified
for many years (Cohen and Fano 1966, Walter and Briggs 1999, Weber et al 2004). However,
the observation of oscillations due to interferences in electron spectra produced by high-
energy collisions of heavy ions with H2 molecules was only made very recently (Stolterfoht
et al 2001). In such experiments, it is difficult to see the oscillations because the cross
sections fall off rapidly when the electron energy increases. In order to enhance visibility, the
measured cross section was divided by twice the theoretical atomic ionization cross section of
H atoms. Since the ratio strongly depends on relevant parameters of the theoretical model (e.g.,
effective charges), the appearance of the oscillations is difficult to interpret. More recently,
ionization of both atomic and molecular hydrogen by heavy ion impacts at lower energies has
been measured (Misra et al 2004) giving stronger evidence to the existence of interference
patterns.

Experiments are generally performed on gas targets with a random molecular orientation,
thus imposing severe restrictions on the comparison between theory and experiments.
Recently, it has become possible to observe alignment-dependent ionization of N2 (Litvinyuk
et al 2003). Studying how the ionization rate, the photoelectron energy and the angular spectra
depend on the orientation of the molecule should provide interesting piece of information for
high harmonics yields (Lein et al 2002a) and for molecular dissociation (Ellert and Corkum
1999). Such studies should be useful in applications such control of ionization and dissociation
pathways, rotational cooling, molecular trapping and pendular state spectroscopy (Seideman
2002, Reid 2003).

Theoretical (Muth-Böhm et al 2000) and experimental (Wells et al 2002) evidences on
molecular ionization suppression have been recently reported. In the work of Muth-Böhm
et al (2000), the suppression mechanism is related to the symmetry of molecular ground state.

Most processes that occur in the ionization of one-active electron atoms by short laser
pulses may be well predicted by numerical methods that compute the solution of the full time-
dependent Schrödinger equation (Cormier and Lambropoulos 1997, Muller and Kooiman
1998, Kondorskiy and Presnyakov 2001). However, it is no longer the case neither with high
intensities and/or long pulse durations, nor with more complex systems such as molecules
and many-electron atoms. At the same time, there is a need for robust analytical approaches
both to interpret experimental data and to identify dominant mechanisms. In this context,
the strong field approximation might appear as the basic reference (Keldysh 1965, Faisal
1973, Reiss 1980). Unfortunately, this approach and others introduced later (Well et al 2002,
Muth-Böhm et al 2001) neglect the Coulomb interaction between the ejected electron and the
residual ion, thus leading to an incorrect asymptotic behaviour of the final state which is a
fundamental shortcoming as already demonstrated a long time ago (Dollard 1964). Further,
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for the ionization of H atoms by ultra-short pulses, Duchateau et al (2000b) compared electron
energy distributions obtained with Volkov plane waves (VS) to predictions of both, an accurate
quantum numerical approach, and a classical trajectory Monte Carlo (CTMC) approach. These
two later calculations give the same results but they do not agree with VS predictions, more
specially close to the ionization threshold. As a way to get rid of this drawback, an analytical
approach called CV1 appeared recently (Duchateau et al 2000a). It is based on the well-
known Coulomb–Volkov (CV) wavefunctions (Jain and Tzoar 1978). When the interaction
of an atomic system with an external field may be approximated by a dipolar term in the
time-dependent Schrödinger equation, CV states show interesting properties: they are exact
solutions of this equation either when the external field is zero or, for hydrogen-like atomic
systems, when the nuclear charge is zero. Therefore, unlike Volkov states, CV wavefunctions
show the required Coulomb asymptotic behaviour when the external field disappears. The
first few applications of CV1 were made by Duchateau et al (2001, 2002) in the framework
of the sudden approximation. CV1 gives predictions which agree well with quantum and
CTMC calculations for the abovementioned ionization of H by ultra-short pulses (Duchateau
et al 2000b). In fact, compared to exact computations, CV1 predictions were shown to be
accurate and reliable as long as both, the pulse duration does not exceed half the initial state
orbital period, and the electromagnetic field does not perform more than two optical cycles
(Duchateau and Gayet 2001). At present, laser facilities can produce femto and sub-femto
second pulses (Nisoli et al 1997, Duchateau et al 2003). Actually, the pulse duration given
by experimentalists corresponds to the full width at half maximum (FWHM), i.e., the period
of time where the laser field reaches its highest intensities. For the shortest pulses, CV1
can provide reliable predictions about ionization processes during this time for large enough
principal quantum numbers n. For example, one should have n > 4 for the pulses produced
a few years ago in Vienna (Nisoli et al 1997). The use of CV wavefunctions was later
extended with success to longer and complete laser pulses with many field oscillations. It
was done in a framework similar to a distorted wave approach (Duchateau et al 2003, Macri
et al 2003). This later theoretical method was called CV2. An extension of CV2 called
MCV2 (Modified CV2) has been able to explain conspicuous structures in the multiphoton
ionization spectra (Rodrı́guez et al 2004). The origin of these structures was found in the
contribution of intermediate bound states that can be excited by the laser (Rodrı́guez et al
2004). However, the application of CV1 to the ionization of hydrogen targets in the ground
state requires pulse durations shorter than 8 attoseconds. Although such pulses are commonly
generated by relativistic ions, they are still far from being produced with lasers.

In the present paper, the simplest approach CV1 is adapted to explore its ability of
investigating the rich range of effects appearing in the ionization of molecules by ultra-short
ion impacts. Since characteristic periods in molecular states are significantly longer than in
atoms, one expects that it will accurately describe the many processes in a range of external
field parameters more extended than in the case of atoms. Indeed, the model is kept in a very
amenable form.

The paper is organized as follows: in section 2, we outline the model that is used
here to study the interaction between a single-active electron molecule and a very short
electromagnetic pulse. Results are presented in section 3. Conclusions and outlook are given
in section 4. Atomic units are used throughout unless otherwise stated.

2. Theory

The interaction between a hydrogen-like target of nuclear charge ZT and a bare projectile of
nuclear charge ZP is
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V (�r, �R) = ZP ZT

R
− ZP

‖ �R − �r‖ = ZP

(
1

R
− 1

‖ �R − �r‖

)
+

ZP (ZT − 1)

R
(1)

where �r and �R are the positions of the electron and of the projectile with respect to the target
nucleus respectively. To match the required asymptotic forms in the case of collisions without
rearrangement (excitation or ionization), the long-range ion–ion interaction ZP (ZT − 1)/R

has to be taken into account in the entrance and exit channel-states. Then, the interaction
V̄ (�r, �R) that can induce a transition is the first term of the right-hand side of (1). For
high projectile charges and very high impact velocities, it is well known that excitation and
ionization processes are dominated by distant collisions, i.e., for R � r . In this case, V̄ (�r, �R)

is well represented by the dipolar term (Rodriguez and Falcon 1990). This dipolar term is

V̄D(�r, �R) = −ZP

�r · �R
R3

= − �d · F( �R) (2)

where �d = −�r is the atomic dipole and �F( �R) is the electric field generated by the projectile
at the target nucleus. According to (2), one has

�F( �R) = −ZP

�R
R3

. (3)

When the impact velocity �v is high, the projectile trajectory is in almost straight line. Thus �R
may be written as

�R = �ρ + �v t (4)

where �ρ is the impact parameter and t is the time whose origin is at the closest distance of
approach. Therefore, �F( �R) is now

�F( �ρ, t) = −ZP

�ρ + �v t

(ρ2 + v2t2)3/2
. (5)

From expression (5) �F( �ρ, t) appears as a time-derivative of a vector potential �A( �ρ, t):

�F( �ρ, t) = −∂ �A( �ρ, t)

∂t
(6)

with

�A( �ρ, t) = ZP

v
(ρ2 + v2 t2)−1/2

(
ρ̂

v t

ρ
− v̂

)
+ �A0. (7)

In (7), v̂ and ρ̂ are the unit vectors along and perpendicular to the trajectory respectively while
�A0 is a time-independent vector. Therefore, transitions that may be induced by the field �F( �R)

fall within the frame of interactions with electromagnetic fields. Since we are interested in
ionization by very fast ions, we may address this process through the CV1 approach introduced
by Duchateau et al (2000a, 2000b) in the framework of the sudden approximation. To calculate
the CV1 transition amplitude, one needs to know the whole variation of the vector potential
during the interaction, no matter what the vector potential is during this time. According to
(7), the variation of �A( �ρ, t), during a collision, is

� �A = 2ZP

ρv
ρ̂. (8)

Only the transverse component of �A contributes to � �A. Such a situation is comparable to the
effect of a half-cycle pulse of a linearly polarized laser. With reference to the collision system
studied by Moshammer et al (1997), we represent in figure 1 the transverse component of the
field created at the nucleus of a target atom by a 1 GeV/nucleon U92+ ion. The corresponding
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Figure 1. The full line represents the transverse electric field generated by a 1 GeV/nucleon
U92+ at the nucleus of an atomic target as a function of time. The closest distance of approach
ρ ≈ 3 au is reached at t = 0.05 au. The dashed line simulates the previous ion field by means of
a sine-square function that is zero outside the range [0, 0.1]. The two pulses have similar vector
potential variations (see text).

velocity is v = 120 au. The maximum value of the field, that is reached at t = 0.05 au (≈1 as),
corresponds to an impact parameter ρ � 3 au. Such a field is equivalent to an electromagnetic
flux 3.5 × 1018 W cm−2. In the present example, more than 90% of the variation of the
transverse vector potential is obtained between 0 and τ = 0.1 au, i.e., in a time τ ≈ 2.5 as.
As shown in figure 1, one may simulate this pulse by a sine-square function restricted to the
range [0, τ ], whose integral is very close to the value given by (8). Such sine-square functions
always enable us to nicely reproduce the variation of the transverse vector potential of very
fast ions. Therefore, they have been employed in the present study of ion impact induced
ionization of homonuclear molecules. In fact, our analysis remains valid for any projectile
charge provided that the impact parameter and the impact velocity are scaled according to the
rules established by Rodriguez and Falcon (1990).

We consider here the ionization of a one-active electron homonuclear molecule by an
external electric field �F(�r, t) supposed to be homogenous in the volume of the molecule, thus
permitting us to write �F(�r, t) = F(t) in this volume. Under non-relativistic conditions and
within the electric dipole approximation, the wavefunction �(�r, t) of the outermost electron
satisfies the time-dependent Schrödinger equation:

i
∂�(�r, t )

∂t
= [Hm + �r · �F(t)]�(�r, t)

(9)

Hm = −∇2

2
+ Vm(�r, �ρ)

where �ρ is the internuclear distance and �r is the position of the electron with respect to the
mid-point between nuclei; this mid-point is identified with the centre of mass. In the frozen
core approximation Vm(�r, �ρ) is a model potential that simulates the potential experimented by
the outermost active electron (Duchateau et al 2001, Galassi et al 2002). The model potential
may generally be taken as

Vm(�r, �ρ) = ZT

ra

+
ZT

rb

+ Vp(�r, �ρ) (10)
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where �ra,b = �r ± �ρ/2 are the positions of the electron with respect to nuclei a and b,
respectively. Thus, Vp(�r, �ρ) represents the average influence of the passive electrons of the
core on the active electron. In an ionizing process, the initial bound state φi(�r, �ρ, t) and the
final continuum state φ−

f (�r, �ρ, t) may be written as

φi(�r, �ρ, t) = ϕi(�r, �ρ) exp(−iεi t)
(11)

φ−
f (�r, �ρ, t) = ϕ−

f (�r, �ρ) exp(−iεf t).

In the present work we focus on the molecular ion H+
2 although the formalism remains valid

for any one-active electron system where a reasonable model or pseudo-potential Vm(�r, �ρ)

may be used to represent the interaction of the active electron with the rest of the system.
The initial active-electron wavefunction ϕi(�r) is approximated here by a linear combination
of atomic orbitals (LCAO) with two variational single-zeta functions,

ϕi(�r, �ρ) ∼= N(ρ) [ϕA(ra) ϕB(rb) + ϕB(ra) ϕA(rb)] where (12)

ϕM(rn) = exp(−ZMrn) with M = A,B and n = a, b

where ZA,B are the variational parameters and N(ρ) is the normalization factor. In the present
case we have ZA = 0.224 086, ZB = 1.136 03 at the equilibrium internuclear distance ρ =
2 au and N(ρ) = 0.614 2109. Following Joulakian et al (1996), we assume that the ejected
electron may be described by a two-centre continuum wavefunction given by

ϕ−
f (�r) = ei�k·r

(2π)3/2
ψ−

�k
(�ra, t) ψ−

�k
(�rb, t)

(13)
ψ−

�k
(�rj , t) = exp(πν/2)�(1 + iν) 1F1(−iν, 1,−ikrj − i�k · �rj )

where ν = 1/k, and 1F1 is the confluent hypergeometric function. This wavefunction
satisfies exact limit of the outgoing wave in the field of the two nuclei (Joulakian et al 1996).
Calculations performed with the approximate wavefunctions (12) and (13) by Joulakian et al
(1996) for the ionization of H+

2 by electron impacts have been compared with predictions
made by Serov et al (2002) using exact numerical bound and continuum wavefunctions. Both
calculations agree reasonably well, in particular for forward electron scattering.

A sine-square envelope shapes the finite pulse. Thus, in the vicinity of the molecular ion
the external electric field reads


�F(t) = �F 0 sin2

(
πt

τ

)
when t ∈ [0, τ ]

�F(t) = �0 elsewhere
(14)

where τ is the total duration of the pulse. In the Coulomb gauge, the electric field of a
propagating electromagnetic wave is the opposite time-derivative of a vector potential �A (t)

that may be written as

�A(t) = �A(t0) −
∫ t

t0

dt ′ �F(t ′). (15)

In the Schrödinger picture, the transition amplitude from the state i at t = 0 to the final
state f at t = τ is given by the general expression:

a−
f i = 〈

χ−
f (�r, t)∣∣χ+

i (�r, t)〉 (16)

where χ−
f (�r, t) and χ+

i (�r, t) are the exact incoming and outgoing solutions of equation (9)
respectively. These solutions are subject to the following asymptotic conditions:

χ−
f (�r, t)−→

t�τ
φ−

f (�r, �ρ, t) (17a)
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χ+
i (�r, t)−→

t�0
φi(�r, �ρ, t). (17b)

Expression (16) provides two usual forms of the exact transition amplitude: (i) at t = 0 when
χ−

f (�r, t) is an exact solution of (9) while χ+
i (�r, t) = φi(�r, t) and (ii) at t = τ when χ+

i (�r, t)
is an exact solution of (9) while χ−

f (�r, t) = φ−
f (�r, t). In the so-called CV1 approximation, a

Coulomb–Volkov wavefunction (Duchateau et al 2000a, 2000b, 2001) is used in place of the
required exact solution either at t = 0 or at t = τ . Both approaches are shown to provide
identical predictions. It is worth pointing out that CV1 results for hydrogen ionization by ultra-
short electromagnetic pulses have been found reliable whenever the sudden approximation
holds, i.e., when the pulse duration is smaller than a lapse of time characteristic of the initial
electronic state evolution (Duchateau et al 2000a, 2000b). In what follows, we use the
amplitude at t = 0 that is called CV1−. In CV1−, the wavefunction χ−

f (�r, t) is approximated
by the following Coulomb–Volkov wavefunction:


χ−
f (�r, t) = φ−

f (�r, �ρ, t)L −(�r, t)
L−(�r, t) = exp

{
i �A−(t) · �r − i�k ·

∫ t

τ

dt ′ �A−(t ′) − i

2

∫ t

τ

dt ′ �A−2(t ′)
}

(18)

where �A−(t) is the variation of �A(t) over the time interval [τ, t], i.e.,

�A−(t) = −
∫ t

τ

�F(t) dt (19)

and where χ+
i (�r, t = 0) = φ+

i (�r, t = 0). Introducing the wavefunction (12) in the expression
(16), the transition amplitude CV1− may be written, after an easy algebra, as

aCV1−
f i = N(ρ) exp(iφ)

∫
d�r exp[−i �q · �r]ϕ−∗

f (�r, �ρ) [ϕA(ra)ϕB(rb) + ϕB(ra)ϕA(rb)] (20)

where �q is the momentum transferred by the electric field to the electron and φ is the following
constant phase that leaves the probability unchanged:

φ = �k ·
∫ 0

τ

dt ′ �A−(t ′) +
1

2

∫ 0

τ

dt ′ �A−2(t ′) �q = �A−(0). (21)

We first examine the integrals over coordinates in (20). Following the procedure of Joulakian
et al (1996), the integral is transposed to the momentum space. After a lengthy, but otherwise
straightforward procedure, the result is

aCV1−
f i = N(ρ) exp(iφ) (exp(−i (�q − �k) · ( �ρ/2))A(�q, �ρ) + exp(i(�q − �k) · ( �ρ/2))A(�q,− �ρ))

(22)

where one has

A(�q, �ρ) =
∫

d �Q e−i �Q· �ρW(�k, �Q,ZA)W(�k, �k − �q − �Q,ZB). (23)

In (23), W(�k, �V ,ZM) with M = A,B and �V = �Q, �k − �q − �Q is a form factor-like function:

W(�k, �K,ZM) =
∫

d �r e−i �k·�r e−ZM r
1F1(−iν, 1, ikr + i�k · �r) (24a)

W(�k, �V ,ZM) = 4 π

V 2 + Z2
M

(
1 +

2�k · �V − 2iZMk

V 2 + Z2
M

)iν {
2(1 + iν) − 2ν(k + iZM)

( �V + �k)2 − (k + iZM)2

}
.

(24b)
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Expression (24b) is easily obtained through a standard Nordsieck-type integration (Nordsieck
1954). Note that expression (24a) features an electronic transition from a bound state 1s with
a binding charge ZM , to the continuum. However, the amplitude A(�q, �ρ) is a convolution of
two form factors. This rather general result leads to the CV1 transition amplitude (22) that is
a sum of two ionization amplitudes weighted by a specific phase factor. It reflects the fact that
the electron can be emitted from any centre. Now, the main contributions to the integral over
�Q in (23), come from the neighbourhoods of �Q = �0 and �Q = �k − �q. For large values of the

electric field F0, the norm of the momentum transfer �q = �A− (t = 0) may be large (e.g., with
half-cycle pulses). In this case, the integrant in (23) exhibits two peaks a long way apart, thus
permitting us to approximate expression (23) as

A(�q, �ρ) ≈ W(�k, �k − �q,ZB)

∫
d �Q e−i �Q· �ρW(�k, �Q,ZA)

+ W(�k, �k − �q,ZA)

∫
d �Q e−i �Q· �ρ W(�k, �k − �q − �Q,ZB). (25)

Using (24b), it is easy to show that, for the values of q = ‖�q‖ larger than any other quantity,
each factor outside the integrals in (25) may be approximated as

W(�k, �q − �k, ZM) ≈ 8π(1 + iν)

(�q − �k)2 + Z2
M

with M = A,B. (26)

Since q is large, Z2
M may be ignored in (26), thus leading to a common factor, whose effect is

to reduce the contributions of the two peaks in the CV1 amplitude.
Further, it is clear that the maximum value of A(�q, �ρ) is reached when �k = �q because

both functions W in the integrant are maximum for �Q = �0. Therefore, one expects a peak in
the electron energy spectrum at an energy corresponding to �k = �q. This result is consistent
with a previous work (Duchateau et al 2000a, 2000b) where it is shown that the maximum in

electron energy spectra is close to E = �A−(0)2

2 = �q2

2 .
Now, starting from expressions (22) and (23) and making the following assumption

A(�q, �ρ) ≈ A(�q,− �ρ) ≈ A(�q, 0) (27)

we can get the so-called two-effective centre (TEC) approximation (Weck et al 2001). The
approximation (27) may be justified as follows: the analytical form (24b) shows that, given
the small value of ZA compared to ZB , W(�k, �Q,ZA) is much more peaked at �Q = �0 than
W(�k, �k − �q − �Q,ZB) at �Q = �q − �k. Therefore, in expression (23), one may replace e−i �Q· �ρ

by its value close to �Q = �0, i.e., by 1. Such a procedure is equivalent to taking �ρ = �0 in
(23). Thus, the two-effective centre approximation (TEC) may be traced back to a peaking
approximation in the integral (23). Introducing this approximation in (22) leads, after simple
calculations, to the following TEC transition amplitude:

aCV1−
f i,TEC ≈ 2N(ρ) exp(iφ) cos[(�q − �k) · ( �ρ/2)]A(�q, 0) (28)

where

A(�q, 0) = C

∫
d�r e−i (�k−�q) · �r e−(ZA+ZB) r

1F1(iν, 1, ikr + i�k · �r) 1F1(iν, 1, ikr + i�k · �r) (29)

C = (2π)3 exp(πν)�(1 − iν)2. (30)

An analytical expressions for (29) is also obtained through the above-mentioned procedure
(Nordsieck 1954). It is worth noting that using a single Z function for the initial bound state
and a single continuum wavefunction for the final state corresponds to the CV1 transition
amplitude for ionization of any single centre of the molecule as if the atom were alone. Thus,



H+
2 ionization by ultra-short electromagnetic pulses 2783

expression (28) exhibits Young-type interferences between the ionization amplitudes of the
two centres. We would like to point out that analogous expressions have been found previously
within the strong field approximation (SFA) (Muth-Böhm et al 2000, 2001) and more recently
in the context of molecular ionization by impacts of, either heavy ions (Stolterfoht et al 2001)
or electrons (Stia et al 2003). However, the present calculations differ from SFA ones because
SFA uses a Volkov plane wave for the final wavefunction. It is noteworthy that expressions
similar to (23) are derived by Stolterfoht et al (2001) and Weck et al (2001), both works
making use of the so-called two-effective centre approximation. The integration over the
electron coordinates may be expressed in terms of the well-known bound-continuum form
factor. This form factor is analytical for hydrogen atoms (Joulakian et al 1996). Then, the
fivefold differential ionization probability (FDIP) is given by

∂5P CV1−
f i

∂EK∂�k∂�ρ

= k
∣∣aCV1−

f i

∣∣2
(31)

where Ek and �k are the energy and the direction of the impulse �k of the ejected electron
respectively; while �ρ defines the orientation of the molecular axis vector �ρ.

Within the two-effective centre approximation the FDIP reads

∂5P CV1−
f i,TEC

∂EK∂�k∂�ρ

= 4 kN(ρ)2 cos2

[
(�k − �q) · �ρ

2

]
|A(�q, 0)|2. (32)

Always within TEC, we may average over the molecular orientation thus obtaining

∂3P CV1−
f i,TEC

∂EK∂�k

= k

2π
N(ρ)2 |A(�q, 0)|2

(
1 +

sin[|�k − �q|ρ]

|�k − �q|ρ

)
. (33)

Integrating over �k provides the energy distribution
∂Pf i

∂EK
. A further integration over Ek yields

the total ionization probability Pion.

3. Results and discussion

In this work, H+
2 differential ionization probabilities are computed for electrons emitted in

a plane defined by the molecular axis and the z-axis taken in the direction of the linear
polarization of the external field. Therefore, in all figures, 0◦ is the direction of the field.
Calculations with the molecular CV1 theory introduced in section 2 are performed for a
duration of the electromagnetic pulse τ = 5 au. With atoms, such values of these parameters
guarantee a good agreement between CV1 and exact numerical solutions of the time-dependent
Schrödinger equation (Duchateau et al 2000a, 2000b, 2001). Since the ionization potential of
neutral molecules is smaller than that of atoms, one expects the sudden condition to be better
satisfied in the case of molecules.

The non-perturbative regime is first addressed with a pulse amplitude F0 = 1 au.
Calculations are then performed within the perturbation regime for different electron energies
and various internuclear axis orientations. Finally, the issue of the dependence on the
internuclear distance is analysed.

3.1. Non-perturbative regime

In figures 2–4, the internuclear distance is the equilibrium distance, i.e., R = 2 au and the
electric field amplitude is F0 = 1 au, thus placing the interacting system quite far from the
perturbation regime. The fivefold differential ionization probability is examined there as a
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Figure 2. FDIPs for various molecular orientations and an electron ejected at 150 eV. The direction
of the external electric field is 0◦. The internuclear distance is R = 2 au. Full line: CV1 calculation;
dashed line: TEC approximation; dotted line: interference factor (see text, equation (34)).

function of the electron ejection angle θ , for various energies of ejected electrons and a few
molecular orientations between 0◦ and 90◦.

In figure 2, the electron energy Ee is set to 150 eV and the internuclear axis is rotated
from 0◦ to 90◦ by steps of 30◦. We compare results of present CV1 molecular theory (solid
line) defined by equations (22)–(24a) and (24b) to the TEC approximation (dashed line)
defined by equation (32). Let us recall that the latter was already employed to study molecular
ionization by impacts of electrons (Stia et al 2003) and heavy ions (Laurent et al 2002). In both
present calculations, FDIPs show a prominent lobe in the backward direction. Such a lobe is
characteristic of the dominant influence of a strong field at its maximum intensity. However,
the secondary lobes that appear at different angles are connected to the FDIP lobes of the
perturbation regime. As the molecular axis rotates, the electron emission pattern follows the
rotation with the exception of the main backward lobe, which remains in the same direction.
A plot of the (scaled) interference factor

cos2[(�q − �k) · �ρ/2] (34)
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Figure 3. FDIPs for an electron ejected at various energies from a molecule whose axis is parallel
to the external electric field directed towards 0◦, and whose internuclear distance is R = 2 au. Same
notation as figure 2.

(dotted line) in the same figure shows that this behaviour of the pattern is the signature of
interference between electron emissions from the two nuclei. This conclusion can readily
be checked for molecular orientations along 0◦ and 90◦. But it might be less obvious at
the intermediate orientations for which the secondary lobes given by CV1 are more oriented
in the backward direction than TEC maxima. Moreover, at θρ = 60◦ we find that CV1
predicts a maximum along this orientation, at variance with TEC that shows a minimum there.
Such discrepancies are evidence for significant higher-order contributions in the expansion of
e−i �Q· �ρ in crescent powers of �Q · �ρ (see text between equations (27) and (28)). Indeed, all the
contributions above the 0th-order are neglected in TEC whereas they are all taken into account
in CV1.
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Figure 4. Same as figure 3 but with a molecular axis perpendicular to the electric field.

In figures 3 and 4, one considers two molecular orientations θρ = 0◦ and θρ = 90◦

respectively. Molecular FDIPs are reported there as functions of the ejected electron angle θe

for four electron ejection energies, Ee = 20, 60, 100 and 500 eV.
To investigate whether nodes show up or not, we first consider the lowest energy

Ee = 20 eV. At this particular energy with an internuclear axis parallel to the polarization,
equation (34) and TEC calculations predict two nodes in FDIP at the same ejection angle
whereas CV1, that is a slowly varying function, does not show any node (figure 3).
The situation is the opposite for a perpendicular orientation (figure 4): neither TEC, nor
equation (34) shows any node whereas CV1 presents two absolute and two relative minima.

In general, for a molecular axis parallel or perpendicular to the polarization, CV1 exhibits
smooth minima near the nodes predicted by TEC. There is a single exception at Ee = 60 eV
with a parallel orientation, where CV1 shows a maximum at θe = 0◦ whereas TEC predicts a
minimum. Figures 3 and 4 indicate that, when the electron energy increases, new FDPI lobes
are looming up for these two particular orientations of the molecular axis.
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Figure 5. FDIPs for an electron ejected at 150 eV for different molecular orientations and an
internuclear distance R = 2 au. Full line: CV1 calculation; dashed line: TEC approximation.

With a parallel orientation, we observe 2, 3, 4 and 8 nodes in the FDIP, for Ee =
20, 60, 100 and 500 eV respectively (figure 3). For a perpendicular molecular orientation
(figure 4), this increasing series is different: for the above-mentioned electron energy sequence,
the electron angular distribution shows 0, 4, 4 and 8 nodes respectively. For the highest energy
500 eV, both TEC and CV1 display almost the same lobe structure, with the exception of the
two minima predicted by TEC at θe = 150◦ and 210◦. These minima do not appear, neither
in CV1, nor in the interference factor. They are connected to the particular structure of the
TEC amplitude. The latter is defined in equation (32) as the product of the interference factor
times the atomic ionization probability, which is strongly peaked in the backward direction.

Finally, it is worth noting that the particular orientations of the molecule in figures 3 and 4,
lead to diagrams that are all symmetrical with respect to the direction of the pulse polarization.
Such a result stems from the axial symmetry of the system with respect to the polarization
direction when the molecular axis is, either parallel, or perpendicular to this direction.
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Figure 6. FDIPs for an electron ejected at various energies from a molecule whose internuclear
distance is R = 4 au and whose axis is parallel to the electric field. Same notation as figure 5.

3.2. Perturbation regime

In order to get close to the photoionization limit, we now look at the behaviour of FDIPs for
a much smaller electric field. Beforehand, let us point out that an interference factor similar
to (34) also appears in other processes leading to molecular ionization. On the one hand,
the appropriate interference factor for photoionization is obtained by setting �q = 0 in (34)
(Walter and Briggs 1999). On the other hand, for electron impact ionization −�q represents the
transferred momentum to the ejected electron (Stia et al 2002). Even for molecular ionization
by fast heavy ions, it is possible to find an expression similar to (32) with a factor in the
square-modulus of the transition matrix that is a function of the transverse momentum transfer
η (Laurent et al 2002). In that latter case however, interferences are somewhat damped by the
integration over η.

Predictions with the weak field F0 = 10−3 au are displayed in figure 5. One observes that
both CV1 and TEC approximations provide electron emission diagrams always symmetric
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Figure 7. FDIPs for an electron ejected at 100 eV from a molecule whose internuclear distance
increases, the molecular axis being parallel to the electric field. Same notation as figure 5.

with respect to the molecular axis. These diagrams looks like being stuck to the molecular
reference frame. It just means that the external field is too weak to affect the symmetry of the
unperturbed molecular ion. Qualitatively, predictions made by both approaches are similar.
As usual, CV1 provides relative minima in place of the nodes predicted by TEC. However,
there are large quantitative differences. Indeed, to be reported on the figure, TEC values are
divided by 100. Nevertheless, the interference factor arising from the simple picture of the
TEC approximation still appears to be a useful guide to explain lobe structures in FDIPs.

3.3. Dependence on the internuclear distance

The FDIP lobe structure depends on both the internuclear orientation and the internuclear
distance. We investigate now the evolution of the electronic distribution as a function of the
the internuclear separation R. In figures 6 and 7, FDIP predictions are reported for a not too
strong external electric field F0 = 0.1 au parallel to the molecular axis.



2790 V D Rodrı́guez et al

Calculations of FDPI reported in figure 6 are carried out for R = 4 au. Although a
qualitative agreement is found between CV1 and TEC theories for electron ejected along the
molecular axis, discrepancies appear for other emission angles. Further, there is no quantitative
agreement since TEC results have to be divided by 100 to be reported in emission diagrams
of figures 6 and 7. Now, it is interesting to compare diagrams drawn in figures 2 and 3 for
R = 2 with diagrams of figure 6 where R = 4. For the same molecular orientation and the
same electron ejection energy, more lobes show up in figure 6. Although field intensities
are different, such a feature suggests that the lobe structure of FDIP could provide us with
information on the dynamics of nuclei in a molecule. Subsequent calculations reported in
figure 7 support this suggestion.

In figure 7, four FDIP diagrams are displayed for electrons ejected at 100 eV in each
case. As in figure 6, the electric field amplitude is F0 = 0.1 au and the molecular axis is
parallel to the external electric field. FDIP calculations are performed for growing internuclear
distances R = 2, 4, 6 and 10 au. Agreement between CV1 and TEC approaches is similar
to figure 6, again with TEC results multiplied by 10–2. According to the figure, the larger
the internuclear distance, the more numerous the lobes. This is consistent with equation (34),
which predicts a number of FDIP lobes that grows linearly with kρ while it is independent
of the field strength. Thus, for a fixed molecular orientation, it is possible to have a good
indication of the internuclear distance by counting the number of lobes in the FDIP of electrons
with the same energy. Therefore, the observation of the lobe structure of FDIP might be a way
to trace the dynamics of molecular vibrational states.

Finally, it is noteworthy that FDIP patterns shown in figures 6 and 7 look more similar to
the corresponding patterns exhibited in figures 2–4 than to those reported in figure 5. It is no
wonder since F0 = 0.1 au sets the interacting system quite outside the perturbation regime.

4. Concluding remarks

Fivefold differential angular distributions of ejected electrons have been studied as functions
of both molecular orientation and internuclear distance using an extension of the CV1 theory
to molecular ionization by ultra-short electromagnetic pulses. Both non-perturbative and
perturbative situations have been examined. In the non-perturbative case, the interference
pattern shows up but a prominent lobe dominates the angular distribution in a direction
opposite to the electric field polarization. In contrast, in the perturbative case, the interference
structure can be related to that obtained in molecular ionization by fast electron impacts. The
interference pattern can be obtained easily by means of the so-called two-effective centres
(TEC) approximation that may be derived from the full CV1 theory. TEC does provide a
simple and useful guide to understand the otherwise complex lobe structure of the FDIP.
However, there are some numerical discrepancies, particularly in non-perturbative situations.
It is no wonder since we showed that the main contributions to the full CV1 amplitude, come
from the neighbourhoods of �Q = �0 and �Q = �k − �q (see equation (23). For large values of the
electric field F0, the two peaks, that are far apart, contribute to the full CV1 amplitude whereas
the TEC transition amplitude is only determined a contribution at �Q = �0.

The situation is very different in perturbation conditions because q is small. Therefore,
depending on �k, the value of ‖�k − �q‖ is generally much smaller than in the non-perturbative
case, thus preventing from getting two well-separate peaks in (23).

Theoretically, a connection has been established between the angular distributions of
ejected electrons and Young-type interferences. These distributions have been shown to
strongly depend on the internuclear distance. Further, for a fixed molecular orientation and a
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given ejected electron energy, the number of FDIP lobes appears to be roughly proportional
to the internuclear distance.
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