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ABSTRACT
The human body is constantly exposed to many xenobiotics including environmental pollutants,
food additives, therapeutic drugs, etc. The liver is considered the primary site for drug metabolism
and elimination pathways, consisting in uptake, phase I and II reactions, and efflux processes,
usually acting in this same order. Modulation of biotransformation and disposition of drugs
of clinical application has important therapeutic and toxicological implications. We here
provide a compilation and analysis of relevant, more recent literature reporting hormonal regula-
tion of hepatic drug biotransformation and transport systems. We provide additional information
on the effect of hormones that tentatively explain differences between sexes. A brief discussion on
discrepancies between experimental models and species, as well as a link between gender-related
differences and the hormonal mechanism explaining such differences, is also presented. Finally,
we include a comment on the pathophysiological, toxicological, and pharmacological relevance
of these regulations. C© 2013 American Physiological Society. Compr Physiol 3:1721-1740,
2013.

Introduction
We are daily exposed to a wide variety of xenobiotics
including environmental pollutants, food additives, therapeu-
tic drugs, etc. The major routes of exposure to these chemi-
cals are inhalation, dermal absorption, and absorption through
the gastrointestinal tract. After their incorporation, xenobi-
otics are distributed through various compartments in the
body according to a number of physicochemical character-
istics. Lipid-soluble chemicals readily cross biological mem-
branes and distribute to fluid compartments and particularly to
highly perfused tissues, such as the liver, readily entering the
parenchymal cells across the sinusoidal membrane. To facil-
itate their elimination, cellular enzyme systems catalyze the
process of biotransformation, producing metabolites that are
generally more water-soluble and probably more ionized at
physiological pH. The liver is considered the primary site for
drug metabolism in the body, which has long been classified
into phase I and phase II reactions. Phase I metabolism, con-
sisting of oxidation, reduction, or hydrolysis reactions, intro-
duces minor changes in drug structure or solubility but adds
or exposes sites where phase II metabolism can subsequently
occur. In contrast, phase II conjugation typically results in
a more appreciable change in chemical structure, molecular
weight, and water solubility. Because of their increased solu-
bility, metabolized drugs cannot easily diffuse across plasma
membranes and are mostly transported into either bile or sinu-
soidal blood by carrier mediated processes, usually requiring
ATP consumption. Figure 1 depicts schematically the com-
plete sequence of uptake, phase I and II reactions, and efflux
processes, taking place in hepatocytes.

Because of the implication of these systems in biotrans-
formation and disposition of drugs of clinical application,
their modulation has important therapeutic and toxicological
implications. According to the FDA, adverse effects of drugs
are more common and severe in women than in men (206).
Gender-related differences in drug effectiveness and adverse
effects are thought to result from differences in their clear-
ance by major metabolizing organs. One of the likely reasons
for these differences is the gender-specific differences in the
rate of biotransformation and transport of drugs, for exam-
ple, by the liver. Hormonal regulation of drug metabolism
may, in turn, contribute to gender differences. Gender differ-
ences in drug receptors may also be of relevance to explain
such differences in response. We here provide a compila-
tion and analysis of relevant, more recent literature reporting
hormonal regulation of hepatic drug biotransformation and
transport systems, with emphasis on hormones explaining dif-
ferences between sexes. A brief discussion on discrepancies
between experimental models and species, as well as a link
between gender-related differences and the hormonal mech-
anism explaining such differences, is also presented. Finally,
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Figure 1 Processing of endo- and xenobiotics in the hepatocytes. X:
Endo- or xenobiotic. U: Uptake transporters such as NTCP, OATs, or
OATPs. After uptake from the bloodstream, endo- and xenobiotics are
metabolized by Phase I (CYP450 family) and/or Phase II (UGT, GST,
and/or SULT). M: final metabolite. Metabolites are then eliminated
from the cells through secretion into bile canaliculi or into sinusoids by
efflux transporters (E) such as MRP2, BSEP, BCRP, P-GP, and ABCG5/8
(canalicular) or MRP3-4-5-6 (basolateral).

we include a comment on the pathophysiological, toxicolog-
ical, and pharmacological relevance of these regulations.

Liver and Drug Disposition
The liver plays an important role in the uptake, metabolism,
and distribution of many endo- and xenobiotics. Hepatocytes
are the parenchymal cells of the liver responsible for the bio-
transformation and transport of these compounds. They are
organized into plates that anastomose with one another, sep-
arated by vascular channels or sinusoids. This structure is
important in directing the excretion of the products of bio-
transformation out of the hepatocytes into bile or blood. The
biotransfomation systems are classified as phase I, phase II,
and efflux transport systems. The cytochrome P450 (CYP)
system belongs to phase I reactions, while the phase II
enzymes are characterized by their ability to conjugate endo-
or exogenous molecules using endogenous cofactors. Numer-
ous transporters are responsible for the movement of endo-
and xenobiotics across the cell membrane, thus affecting their
intracellular concentration and disposition into urine or bile.

Biotransformation Reactions
Cytochrome P450-associated reactions
The CYPs are a superfamily of heme proteins located pri-
marily in the endoplasmic reticulum, involved in oxidative

metabolism of endogenous compounds (such as steroid hor-
mones and bile acids) and xenobiotics, including therapeutic
agents. The enzymes implicated in xenobiotic metabolism are
highly expressed in liver, although lower levels of selected
forms are also found in extrahepatic tissues. They are named
with the root symbol CYP followed by an Arabic numeral des-
ignating a family number, a letter for the subfamily, and a last
Arabic numeral indicating the specific CYP isoform. Percent-
ages of amino acid sequence similarities define families and
subfamilies. Oxidation mediated by CYPs is the major route
of elimination of clinically administered drugs, thus govern-
ing their plasma clearance (68, 69). The most representative
substrates for CYPs are presented in Table 1, in addition to
their function and subcellular localization.

Conjugation reactions
Following phase I-mediated transformation, compounds can
undergo Phase II or conjugation reactions. These are biosyn-
thetic reactions in which the xenobiotic is linked to an endoge-
nous group to give a product known as the conjugate. In cer-
tain cases, the products of Phase I can be eliminated without
subsequent conjugation. However, xenobiotics are generally
excreted in a more water soluble, conjugated form (23). Glu-
curonidation and conjugation with glutathione (GSH) or sul-
fate are quantitatively the most representative reactions of
Phase II (95).

Glucuronidation is catalyzed by a family of UDP-
glucuronosyltransferases (UGTs) located in the endoplasmic
reticulum. Based on a cDNA sequence comparison, mam-
malian UGTs are divided into four genes families, named
UGT1, UGT2 (divided into subfamilies: 2A and 2B), UGT3,
and UGT8 (142). The UGT1 family comprises several isoen-
zymes with different amino-terminal domains (substrate bind-
ing domain) but identical carboxyl-terminal domain (cosub-
strate binding domain). These isoenzymes result from alterna-
tive splicing of transcripts derived from a UGT1 gene complex
(91). UGT2A1 and UGT2A2 genes also share exon 6. How-
ever, UGT2A3, UGT2B, UGT3, and UGT8 gene families do
not share exons and result from a process of duplication of
all exons in the gene. According to the nomenclature, Ara-
bic numerals correspond to the family (e.g., UGT1), a letter
represents the subfamily (e.g., UGT1A), and a second Arabic
numeral designates the individual isoform (e.g., UGT1A1)
(142).

Conjugation of compounds having electrophilic groups
with the tripeptide GSH is catalyzed by GSH S-transferases
(GSTs). Many other activities are now associated with GSTs,
such as prostaglandin and leukotriene biosynthesis, Michael
addition, peroxide degradation, ligand binding, and intracel-
lular transport (170). Mammalian GSTs comprise different
families, namely cytosolic, mitochondrial, and microsomal
GST (now designated MAPEG, membrane-associated pro-
teins in eicosanoid and GSH metabolism) (79). Based on
amino acid sequence similarities, seven classes of cytosolic
GSTs are recognized (alpha, mu, pi, sigma, theta, omega, and
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Table 1 Function, Specificity, and Subcellular Localization of Major Hepatic Phase I and Phase II Biotransformation Systems

Enzyme Function Subcellular localization Substrates References

CYP1A2 Oxidation Endoplasmic reticulum Caffeine, estradiol, lidocaine, tacrine, theophylline,
verapamil, (R)-warfarin

(220)

CYP2A6 Oxidation Endoplasmic reticulum Nicotine, coumarin, valproic acid,
4-methylnitrosoamino-1-(3-pyridyl)-1-butanone,
N-nitrosodiethylamine

(167), (88) (178)
(238)

CYP2B1 Hydroxylation Endoplasmic reticulum Doxorubicin, androstenedione, hexobarbital (4,66)

CYP2C9 Oxidation Endoplasmic reticulum Glyburide, celecoxib, losartan, diclofenac,
phenytoin, piroxicam, (S)-warfarin
tetrahydrocannabinol, tolbutamide

(220) (243)

CYP2C11 Oxidation, N-hydroxylation Endoplasmic reticulum Desipramine, thalidomide (8) (78)

CYP2C12 Oxidation Endoplasmic reticulum
and mitochondria

Ethoxyresorufin, steroid sulfates in the position 15-β (6) (227) (161)

CYP2C19 N-hydroxylation, oxidation Endoplasmic reticulum Diazepam, hexobarbital, S-mephenytoin,
omeprazole, pentamidine, propranolol,
(R)-warfarin, (S)-fluoxetine, thalidomide

(220) (8) (78)

CYP2D6 Oxidation Endoplasmic reticulum
and mitochondria

Codeine, debrisoquine, dextromethorphan,
haloperidol, metoprolol, paroxetine,
phenothiazines, propanolol, risperidone,
sertraline, tricyclic antidepressants

(6) (220)

CYP2E1 8-hydroxylation, oxidation Endoplasmic reticulum
and mitochondria

Acetaminophen, volatile anaesthetics (enflurane,
isoflurane, halothane), ethanol, industrial
solvents and chemicals (carbon tetrachloride,
vinyl chloride, nitrosamines), ketone bodies,
glycerol, and different fatty acids

(6) (196) (111)

CYP3A4 8-hydroxylation, oxidation Endoplasmic reticulum Amiodarone, clarithromycin, cyclosporine,
erythromycin, lovastatin, nifedipine, tamoxifen,
terfenadine, verapamil, (R)-warfarin
N-desmethyldiltiazem

(196) (220) (78)

UGT1A1 Glucuronidation Endoplasmic reticulum Bilirubin, ethynylestradiol (position 3-OH),
acetaminophen

(14) (33) (234)
(50) (143)

UGT1A5 Glucuronidation Endoplasmic reticulum Bilirubin (221)

UGT1A6 Glucuronidation Endoplasmic reticulum Phenols (e.g., acetaminophen) (221)

UGT2B1 Glucuronidation Endoplasmic reticulum Testosterone, ethynylestradiol (position 17-β) (209) (50) (143)

UGT2B3 Glucuronidation Endoplasmic reticulum Testosterone, estradiol (position 17-β) (209) (50) (143)

UGT2B15 Glucuronidation Endoplasmic reticulum (S)-oxazepam and lorazepam, plant derived
phenols, anthroquinones, flavonoids

(130)

UGT2B17 Glucuronidation Endoplasmic reticulum C19 steroids (dihydrotestosterone, androsterone),
androstane-3-alpha

(10)

GSTA Glutathione conjugation Cytosol Leukotriene A4, prostaglandin H2,
1-chloro-2,4-dinitrobenzene, styrene oxide

(80)

GSTM Glutathione conjugation Cytosol Leukotriene A4, prostaglandin H2,
1-chloro-2,4-dinitrobenzene,
1,2-dichloro-4-nitrobenzene

(80)

GSTP Glutathione conjugation Cytosol Leukotriene A4, prostaglandin H2,
1-chloro-2,4-dinitrobenzene, ethacrynic acid

(80)

SULT1A1 Sulfate conjugation Cytosol Simple phenols (p-nitrophenol), minoxidil,
acetaminophen

(54) (231) (59)

SULT1C1 Sulfate conjugation Cytosol N-hydroxy-2-acetylaminofluorene (81)

SULT1E1 Sulfate conjugation Cytosol Estrogens (estradiol, estrone) (54) (231) (59)

SULT2A1 Sulfate conjugation Cytosol Dehydroepiandrosterone sulfate,
hydroxymethylpyrene, raloxifene, bile acids

(54) (231) (59)

SULT3A1 Sulfate conjugation Cytosol 1-Naphthylamine, 1-Naphthol (214)
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zeta). Each enzyme is a dimer of individual subunits desig-
nated with a letter and Arabic numerals (e.g., A1; A2, etc. for
alpha class) (80).

Cytosolic sulfotransferases (SULTs) are a superfamily of
enzymes that catalyze the conjugation of sulfate donated by
3′-phosphoadenosine 5′-phosphosulphate (PAPS) with xeno-
biotics or endogenous compounds (hormones and neurotrans-
mitters). To date, four human SULT families have been iden-
tified: SULT1, which is divided into 4 subfamilies, 1A1-4,
1B1, 1C1-3, and 1E1 (equivalent to rat 1E2); SULT2, which
is divided into 2 subfamilies, 2A and 2B; and SULT4 and
SULT6 (134). SULT3 family has only been found in mouse
and rabbit (59).

Table 1 presents the most common substrates for each of
these conjugation enzymes, in addition to their function and
subcellular localization.

Transport Systems
Basolateral transporters
Among the proteins localized to the basolateral membrane
of the hepatocyte are found transporters that are responsible
for the uptake of several compounds from blood as well as
transporters that function as export pumps.

The basolateral uptake transporters can be classi-
fied as Na+-dependent and Na+-independent (175). Na+-
taurocholate cotransporting polypeptide (rodents Ntcp, Solute
carrier family: Slc10a1; human NTCP, SLC10a1) is exclu-
sively expressed in hepatocytes and is the major transporter
responsible for the uptake of bile salts from plasma (76).
The organic anion transporting polypeptides (rodents, Oatps;
human, OATPs, and SLC gene family SLC21/SLCO) con-
stitute an important superfamily of proteins that are respon-
sible for facilitating the hepatocellular uptake of substrates
from the portal circulation. A function of some of its mem-
bers consists of exchanging anions with reduced GSH or
bicarbonate (153). Moreover, some Oatps/OATPs, may medi-
ate a bidirectional transport when the substrate reaches a
sufficiently high intracellular concentration, functioning as
an extrusion system when necessary (131). Although most
Oatps/OATPs are expressed in a wide variety of tissues,
including the brain, heart, intestine, kidney, lung, placenta,
and testis, some Oatps/OATPs are selectively expressed in
rodent and human liver (217). These liver-specific trans-
porters are involved in the Na+-independent hepatic transport
of bile salts and nonbile salt organic anions from blood to bile.
Included in the liver-specific subfamily of Oatps/OATPs are
human OATP1B3 [previously named OATP-8 (SLC21A8)],
and its rat and mouse ortholog Oatp1b2 [previously called
Oatp-4 (Slc21a10)] (75). Oatp1b2 seems to be the most abun-
dantly expressed organic anion transporting polypeptide in
rat liver (132). A complete list of Oatp/OATP substrates is
presented in Hagenbuch and Meier (74, 75) and Tirona and
Kim (222). Among the Oatps expressed in rodent liver are
Oatp1 (Oatp1a1, Slc21a1), Oatp2 (Oatp1a4, Slc21a5), and

Oatp4 (Oatp1b2, Slc21a10), involved in the uptake of a wide
variety of structurally unrelated amphipathic organic com-
pounds from sinusoidal blood and representing multispecific
transport systems with distinct but partially overlapping trans-
port specificities (62). Organic Anion Transporters (OATs) are
members of the Solute Carrier Family 22 (SLC22) (93, 114).
Their primary localization is in kidney, but selected OATs
are also present in liver, where OAT2/SLC22A7 is the pre-
dominant form, and OAT3/SLC22A8 is expressed to a lesser
extent (21). Similar to other organic anion transporters, OATs
have broad substrate specificity and the ability to exchange
extracellular for intracellular organic anions.

The basolateral eflux transporters belong to the ATP-
binding cassette (ABC) superfamily, exhibit similar struc-
tural and functional characteristics (105, 116) and com-
prise Multidrug resistance-asociated proteins 3, 4, 5,
and 6 (Mrp3/MRP3, Abcc3/ABCC3; Mrp4/MRP4, Abcc4/
ABCC4; Mrp5/MRP5, Abcc5/ABCC5; and Mrp6/MRP6,
Abcc6/ABCC6). These transporters act coordinately with
Phase II conjugating enzymes to increase the excretion of
a wide range of modified drugs and other conjugated metabo-
lites from cells (106, 116, 182).

Aquaporin-9 (AQP9) is a broad-selectivity neutral solute
channel that facilitates the hepatic uptake of glycerol (126). In
the liver, AQP9 protein expression is predominantly confined
to the basolateral plasma membrane domain in perivenous
hepatocytes (126).

Table 2 shows relevant substrates of major hepatic baso-
lateral transporters, as well as their function.

Canalicular transporters
Transporters localized to the canalicular/apical membrane of
hepatocytes participate in bile formation. Bile is formed by
an osmotic process driven by active secretion into the bile
canaliculus of solutes across the hepatocyte apical membrane,
followed by passive in-flow of water and electrolytes (152).
The secretion of different compounds across the canalicular
membrane is also essential for the elimination of endo- and
xenobiotics from the body, including drugs. The key proteins
which are involved in this process are members of the ABC
superfamily and function as ATP-dependent unidirectional
export pumps (13). Among these transporters are: the bile salt
export pump (Bsep/BSEP, Abcb11/ABCB11) which medi-
ates the efflux of bile salts (122), the Multidrug resistance-
associated protein 2 (Mrp2/MRP2, Abcc2/ABCC2) with sub-
strates including numerous anions conjugated with GSH, sul-
fate, and glucuronic acid, as well as oxidized and reduced
GSH (96), P-glycoprotein (P-gp/P-GP, Abcb1/ABCB1),
which transports a wide range of xenobiotics (210), the breast
cancer resistance protein (Bcrp/BCRP, Abcg2/ABCG2)
preferentially recognizing sulfate conjugates as substrates
(212), and Abcg5/8/ABCG5/8 that mediates the secretion
of sterols (240).

In 2005, mammalian multidrug and toxin extrusion
(MATE) was identified as an orthologue of the bacterial
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Table 2 Function, Specificity, and Membrane Domain Localization of Major Hepatic Transporters

Substrates

Transporter Function
Subcellular
localization Endogenous Exogenous References

NTCP
(SLC10A1)

Uptake Basolateral Conjugated and unconjugated
bile salts

Rosuvastatin, micafungin (73) (84) (239)

OATP1
(OATP1A1)

Uptake Basolateral Estrone-3-sulfate
dehydroepiandrosterone
sulfate, estradiol-17 β
glucuronide

Statins, antidiabetic drugs,
Chemotherapeutic agents

(51) (16) (121)
(67)

OATP2
(OATP1A4)

Uptake Basolateral estradiol-17 β glucuronide Pitavastatin,
dehydroepiandrosterone sulfate

(171)

OATP4
(OATP1B2)

Uptake Basolateral estradiol-17 β glucuronide
dehydryepiandrosterone-3-
sulfate

Pravastatin, rifampin
bromosulfophthalein,
microcystin, phalloidin

(237) (241)

OATP1B3
(SLC21A8)

Uptake Basolateral estradiol-17 β glucuronide,
dehydroepiandrosterone

Rifampin, cefadroxil,
methotrexate, bosentan,
digoxin, rosuvastatin, paclitaxel
and the gastrointestinal peptide
hormone cholecystokinin,
octapeptide, fexofenadine,
hydrochloride, microcystin, and
phalloidin

(102) (67) (199)
(74) (75) (222)

OAT2
(SLC22A7)

Uptake Basolateral Nucleobases, nucleosides and
nucleotides, L-ascorbate, ES,
glutamate, orotate,
prostaglandins E2 and F2α,
urate

Bumetanide, pravastatin,
benzylpenicillin, cimetidine,
erythromycin,
2′,3′-dideoxycytidine,
methotrexate, zidovudine

(211) (53) (113)
(191) (55) (43)

OAT3
(SLC22A8)

Uptake Basolateral Second messengers cAMP and
cGMP, cholate, taurocholate,
cortisol,
dehydroepiandrosterone, and
estrone-3-sulfate and the
prostaglandins E2 and F2α

OAT3 exhibits a preference for
compounds with a higher
number of hydrogen bond
donors

(21)

MRP1
(ABCC1)

Efflux Basolateral Glutathione, estradiol-17
beta-glucuronide, bilirubin
glucuronides, leukotriene C4

Methotrexate, doxorubicin,
vincristine, chlorambucil,
cyclophosphamide, flutamide,
etoposide, aflatoxin B1

(205) (138)

MRP3
(ABCC3)

Efflux Basolateral Di and monovalent bile salts,
conjugated bile acids, bilirubin
glucuronides, estradiol-17
beta-glucuronide, leukotriene
C4

Methotrexate, paracetamol (205)

MRP4
(ABCC4)

Efflux Basolateral Conjugated bile acids;
estradiol-17 beta-glucuronide,
leukotrienes, cyclic nucleotides,
prostanoides, bile salts

Zidovudine monophosphate,
para-aminohippurate,
antimetabolites

(205)

MRP5
(ABCC5)

Efflux Basolateral Cyclic nucleotides Methotrexate, antimetabolites (205)

MRP6
(ABCC6)

Efflux Basolateral Unidentified Unidentified (172) (117)

AQP9 Water
channel

Basolateral Water, glycerol Unknown (147)

BCRP
(ABCG2)

Efflux Canalicular Estrone 3-sulfate, estradiol
3-sulfate

2-amino-1-methyl-6-
phenylimidazo(4,5-b)pyridine,
genistein, nitrofurantoin,
cimetidine, topotecan

(212) (92) (183)
(127) (155)

P-GP (ABCB1) Efflux Canalicular Steroids, hydrophobic cationic
compounds

Paclitaxel, doxorubicin, vincristine,
antracyclines,
epipodophyllotoxins, topotecan

(210) (195)
(205)

(Continued)
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Table 2 (Continued)

Substrates

Transporter Function
Subcellular
localization Endogenous Exogenous References

MRP2
(ABCC2)

Efflux Canalicular Divalent bile salts, glutathione,
glutathione conjugates, bilirubin
mono and diglucuronides,
estradiol-17 beta-glucuronide,
leukotriene C4

Methotrexate, vinblastine,
etoposide, vincristine, cisplatin,
doxorubicin, chlorambucil,
cyclophosphamide,
arsenic-glutathione complexes

(96) (205)

BSEP
(ABCB11)

Efflux Canalicular Taurine and glycine conjugates of
cholic and chenodeoxycholic
acids. deoxycholic and
ursodeoxycholic acids and its
conjugates

Vinblastine, taxol, calcein (13) (44) (120)

AQP8 Water
channel

Canalicular
membrane
and
mitochondria

Water, ammonia, hydrogen
peroxide

Unknown (147)

ABCG5/8 Efflux Canalicular Sterols Unknown (240) (154)
(109)

MATE1 Efflux Canalicular Estrone sulfate Cephalexin, cephradine,
tetraethylammonium,
1-methyl-4-phenylpyridinium,
cimetidine, metformin,
guanidine, procainamide,
topotecan, acyclovir, ganciclovir

(163)

MATE family (173). Human MATE1, encoded by the
SLC47A1 gene, is primarily expressed in the kidney and
liver, where it is localized to the luminal membranes of
the renal tubules and hepatocytes. MATE1 mediates the
H+-coupled electroneutral exchange of tetraethylammonium
and 1-methyl-4-phenylpyridinium. These compounds are
typical substrates of renal and hepatic H+-coupled organic
cation antiporters (163).

Aquaporin-8 (AQP8), localized to canalicular mem-
branes, modulates membrane water permeability providing a
molecular mechanism for the osmotically coupled transport of
solute and water during bile formation. There is experimental
evidence suggesting that defective hepatocyte AQP8 expres-
sion leads to alterations in normal bile physiology (147).

Table 2 shows relevant substrates of major hepatic canalic-
ular transporters, as well as their function.

Gender-related Differences and
Hormonal Regulation of
Biotransformation Systems
Observed sex differences in CYPs can be attributed to changes
in the regulation of their expression and activity, most likely
through endogenous hormonal influences. In humans, phar-
macokinetic analyses reveal sex-based differences in drug
plasma concentration that are associated with gender differ-
ences in hepatic enzyme-specific expression. In rats, hepatic
P450 genes are differentially activated during development.

This process is regulated by the physiological stimulus of
growth hormone (GH). The secretory pattern of GH is in turn
determined by steroid hormones. Male and female rats differ
in their GH secretory patterns. Males have a pulsatile secre-
tion with high peaks and low troughs, while females have a
constant and higher level of secretion than males (242). GH
sexually dimorphic secretion occurs in most species, includ-
ing mouse and man. However, differences are not as marked
as in the rat (94, 144, 235).

Interspecies and experimental model variations
Table 3 summarizes the relevant more recent informa-
tion found in the literature regarding sex differences in
major CYP isoforms. It can be seen that expression and
activity of major hepatic isoforms of CYP differ between
humans and other animal species, particularly from rodents.
Moreover, for a single species, differences are also evi-
dent between activity and expression measures, and even
between in vitro assessment of activity and in vivo deter-
mination of drug clearance. For example, human CYP3A4
activity determined in isolated hepatocytes is higher in
females (177), and does not correlate with expression studies,
where no differences were reported (232). Also, CYP2C19-
mediated metabolism determined in vivo shows discrep-
ancies since, depending on the substrate, women present
higher (148), lower (87), or similar (101, 124, 181) activ-
ities when compared to men. For some specific isoforms,
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Table 3 Gender-Related Differences in Major Hepatic Phase I and Phase II Biotransformation Systems

Isoform Experimental system Species
Gender related
differences References

CYP1A2 Activity Human ♀ < ♂ (180)
Clearance of model substrates Human ♀ < ♂ (99) (12) (174) (179)
Theophylline pharmacokinetic Human ♀ > ♂ (166)
Activity Human ♀ < ♂ (177)
Activity Pig and minipig ♀ > ♂ (204)
mRNA expression Mouse ♀ > ♂ (56)

CYP2A6 Activity and protein expression Human ♀ > ♂ (203)

CYP2B1 Activity, protein and mRNA
expression

Rat ♀ < ♂ (4)

CYP2B6 Protein expression Human ♀ > ♂ (125)

CYP2C9 Specific substrates
pharmacokinetics/serum
concentration

Human ♀ = ♂ (101) (215) (17) (151)

CYP2C11 Protein expression Rat (male specific) ♀ < ♂ (176) (229)

CYP2C12 Protein expression Rat (female specific) ♀ > ♂ (176) (52, 229) (49)

CYP2C19 Clearance of model substrates Human ♀ = ♂ (124) (101) (181) (77)
Clearance of model substrates Human ♀ > ♂ (148)
Clearance of model substrates Human ♀ < ♂ (87)

CYP2D6 Activity Human ♀ = ♂ (148) (12)
Oral desipramine clearance Human ♀ < ♂ (3)
Clomipramine metabolism Human ♀ < ♂ (64)
Racemic propranolol metabolism Human ♀ < ♂ (65) (224)
Serum concentrations of sertraline Human ♀ < ♂ (123)
Activity Human ♀ > ♂ (123) (77)

CYP2E1 Chlorzoxazone metabolism Human ♀ ≤ ♂ (107) (169) (141)
Activity Pigs and minipig ♀ > ♂ (204)

CYP3A4 Clearance/pharmacokinetics of
model substrates

Human ♀ > ♂ (119) (118) (70) (129)
(192) (89)

Clearance/pharmacokinetics of
model substrates

Human ♀ = ♂ (86)

Activity (testosterone
6β-hydroxylation)

Human (hepatocytes) ♀ > ♂ (177)

Activity (testosterone
6β-hydroxylation)

Human (microsomes) ♀ = ♂ (177)

Erythromycin breath test Human ♀ > ♂ (226) (89)
Activity and protein expression Hamster ♀ > ♂ (159)
Activity and protein expression Human ♀ = ♂ (193) (198) (63)
mRNA and protein expression Human ♀ > ♂ (218) (236)
mRNA expression Human ♀ = ♂ (232)

UGT1A1 Activity Rat ♀ > ♂ (164)
mRNA expression Rat ♀ = ♂ (197)
mRNA expression Mouse ♀ > ♂ (56)

UGT1A5 mRNA expression Mouse and rat ♀ > ♂ (56) (197)

UGT1A6 mRNA expression Mouse ♀ < ♂ (56)
Activity and protein expression Rat ♀ < ♂ (29) (30)
mRNA expression Rat ♀ = ♂ (197)
Activity and protein expression Human ♀ < ♂ (33)
Paracetamol metabolism Human ♀ ≤ ♂ (156) (12) (1)

UGT2B1 mRNA expression Rat ♀ > ♂ (216) (209) (197)
mRNA expression Mouse ♀ < ♂ (19) (56)

UGT2B2 mRNA expression Rat ♀ > ♂ (197)

UGT2B3 mRNA expression Rat ♀ = ♂ (197)

UGT2B15 Activity Human ♀ < ♂ (34) (32)

UGT2B17 Activity and mRNA Human ♀ < ♂ (58)

(Continued)
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Table 3 (Continued)

Isoform Experimental system Species
Gender related
differences References

GSTA mRNA expression Mouse (A1 subunit) ♀ < ♂ (56)
Protein and mRNA expression Rat (A1 subunit) ♀ < ♂ (207) (31)
Protein and mRNA expression Rat ♀ > ♂ (184)
Protein and mRNA expression Mouse ♀ > ♂ (158)
Protein expression Mouse (A1, A2 subunits) ♀ = ♂ (37)

GSTM Protein and mRNA expression Rat (M1, M2 subunits) ♀ < ♂ (90) (207) (31)
Activity and protein expression Mouse ♀ = ♂ (184) (158)
mRNA expression Mouse (M1 subunit) ♀ < ♂ (56)
mRNA expression Mouse (M2 subunit) ♀ > ♂ (56)
Protein expression Mouse (M1, M2

subunits)
♀ = ♂ (37)

GSTP Activity and/or mRNA and
protein expression

Mouse ♀ < ♂ (150) (72) (158)
(37) (56) (110)

SULT1A1 mRNA expression Mouse ♀ > ♂ (56) (5)
mRNA expression Rat ♀ < ♂ (108)

SULT1C1 mRNA expression Mouse and rat ♀ < ♂ (108) (5)

SULT1E2 mRNA expression Rat ♀ < ♂ (108)

SULT3A1 mRNA expression Mouse ♀ > ♂ (56) (5)

only partial studies are available, for example, in vivo clear-
ance assessment or in vitro activity determination are avail-
able, with no data on isoform expression, or vice versa.

Link between gender differences and
hormone effects
As shown in Table 3, CYP2A6 and CYP3A4 exhibit an over-
all association between activity and expression, with higher
values for women. Gender-associated differences in these
two specific isoforms could be associated with a positive
effect of estradiol on the respective mRNAs (see Table 4).
CYP1A2 presents higher activity in women, whereas the
opposite occurs with CYP2D6, and no differences are appar-
ent for CYP2C9 or CYP2C19. Consistent with these find-
ings, oral contraceptives exert a positive effect on clearance
of substrates of CYP1A2, whereas oral contraceptives nega-
tively regulate CYP2C19, and no conclusive data are found for
CYP2D6 (Table 4). It is not possible to generalize regarding
the association between gender-dependent differences in CYP
expression/activity and hormonal regulation for most of CYP
isoforms because of the scarce information and because par-
allel studies are not usually performed by the same authors.
Additionally, different substrates are used in gender versus
hormonal studies by different authors, precluding confident
correlations.

Among all CYPs found in liver and presented in Table 3,
CYP3A4 is the most abundant isoform and is responsible
for metabolizing more than 50% of known therapeutic drugs.
As mentioned above, clearance of drugs biotransformed by
CYP3A4 is consistently higher in women than men. Initially,
it was assumed that this difference was a consequence of

higher CYP3A4 protein expression in women compared to
men. However, controversial reports are found in the litera-
ture. In some cases, the evaluations of CYP3A4 protein con-
tent and activity from human hepatic microsomes report no
significant sex-related differences between women and men
(63,193,198). Only one study clearly reports higher CYP3A4
activity in microsomes from women versus men, using ery-
thromycin as substrate (89). Cummins et al. (35) hypothe-
sized on the observed discrepancy in CYP3A4 activity eval-
uated in vitro versus in vivo. For drugs that are substrates of
both CYP3A4 and P-gp, the different level of P-gp activity
between sexes could tentatively explain this discrepancy, since
women express a lower level of hepatic P-gp than men (194).
When a drug (administered i.v. or i.m.) reaches the liver, the
chances of being metabolized by CYP3A4 increases as P-gp
activity decreases, which is the case in women. A greater
extent of metabolism, even though there is no difference in
enzyme expression/activity, then results in greater elimination
of the metabolite via an alternative transporter. Interestingly,
for drugs such as midazolam that are substrates for CYP3A4
but not for P-gp, no significant sex differences in clearance fol-
lowing intramuscular administration were reported (86). The
controversy remains unsolved, as a more recent study reports
twofold higher values for CYP3A4 mRNA and protein expres-
sion in female versus male donors with no differences in the
expression of P-gp (236). No conclusive studies are available
on whether this isoform is regulated by sex hormones, except
for a very recent report demonstrating that estradiol posi-
tively modulates CYP3A4 mRNA expression (46), consistent
with higher activities in women. CYP3A4 is just one example
that illustrates how difficult it is to predict whether a specific
drug is metabolized at different rates in women versus men
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Table 4 Hormonal Regulation of Major Hepatic Phase I and Phase II Biotransformation Systems

Enzyme Experimental system Species Hormones Regulation References

CYP1A2 Clinical pharmacokinetics Human Oral contraceptives Positive (156) (99) (104)
mRNA and protein expression

and activity
Rat (female) Estradiol Positive (45)

CYP2A6 mRNA expression Human (ER-positive MCF-7 and
HepG2 cells)

Estrogens Positive (83)

mRNA expression Human (primary human
hepatocytes)

Estradiol, progesterone Positive (46)

CYP2B6 mRNA expression and activity Human (primary human
hepatocytes)

Estradiol Positive (115)

CYP2C9 mRNA expression Human Oral contraceptives,
estradiol, ethynylestradiol

Negative (190) (165)

Activity Primary human hepatocytes Estradiol Positive (46)

CYP2C11
(male
specific)

Protein expression Rat and mouse GH (male pattern) Positive (160) (103) (229)
Protein expression Rat (male and female) Testosterone Positive (22) (9)
Protein expression Rat (male and female) Estradiol Negative (22) (9)
Protein expression Rat (female) Oxandrolone Positive (225)
Activity and protein expression Rat (adult male castration) Lack of testosterone Negative (128) (228)

CYP2C12
(female
specific)

Protein expression Rat and mouse GH (female pattern) Positive (103)
mRNA, protein expression

and activity
Rat (female) Estradiol Positive (45)

mRNA expression Rat Estradiol Positive (40)

CYP2C19 Activity Human Oral contraceptives Negative (124) (77)

CYP2D6 Activity Human Oral contraceptives Uncertain (123)

CYP2E1 Activity Human (primary human
hepatocytes)

Estradiol Positive (46)

CYP3A4 mRNA expression Human (primary human
hepatocytes)

Estradiol, progesterone Positive (46)

Model substrate
pharmacokinetic

Human Oral contraceptives
(ethynylestradiol and
norgestrel, 10 days)

No effect (11)

UGT1A1 Activity and protein expression Rat Testosterone No effect (208)
mRNA expression Mouse (hypophysectomized) Testosterone No effect (18)
mRNA expression Mouse (hypophysectomized) Estradiol No effect (18)
mRNA expression Mouse (male and female,

gonadectomized)
Testosterone Negative (18)

mRNA expression Mouse (male and female,
gonadectomized)

Estradiol Negative (18)

UGT1A5 mRNA expression Mouse (hypophysectomized) Testosterone Positive (18)
mRNA expression Mouse (hypophysectomized) Estradiol Positive (18)
mRNA expression Mouse (gonadectomized male) Testosterone No effect (18)
mRNA expression Mouse (gonadectomized female) Testosterone Neative (18)
mRNA expression Mouse (gonadectomized male

and female)
Estradiol No effect (18)

UGT1A6 Activity Rat Testosterone Positive (29) (30)
Paracetamol metabolic

clearance
Human Oral contraceptives Positive (156) (2)

UGT2B1 mRNA and protein expression Rat Testosterone Positive (209) (133)
mRNA expression Rat Testosterone Positive (18)
mRNA expression Mouse (hypophysectomized) Testosterone No effect (18)
mRNA expression Mouse (hypophysectomized) Estradiol No effect (18)
mRNA expression Mouse (gonadectomized male

and female)
Testosterone Positive (18)

mRNA expression Mouse (gonadectomized male
and female)

Estradiol No effect (18)

UGT2B3 mRNA and protein expression Rat Testosterone Positive (209)
mRNA and protein expression Rat GH Negative (209)
mRNA expression Rat Testosterone Positive (133)
mRNA expression Rat GH Negative (133)

(Continued)
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Table 4 (Continued)

Enzyme Experimental system Species Hormones Regulation References

UGT2B15 mRNA expression Human (primary human
hepatocytes)

Estradiol Positive (115)

GSTA mRNA expression Rat (male; A1 subunit) GH (female pattern) Negative (207)
Activity Rat (co-culture of hepatocytes

and biliary cells)
Estradiol Negative (31)

Activity Rat (co-culture of hepatocytes
and biliary cells)

Testosterone and
5α-dihydrotestosterone

No effect (31)

Protein expression Rat (A1, A2 subunits) Testosterone Positive (31)
Protein expression Rat (A2 subunit) Estradiol Positive (31)
mRNA expression Human (primary human

hepatocytes, A3 subunit)
Estradiol Positive (115)

GSTM mRNA expression Rat (male; M1, M2 subunits) GH (female pattern) Negative (207)
Activity Rat Estradiol Negative (31)
Protein expression Rat (co-culture of hepatocytes

and biliary cells, M1, M2
subunits)

Testosterone and
5α-dihydrotestosterone

No effect (31)

GSTP Protein expression Rat (P1 subunit) Testosterone and
5α-dihydrotestosterone

No effect (31)

Protein expression Rat (P1 subunit) Estradiol Negative (31)

SULT1A1 mRNA expression Rat (hypophysectomized male) GH (male and female pattern) No effect (108)
mRNA expression Rat (hypophysectomized female) Androgen Negative (5)
mRNA expression Rat (hypophysectomized female) GH (male pattern) Negative (5)
mRNA expression Mouse Estrogens Positive (5)
mRNA expression Mouse GH (female pattern) Positive (5)

SULT1C1 mRNA expression Rat (hypophysectomized male
and female)

GH (male pattern) Positive (108)

mRNA expression Rat (hypophysectomized male
and female)

GH (female pattern) No effect (108)

mRNA expression Mouse Androgens Positive (5)

SULT1E2 mRNA expression Rat (hypophysectomized male) GH (male pattern) Negative (108)

SULT2A1 mRNA expression Human (primary human
hepatocytes)

Estradiol Positive (115)

SULT3A1 mRNA expression Mouse Androgens Negative (5)
mRNA expression Mouse Estrogens Positive (5)
mRNA expression Mouse GH (female pattern) Positive (5)

GH: growth hormone.

and the underlying association with hormonal regulation. The
preliminary assumption that women are more susceptible to
drug effects than men should not be generalized.

Numerous factors are known to modify human UGT activ-
ity in vivo, including age, diet, genetic polymorphisms, dis-
ease states, and hormonal effects, among others (48, 157).
Gender differences in drug conjugation are generally associ-
ated with gender-divergent expression of UGT isoenzymes.
For example, higher bisphenol A glucuronidation in female
versus male rats was correlated with the female predominant
mRNA expression of one of the isoforms primarily responsi-
ble for its conjugation, UGT2B1 (216). Additionally, some
studies suggest that the lipid composition of microsomal
membrane modulates UGT activity. Thus, gender-dependent
differences in UGT activity could be attributed to differences
in both the amount and functional state of the enzyme (28).
Table 3 compiles the sex differences observed in content
or activity of most representative isoforms of UGT. Data in

Table 4 also illustrate the complexity of making associations
between gender-dependent differences and hormonal regula-
tion, since in most of the cases, testosterone and estrogens
exert similar effects, either positive, negative or absent. Pre-
dictions regarding hormonal effects and gender differences
on glucuronic acid conjugation of a specific drug should be
cautiously done, with the data in Tables 3 and 4 being only
illustrative of the issues.

The expression of GSTs is also subject to sex-specific
regulation. Limited studies have also demonstrated a role for
GH in sex-dependent expression in the rat (207, 230). Sex
hormones and GH secretory pattern (male or female) are sim-
ilarly responsible for the sex differences in SULTs activities
observed in rats (135, 136). The study of sex differences and
regulation of rodent SULTs has expanded our understanding
of the transcriptional regulation of this family of enzymes.
Tables 3 and 4 summarize the most relevant information about
sex differences and hormonal regulation of GST classes and
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SULTs. Unfortunately, information available on these two
enzyme systems is mostly restricted to rodents.

Gender-related Differences and
Hormonal Regulation of Transporters
Hepatic transport proteins of the SLC and ABC family are
expressed and regulated in a gender-specific manner. These
findings may partly explain the well-known sex differences
in hepatic disposition of their substrates, for example, organic
anions (185). Table 5 summarizes the gender-associated dif-
ferences in the expression of basolateral and canalicular trans-

porters. Gender-related differences in transporter mRNA and
protein expression represent an important mechanism for the
regulation of hepatic transport processes. Furthermore, female
sex hormones, mainly estradiol, and male sex hormones, pri-
marily testosterone, appear to be involved in these gender-
related differences in transport either directly or indirectly
(162). Table 6 summarizes the effect of sex hormones on
expression and activity of hepatic transporters.

Interspecies and experimental model variations
With respect to drug transporters, differences in dimor-
phic gene expression among species are frequently observed

Table 5 Gender-Related Differences in Major Hepatic Transport Systems

Transporter Parameter Species
Gender-related
differences References

NTCP (SLC10A1) Protein and mRNA expression Rat ♀ < ♂ (200) (201)
Protein and mRNA expression Mouse ♀ > ♂ (41)
Protein and mRNA expression Human ♀ = ♂ (41)

OATP1 (OATP1A1) Protein and mRNA expression Rat ♀ = ♂ (132) (185) (42)
mRNA expression Mouse ♀ < ♂ (56)

OATP2 (OATP1A4) Protein expression Rat ♀ < ♂ (185) (42)
mRNA expression Mouse ♀ > ♂ (56)
mRNA expression Rat ♀ = ♂ (132)
Protein and mRNA expression Rat (40-45 days) ♀ > ♂ (71)

OATP4 (OATP1B2) Protein expression Rat ♀ = ♂ (185) (132)
mRNA expression Rat ♀ = ♂ (132)
mRNA expression Rat ♀ > ♂ (185)
mRNA expression Mouse ♀ = ♂ (56)
mRNA expression Mouse ♀ > ♂ (241)

OAT2 (SLC22A7) mRNA expression Rat ♀ = ♂ (112)

OAT3 (SLC22A8) mRNA expression Rat ♀ < ♂ (112) (20)

MRP1 (ABCC1) mRNA expression Mouse ♀ < ♂ (146)

MRP3 (ABCC3) Protein and mRNA expression Rat ♀ > ♂ (185)
Protein and mRNA expression Rat ♀ = ♂ (201)
mRNA expression Mouse ♀ > ♂ (146) (56)

MRP4 (ABCC4) mRNA expression Mouse ♀ > ♂ (146) (56)
mRNA expression Rat ♀ = ♂ (140) (38)

MRP5 (ABCC5) mRNA expression Mouse and rat ♀ = ♂ (140) (146)

MRP6 (ABCC6) mRNA expression Mouse and rat ♀ = ♂ (140) (146)

AQP9 Protein and mRNA expression Rat ♀ < ♂ (168) (126)

BCRP (ABCG2) Protein, mRNA and
pharmacokinetic studies

Human and mouse ♀ < ♂ (155)

mRNA expression Mouse ♀ > ♂ (56) (219)
mRNA expression Rat ♀ = ♂ (219)

P-GP (ABCB1) Protein and mRNA expression Rat ♀ > ♂ (57) (189)
mRNA expression Rat ♀ = ♂ (140)
Protein expression Human ♀ < ♂ (194)

MRP2 (ABCC2) Protein and mRNA expression Rat ♀ > ♂ (185) (202) (98)
mRNA expression Mouse ♀ = ♂ (146)

BSEP (ABCB11) Protein and mRNA Rat and mouse ♀ = ♂ (201) (41)
mRNA expression Human ♀ = ♂ (41)

ABCG5/8 mRNA expression Rat and mouse ♀ = ♂ (82) (140) (56)
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Table 6 Hormonal Regulation of Major Hepatic Transporters

Transporter Parameter
Species/experimental
system Hormones Regulation References

NTCP
(SLC10A1)

mRNA expression Rat (ovariectomized) Estradiol No effect (but negative
on ntcp induced by
Prolactin)

(26)

mRNA expression Rat (male) Estradiol Negative (201)
mRNA expression Rat (female) Estradiol No effect (201)
mRNA and protein expression Rat Prolactin Positive (26) (25)

(60) (61)
mRNA, protein expression

and Na+-dependent
taurocholate uptake in
basolateral vesicles

Rat Ethynylestradiol Negative (15) (62)

mRNA, protein expression
and Na+-dependent
taurocholate uptake in
basolateral vesicles

Rat (hypophysectomized) Ethynylestradiol No effect (201)

mRNA expression Rat (In vivo and primary
culture)

GH Positive (25) (201)

OATP1
(OATP1A1)

Protein expression Rat DHEA Negative (185)
mRNA and protein expression Rat Ethynylestradiol Negative (62)
mRNA expression Mouse (gonadectomized) Testosterone Positive (42)
mRNA expression Mouse (hypophysectomized) Testosterone No effect (42)
mRNA expression Mouse (hypophysectomized) GH (male pattern) Positive (42)

OATP2
(OATP1A4)

Protein expression Rat DHEA Negative (185)
mRNA and protein expression Rat Ethynylestradiol Negative (62)
mRNA expression Mouse (gonadectomized) Testosterone Negative (42)
mRNA expression Rat (hypophysectomized) Testosterone No effect (42)
mRNA expression Mouse (hypophysectomized) GH (male pattern) Negative (42)

OATP4
(OATP1B2)

Protein and mRNA expression Rat DHEA Negative (185)
mRNA and protein expression Rat Ethynylestradiol Negative (62)
mRNA expression Rat (primary culture) Prolactin Positive (237)
mRNA expression Rat (primary culture) GH Positive (237)

OATP1B3
(SLC21A8)

HepG2 promoter assay Human Prolactin Positive (237)
HepG2 promoter assay Human GH Positive (237)

OAT3
(SLC22A8)

mRNA expression Rat Testosterone Positive (112)
mRNA expression Rat GH (female pattern) Negative (20)

MRP3
(ABCC3)

Protein and mRNA expression Rat DHEA Positive (185)
Protein and mRNA expression Rat Ethynylestradiol Positive (100) (188)

(187)

MRP4
(ABCC4)

Activity HEK293 cells (human) Progesterone Negative (233)
mRNA expression Mouse GH (male pattern) Negative (145)

AQP9 mRNA and protein expression WIF B (rat hepatoma and
human fibroblast hybrid
cell line)

Estradiol Negative (126)

BCRP
(ABCG2)

mRNA expression Mouse Testosterone Positive (219)

P-GP
(ABCB1)

Protein expression and activity Rat (female) Testosterone Negative (213)
Protein and mRNA expression Rat Ethynylestradiol No effect (223)

MRP2
(ABCC2)

Protein expression Rat (female) DHEA No effect (185)
Protein expression Rat (male) DHEA Slightly decreased (185)
Protein and mRNA expression Rat Testosterone Negative (213) (202)
mRNA expression Rat (male) Estradiol Positive (202)
mRNA and protein expression Rat Ethynylestradiol Negative (223)
mRNA and protein expression Rat GH (female pattern) Positive (202)

BSEP
(ABCB11)

mRNA and protein expression Rat Ethynylestradiol Negative (223)
mRNA and protein expression Rat (ovariectomized) Prolactin Positive (25)

AQP8 Protein and mRNA expression Rat Ethynylestradiol Negative (27)

ABCG5/8 mRNA expression Rat Ethynylestradiol Negative (100)

DHEA: Dehydroepiandrosterone.
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(20, 219). P-gp demonstrates a higher hepatic expression in
men than in women (194) but the opposite has been reported
in male versus female rats (57, 189). More recently, Wol-
bold et al. (236) reported no differences in hepatic expres-
sion of P-gp between women and men. In humans and mice,
BCRP/Bcrp is predominant in the male, whereas there are no
gender differences in rats (56,155,219). Ntcp expression does
not show a significant difference between sexes in humans,
whereas female rats present lower expression than males, and
the opposite occurs in mice (41, 200, 201). There are also
differences among species in Oatps, Mrp2, and Mrp4 pro-
tein expression. These differences are not consistent among
the different species and depend on the particular transporter,
with the relevant more recent data summarized in Table 5. In
contrast, the responses of Mrp3, Bsep, and Abcg5/8, are more
consistent among species, with no differences between sexes
for Bsep and Abcg5/8, and a trend toward higher expression
in females for Mrp3. It is important to note that there are
no reports regarding the existence of gender differences in
humans for these three specific transporters. As mentioned
above for biotransformation enzymes, this emphasizes the
importance of selecting appropriate models to evaluate the
effect of gender, and any extrapolation to humans should be
done with caution.

Link between gender differences and
hormone effects
For some transporters, sexual dimorphic expression is not due
to the direct effect of sex steroid hormones, but is controlled
by pituitary hormones. For example, Simon et al. (202) found
that expression of Mrp2, which is predominantly expressed
in female versus male rat livers, is induced by estradiol and
decreased by testosterone, and that these effects are prevented
after hypophysectomy. The authors propose that the female
pattern of GH and thyroxine are indeed responsible for the
preferential expression of Mrp2 in females. In mice, Cheng
et al. (42) found that the positive effect of testosterone on
Oatp1 expression and the negative effect on Oatp2 expression
are also indirect effects, with GH being responsible for these
effects. This is in agreement with the higher levels of Oatp1
and the lower levels of Oatp2, respectively, found in male
versus female mice (56). Mrp4 is another transporter that is
expressed predominantly in female mouse liver (56,140,146),
with the male specific pattern of GH secretion being the
underlying mechanism (145). 17 α-Ethynylestradiol admin-
istration to hypophysectomized male or female rats did not
decrease Ntcp expression, indicating that estrogens require
pituitary hormones to decrease the liver Ntcp mRNA levels
(201).

Other pituitary hormones are also linked indirectly to dif-
ferential modulation of transport systems between sexes. Pro-
lactin associated with lactation has been shown to increase
expression of Ntcp in rat liver via activation of Stat5 and two
Stat5 response elements in the Ntcp promoter (61). These
findings were confirmed in cultured primary rat hepatocytes,

and further showed that placental lactogen is also effective in
activating Stat5a and 5b in this cell model (24). Intravenous
infusion of ovariectomized rats with ovine prolactin increased
expression of both Ntcp and Bsep (25), and increased ATP-
dependent bile acid transport in canalicular membranes (137),
consistent with increased expression of Bsep. Subsequent
studies (26) demonstrated that estradiol acts via ER-α to
repress the actions of prolactin by blocking tyrosine phospho-
rylation of Stat5a and its subsequent binding to response ele-
ments in the promoter. These studies further demonstrated that
treatment of rats with estradiol at physiological concentrations
blocked the ability of prolactin to increase Ntcp expression in
vivo. Thus, cross-talk between ER-α and Stat5a in liver can
block the actions of prolactin, or placental lactogen, which
is elevated in pregnancy, to increase Ntcp expression during
this period. Stat5 response elements are also present in the
promoters of rat Oatp1b2 and human OATP1B3, so that pro-
lactin and GH were shown to increase mRNA expression of
Oatp1b2 in primary rat hepatocytes, and luciferase activity
in OATP1B3 promoter assays in HepG2 cells (237). Simon
et al. (201) proposed that the sexually dimorphic differences in
Ntcp expression, as well as the downregulating effect of estro-
gens on Ntcp, results from the female specific pattern of GH
secretion. Because estrogens also increase prolactin secretion,
and as noted above, can inhibit activation of Stat5, it is diffi-
cult to define precisely the mechanisms by which estrogens,
prolactin, GH and placental lactogens regulate gene expres-
sion. The existence of putative Stat5b response elements may
explain why gender differences exist in the expression of
mouse Ntcp, but not in mouse Bsep. In the human NTCP
promoter, there is one putative DNA binding site of Stat5b
(–2270 bp), which is absent in the human BSEP promoter
(20,41). Buist et al. (20) demonstrated that androgens increase
the level of Oat3 mRNA in male rat liver. The female GH
secretion pattern suppresses Oat3 mRNA in female liver, thus
accentuating the gender difference in Oat3 mRNA expression.

To our knowledge, there is no additional information
regarding involvement of pituitary hormones in regulating
the expression of other hepatic transporters. However, there
are reports implicating sex hormones in their sexual dimor-
phic expression. Suzuki et al (213) demonstrated that testos-
terone decreased P-gp expression in rats. This is in accordance
with the lower expression of this transporter in male rats
compared with female rats either at protein (189) or mRNA
levels (57). After castration, Bcrp mRNA levels in livers from
male mice decreased to a similar level found in female liv-
ers. Furthermore, replacement of 5α-dihydroxytestosterone in
castrated males and ovariectomized females increased Bcrp
mRNA levels. However, ovariectomy only slightly decreases
the level of Bcrp mRNA in female livers, and replacement
of 17 β-estradiol in castrated and ovariectomized mice does
not remarkably change Bcrp mRNA levels. Taken together,
these data suggest that male-predominant expression of Bcrp
in mouse liver is regulated by the inductive effect of testos-
terone (56, 155, 219). AQP9 is expressed at higher levels in
male respect to female rat livers. This fact is in accordance
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with a negative effect of estradiol on AQP9 expression in
WIFB cells (126). Regarding AQP8, it was demonstrated that
the synthetic estrogen ethynylestradiol decreases its protein
levels (27), but there are no reports about the existence of sex-
related differences in its expression. Less known is about the
existence of gender differences in MATE1 or if it is regulated
by sex hormones.

Controversy remains regarding gender-specific Oatp1b2
expression. While Li et al. 2002 were unable to find differ-
ences in Oatp1b2 mRNA expression between male and female
rats, Rost et al. (185) found higher levels in female compared
to male rats, with no differences at protein levels. These dif-
ferences cannot readily be explained and may result from the
different RNA-quantification techniques used in these studies.
Finally, there is also controversy regarding gender differences
in expression of Oatp1b2 in mice. Zhaer et al. (241) reported
higher levels of Oatp1b2 (Oatp4) mRNA in female mice ver-
sus male mice, whereas Fu et al. (56) reported comparable
levels of Oatp1b2 (Oatp4) mRNA in females and males.

Pathophysiological, Toxicological,
and Pharmacological Relevance of
Hormonal Regulation
Major factors implicated in drug disposition are drug-
metabolizing enzymes and drug transporters. Sex-related dif-
ferences in pharmacokinetics and pharmacodynamics have
usually been considered as potentially significant determi-
nants for the clinical effectiveness/toxicity of drug therapy. In
rats, the activity of UGT1A6 towards p-nitrophenol is higher
in male than in females. The administration of spironolactone
(a diuretic with inducer properties) was able to induce hepatic
UGT1A6 activity selectively in females (29). Thus, if a drug
substrate of UGT1A6 were coadministered with spironolac-
tone, then a possible occurrence of drug-drug interaction in
females, but not in males, should be considered.

It is known that 17β-estradiol and progesterone plasma
levels rise during pregnancy (36), altering the rate and extent
of hepatic drug metabolism (7, 85). The antiepileptic drug
lamotrigine is commonly used in pregnant women and is
extensively metabolized by UGT1A4 (186). Its increased
oral clearance observed in pregnancy (47) was attributed to
UGT1A4 upregulation produced by 17β-estradiol (39). Simi-
larly, an increase in oral clearance of the antihypertensive drug
labetalol was reported in pregnant women. A potential role
of progesterone in modulating labetalol elimination was pro-
posed by Jeong et al. (97), since they observed a concentration
dependent increased activity of the promoter of UGT1A1, the
main isoform of UGT involved in labetalol glucuronidation.

Doxorubicin has a delay in its disappearance from plasma
in male rats with respect to female rats (213), though its major
metabolizing enzyme, CYP2B1 (66), is expressed at higher
levels in male rats (4). However, because biotransformation
is only a minor component in doxorubicin clearance, Suzuki

et al. (213) proposed that the lower levels of Mrp2 and Pg-P
in male rats compared to female rats are rather responsible for
the lower rate in plasma disappearance. These latter examples
illustrate the complex interplay between biotransformation
and transport systems and the influence of gender that could
affect many other drugs.

Female mice are relatively resistant to acetaminophen-
induced hepatotoxicity compared to male mice. One of the
factors implicated in this phenomenon may be the slightly
higher glutamate cysteine ligase activity and Mrp3 levels
expressed in female over male mice (56, 146, 149). Simi-
larly, Merino et al. (155) demonstrated that sexual dimor-
phism in hepatic expression of Bcrp causes the sex difference
observed in the pharmacokinetics of several known Bcrp sub-
strates, such as the therapeutic drugs nitrofurantoin, cimeti-
dine, and topotecan, and the carcinogen 2-amino-1-methyl-
6-phenylimidazo[4,5-b]pyridine, resulting in higher plasma
levels after their oral and i.v. administration, and lower bil-
iary excretion in female versus male mice. These represent
predictable and consistent examples of gender differences in
rodents, with mechanisms apparently elucidated. Similarly,
clearance of topotecan was found to be faster in men than
in women, as a consequence of higher expression of BCRP
in liver of men (155). This occurs in spite of the fact that
topotecan is also a substrate for P-gp and that P-gp activity
does not differ between women and men (195). Metabolism
of topotecan, that could also affect its clearance, is consid-
ered a minor route of inactivation (139). Clearly, knowledge
of gender-specific differences in expression and/or activity
of only one of the enzymes or transporters involved in drug
disposition is likely not sufficient to predict in vivo clearance.

Conclusions
The gender-related differences described in biotransfor-
mation and transport systems may be responsible, at least
in part, for interindividual variability in drug disposition,
therapeutic response, and drug toxicity. Although factors
affecting biotransformation and transport systems in response
to hormones or in different sexes are complex, it is worth
evaluating potential sex-specific differences during the
clinical drug developmental process of new compounds. This
should help to identify drugs displaying sex-dependent or
hormonal-sensitive pharmacokinetics.

It is clear from the literature compiled in this review that
the mechanisms responsible for the gender dependence of
hepatic biotransformation enzymes and transport function are
far from being completely understood. Whether sex hormones
operate directly on these systems or are mediated through
gender-dependent patterns of GH and/or prolactin secretion
is less understood. Differential participation of sex steroid
receptors and regulatory proteins (e.g., coactivators, corepres-
sors, etc.) are additional factors, not considered in this review,
but of similar relevance.
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