
Wormholes in Einstein-Born-Infeld theory

Martı́n G. Richarte* and Claudio Simeone†

Departamento de Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina

(Received 9 October 2009; published 23 November 2009)

Spherically symmetric thin-shell wormholes are studied within the framework of Einstein-Born-Infeld

theory. We analyze the exotic matter content, and find that for certain values of the Born-Infeld parameter

the amount of exotic matter on the shell can be reduced in relation to the Maxwell case. We also examine

the mechanical stability of the wormhole configurations under radial perturbations preserving the

spherical symmetry. In addition, in the Appendix the repulsive or attractive character of the wormhole

geometries is briefly discussed.
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I. INTRODUCTION

Traversable Lorentzian wormholes [1,2] are topologi-
cally nontrivial solutions of the equations of gravity which
would imply a connection between two regions of the same
universe, or of two universes, by a traversable throat. In the
case that such geometries actually exist they could show
some interesting peculiarities as, for example, the possi-
bility of using them for time travel [3,4]. A basic difficulty
with wormholes is that for the flareout condition [5] to be
satisfied at the throat requires the presence of matter which
violates the energy conditions (‘‘exotic matter’’) [1,2,5,6].
It was recently shown [7], however, that the amount of
exotic matter necessary for supporting a wormhole geome-
try can be made infinitesimally small. Thus, in subsequent
works special attention has been devoted to quantifying the
amount of exotic matter [8,9], and this measure of the
exoticity has been pointed as an indicator of the physical
viability of a traversable wormhole [10]. Theories beyond
Einstein-Maxwell framework have been explored with
interesting results in this sense [11].

A central aspect of any solution of the equations of
gravitation is its mechanical stability. The stability of
wormholes has been thoroughly studied for the case of
small perturbations preserving the original symmetry of
the configurations. In particular, Poisson and Visser [12]
developed a straightforward approach for analyzing this
aspect for thin-shell wormholes, that is, those which are
mathematically constructed by cutting and pasting two
manifolds to obtain a new manifold [13]. In these worm-
holes the associated supporting matter is located on a shell
placed at the joining surface; so the theoretical tools for
treating them is the Darmois-Israel formalism, which leads
to the Lanczos equations [14,15]. The solution of the
Lanczos equations gives the dynamical evolution of the
wormhole once an equation of state for the matter on the

shell is provided. Such a procedure has been subsequently
followed to study the stability of more general spherically
symmetric configurations (see, for example, Refs. [16]),
and an analogous analysis has also been carried out in the
case of cylindrical symmetry (see [17]).
In order to avoid an infinite energy density associated to

the electron, Born and Infeld [18] introduced a fundamen-
tal field strength b which together with the electron charge

e determines a characteristic length r0 ¼
ffiffiffiffiffiffiffiffi
e=b

p
. The asso-

ciated electromagnetic theory is nonlinear, and among its
consequences one can find a regular gravitational field for a
fundamental electrically charged particle. From a theoreti-
cal point of view, this feature would be enough to suggest a
revision of well-known gravitational effects of charged
objects within the wider framework of nonlinear electro-
dynamics. Besides, Born-Infeld (BI) type actions were
later recovered in the context of low-energy string theory
[19]. For these reasons, in the last years a renewed attention
was devoted to spherically symmetric gravitational fields
in the framework of Einstein gravity coupled to Born-
Infeld or other nonlinear electrodynamics [20,21].
In particular, wormholes within the framework of

Einstein gravity and nonlinear electrodynamics were con-
sidered, for example, in Refs. [22]. In the present work we
study wormholes of the thin-shell type associated to spheri-
cally symmetric solutions of general relativity and
Born-Infeld theory of electromagnetism. In Sec. II we
introduce Einstein-Born-Infeld spherically symmetric ge-
ometry, and starting from it, in Sec. III we mathematically
construct the associated thin-shell wormholes. In Sec. IV
we evaluate the amount of exotic matter required for the
existence of the wormholes, and in Sec. V we study the
mechanical stability under perturbations preserving the
spherical symmetry. In the Appendix we briefly discuss
the attractive or repulsive character of the gravitational
field associated to wormholes with different values of the
parameters. Throughout the paper we use natural units, so
G ¼ c ¼ 1.
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II. THE THEORY

Let us begin with a review of the main characteristics of
the spherically symmetric solutions found in the frame-
work of Einstein-Born-Infeld (EBI) theory. For a 4-
dimensional manifold ðM4; g��Þ with nonvanishing cos-

mological constant �, the action takes the following form

S ¼
Z
M4

d4x
ffiffiffiffiffiffiffiffi
jg4j

q �
1

2�2
ðR� 2�Þ þLðFÞ

�
; (1)

where g4 ¼ detg��, and LðFÞ represents the Born-Infeld

Lagrangian

L ðFÞ ¼ 4b4
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F��F

��

2b2

s �
; (2)

with b a parameter which has dimension of length or mass,
the so called Born-Infeld parameter. By taking the limit
b ! 1, LðFÞ reduces to the Maxwell Lagrangian

L ðFÞ ¼ �F��F
�� þOðF4Þ: (3)

By varying the action above with respect to the gauge field
A� and the metric tensor g�� the field equations for the

spacetime metric and the electromagnetic field are ob-
tained:

D�

�
F��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F2

2b2

q �
¼ 0; (4)

G�� þ�g�� ¼ TBI
��; (5)

TBI
�� ¼ 1

2
LðFÞg�� þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F2

2b2

q ðg��F
2 � 2F��F

�
�Þ: (6)

It has been proven that for any d-dimensional static spheri-
cally symmetric spacetime the metric can be written in
terms of the hypergeometric function [23]. In the particular
case of 4-dimensional spacetime the metric reads

ds2 ¼ �gðrÞdt2 þ 1

gðrÞdr
2 þ r2d�2

2 (7)

where the function gðrÞ takes the form

gðrÞ ¼ 1� 2m

r
��r2

3
þ 2br2

3

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

b2r4

s �

þ 4q2

3r2 2F1

�
1

4
;
1

2
;
5

4
;� q2

b2r4

�
: (8)

Here m is an integration constant related with the
Arnowitt-Deser-Misner (ADM) mass of the configuration
and q is the charge of the system. The solution above (with
nonzero cosmological constant) was found by Fernando
and Krug [24]. For large r the metric represents a correc-
tion to the Reissner-Nördstrom anti-de Sitter (AdS) black
hole:

gðrÞ ¼ 1� 2m

r
þ q2

r2
��r2

3
� q4

40b2r6
: (9)

In the case � ¼ 0 and in the limit b ! 1 this metric
reduces to the standard Reissner-Nordström geometry.
The last term in (9) represents the first Born-Infeld correc-
tion to the Reissner-Nördstrom AdS black hole in the large
b-limit. Instead, near the origin (r ¼ 0) the metric presents
a completely different behavior when compared with the
Reissner-Nördstrom geometry; for small r we have

gðrÞ ¼ 1� 2m� a

r
þ 2b

�
�qþ br2

3
þ b2r4

10

�
; (10)

a2 ¼ q3
b

�
�4

�
1

4

�
; (11)

that is, close to the origin the leading term in the metric is
given by ð2m� aÞ=r. In fact, when 2m ¼ a the metric is
smoothed at r ¼ 0, so the nonlinear Born-Infeld source
helps to regularize the metric at the position of the charge.
The same analysis can be carried out for the only nonzero
component of the stress tensor, obtaining that the electric
field is also finite at r ¼ 0. This fact is not surprising
because the Born-Infeld theory was developed in order to
have a finite self-energy associated to a pointlike charge.
Besides, by demanding gðr ¼ rhorÞ ¼ 0 we can obtain

the mass in terms of the horizon position rhor (see Fig. 1).
In order to keep the main ideas as clear as possible we only
show one case in which we contrast the extremal Reissner-
Nördstrom (RN) geometry with the BI one. Note that for
the same values of m and q the BI geometry and the
Maxwell one differ considerably: while in the RN case
we have only one horizon, in the BI case there can exist
none, one or two horizons depending on the value of the BI
parameter (see Fig. 1). To be precise, for a fixed value ofm
and q, by increasing the parameter b in the range [1, 10] we
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b
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FIG. 1 (color online). We show the position of the horizons for
m ¼ 1 and q ¼ 1. The RN geometry (dot-dashed line) corre-
sponds to the extremal case, with only one event horizon, while
the other lines show how the position of the horizons changes
with the parameter b 2 ½1; 10�.
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could have one, two or zero horizons. In conclusion, EBI
black holes seem to be quite interesting because they
include a wide variety of geometries.

III. THIN-SHELLWORMHOLE CONSTRUCTION

Starting from the metric given by (7) we build a spheri-
cally symmetric thin-shell wormhole in the Einstein-Born-
Infeld theory. We take two copies of the spacetime and
remove from each manifold the 4-dimensional regions
described by

R 1;2 ¼ fx=r1;2 � a; a > rhorg: (12)

The resulting manifolds have boundaries given by the
timelike hypersurfaces

�1;2 ¼ fx=r1;2 ¼ a; a > rhorg: (13)

Then we identify these two timelike hypersurfaces to
obtain a geodesically complete new manifold M with a
matter shell at the surface r ¼ a, where the throat of the
wormhole is located. This manifold is constituted by two
regions which in the case � ¼ 0 are asymptotically flat
(see Fig. 2). To study this type of wormhole we apply the
Darmois-Israel formalism [14] to the case of Einstein-
Born-Infeld theory. We can introduce the coordinates �i ¼
ð�; �; �Þ in �, with � the proper time on the throat. Though
we will first focus in static configurations, in the subse-
quent analysis of the mechanical stability of the configu-
ration we must allow the radius of the throat to be a
function of the proper time; then in general we have that
the boundary hypersurface reads:

�: F ðr; �Þ ¼ r� að�Þ ¼ 0: (14)

The field equations projected on the shell � are obtained
within the Darmois-Israel formalism; this leads to the
Lanczos equations [14]

hKabi � hKihab ¼ ��2Sab; (15)

where the bracket h:i stands for the jump of a given quantity
across the hypersurface �. The tensor hab is the induced
metric on �, and the extrinsic curvature tensor Kab is
defined as follows:

K�
ab ¼ �n�c

�
@2Xc

@�a@�b
þ �c

de

@Xd

@�a

@Xe

@�b

�
r¼a

; (16)

where n�c are the unit normals (ncn
c ¼ 1) to the surface �.

After some algebraic manipulations, the nonzero compo-
nents Sba of the surface energy-momentum tensor of the
shell turn out to be given by

S�� ¼ 1

2�a
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ gðaÞ

q
Þ; (17)

S		 ¼ S�� ¼
1

8�a

�
2 _a2 þ ag0ðaÞ þ a €aþ 2gðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_a2 þ gðaÞp �
; (18)

where the dot means a derivative with respect to the proper
time and the prime with respect to a. From these equations
we read the energy density 
 ¼ �S�� and the transverse

pressure p ¼ S�� ¼ S		 in terms of the throat radius að�Þ,
first and second derivatives of að�Þ and the function gðaÞ
which depends on the parameters of the system. If we
explicitly write gðrÞ and take the limit b ! 1 in both
Eqs. (17) and (18) we recover the expression for the energy
density 
 and pressure p found in the work by Eiroa and
Romero (see Ref. [16]) with the Lanczos equations for the
case associated to the standard RN solution.
It is easy to see from Eqs. (17) and (18) that the energy

conservation equation is fulfilled:

dðA
Þ
d�

þ p
dA

d�
¼ 0; (19)

where A is the area of the wormhole throat. The first term in
Eq. (19) represents the internal energy change of the shell
and the second the work by internal forces of the shell. The
dynamical evolution of the wormhole throat is governed by
the Lanczos equations, and to close the system we must
supply an equation of state p ¼ pð
Þ that relates p and 
.
In the next section we will study how the exotic matter

amount is related with the BI parameter, that is, we will
mainly analyze the differences between the amount of
exotic matter in a Born-Infeld wormhole and in a RN one.

IV. AMOUNT OF EXOTIC MATTER

Motivated by the nonlinear structure of the BI theory, we
will evaluate the amount of exotic matter and the energy
conditions. Essentially, we want to know if it is possible
that for certain values of the BI parameter b the amount of
exotic matter located at the shell could be reduced in
relation with the Maxwell case, that is, if this quantity is
larger or smaller than that corresponding to a RN
wormhole.
The weak energy condition (WEC) states that for any

timelike vector U� it must be T��U
�U� � 0; the WEC

also implies, by continuity, the null energy condition
(NEC), which means that for any null vector k� it must
be T��k

�k� � 0 [2]. In an orthonormal basis the WEC

1

2

FIG. 2 (color online). We show the wormhole geometry ob-
tained after performing the cut and paste procedure. The shell on
� is located at the throat radius r ¼ a.
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reads � � 0, �þ pl � 0 8 l while the NEC takes the
form �þ pl � 0 8 l. In the case of thin-shell worm-
holes the radial pressure pr of matter on the shell is zero,
and within the relativistic theory of gravitation the surface
energy density must fulfill 
< 0; thus both energy con-
ditions would be violated. The sign of 
þ pt where pt is
the transverse pressure is not fixed, but it depends on the
values of the parameters of the system. In this section we
restrict to static configurations. The surface energy density

0 and the transverse pressure p0 for a static configuration
(a ¼ a0, _a0 ¼ 0, €a0 ¼ 0) are given by


0 ¼ � 1

2�a0

ffiffiffiffiffiffiffiffiffiffiffi
gða0Þ

q
; (20)

p0 ¼ 1

4�a0

�
a0g

0ða0Þ þ gða0Þffiffiffiffiffiffiffiffiffiffiffi
gða0Þ

p �
: (21)

The most usual choice for quantifying the amount of exotic
matter in a Lorentzian wormhole is the integral [9]:

� ¼
Z
ð�þ prÞ

ffiffiffiffiffiffiffiffi
jg4j

q
d3x: (22)

We can introduce a new radial coordinate R ¼ �ðr� a0Þ
with � corresponding to each side of the shell. Then,
because in our construction the energy density is located
on the surface, we can also write � ¼ �ðRÞ
0, and because
the shell does not exert radial pressure the amount of exotic
matter reads

� ¼
Z 2�

0

Z �

0

Z þ1

�1
�ðRÞ
0

ffiffiffiffiffiffiffiffi
jg4j

q
dR sin�d�d	

¼ 4�a20
0: (23)

Replacing the explicit form of 
0 and g4, we obtain the
exotic matter amount as a function of the parameters that
characterize the configurations:

� ¼ �2a0

�
1� 2m

a0
��a20

3
þ 2ba20

3
� 2ba20

3

�
1þ q2

b2a40

�
1=2

þ 4q2

3a20
2F1

�
1

4
;
1

2
;
5

4
;� q2

b2a40

��
1=2

:

In the case � ¼ 0 and in the limit b ! 1, we obtain the
amount of exotic matter for the wormholes associated to
the Reissner-Nordström (q � 0) and Schwarzschild (q ¼
0) geometries (Fig. 3). For small charge values (q � 0:01),
for the RN geometry as well as for the BI geometry (with
b ¼ 1) one obtains the same behavior (see Fig. 3(a)).
However, by comparing the extremal RN geometry with
q ¼ 1 and the BI geometry with the same charge (with b ¼
1) the exotic amount of matter turns out to be less for the
latter geometry than in the former case. So, even when both
geometries have the same charge and the horizon radii are
of the same order of magnitude (rBIhor � 2rRNhor), for a given
wormhole radius the BI source helps to reduce the amount

of exotic matter. In other words, when the charge appears
in a nontrivial manner it could help to minimize the exo-
ticity of a wormhole configuration (see Fig. 3(b)).

V. STABILITYANALYSIS

In this section we study the mechanical stability of the
wormholes under small perturbations preserving the sym-
metry of the original configuration [12]. The dynamical
evolution of the wormhole is determined by Eqs. (17) and
(18), or by any of them and Eq. (19), and to complete the
system we must add an equation of state that relates p with

, i.e, p ¼ pð
Þ. From Eq. (17) we have

_a 2 þ gðaÞ ¼ ð2�a
ðaÞÞ2: (24)

We first note that the energy conservation equation can be
written as

_
 ¼ �2ð
þ pÞ _a

a
(25)

which can be integrated to give

að�Þ
að�0Þ

¼ exp

�
� 1

2

Z 



0

d



þ pð
Þ
�
: (26)

From Eq. (19), if the equation of state p ¼ pð
Þ is given,
then one can obtain 
 ¼ 
ðaÞ.
Following the procedure introduced by Poisson and

Visser, the analysis of the stability of the configuration

qR N qB I 0.01 , R N B I

2.0 2.5 3.0 3.5 4.0
0.05

0.04

0.03

0.02

0.01

0.00

4 2

A

b 1, qB I 1,m 1

b , qR 1, m 1

2.0 2.5 3.0 3.5 4.0
0.05
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0.03
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0.01

0.00

4 2

B

FIG. 3. We show the energy densities corresponding to worm-
holes associated to the RN geometry (solid line) and the BI
spacetime (dashed line) in terms of the wormhole radius rwh.
Here we take rwh > rþhor with rþhor indicating the largest event

horizon of both the RN and the BI cases.
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can be reduced to the analogous problem of the stability of
a particle in a 1-dimensional potential VðaÞ [12]. This is
easy to see if we write Eq. (24) as

_a 2 ¼ �VðaÞ; (27)

VðaÞ ¼ gðaÞ � ð2�a
ðaÞÞ2: (28)

Then, to study the stability we expand up to second order
the potential VðaÞ around the static solution a0 (for which
_a ¼ 0, €a ¼ 0). For a stable configuration it is Vða0Þ ¼ 0
and V 0ða0Þ ¼ 0 (where, as before, the prime means a
derivative with respect to the radius). Then, Eq. (27) takes
the following form:

_a 2 ¼ �V 00ða0Þða� a0Þ2 þO½ða� a0Þ3�: (29)

To compute the derivatives it is convenient to define the
parameter

ð
Þ � @p

@

; (30)

which for ordinary matter would represent the squared
speed of sound: v2

s ¼ . Here, however, we simply con-
sider  as a parameter entering the equation of state (see
below). Then, we obtain the second derivative of the
potencial for the metric (7):

V 00ða0Þ ¼ g000 �
g020
2g0

� 1þ 20

a20
½2g0 � a0g

0
0� (31)

where we use the definitions 0 :¼ ð
0Þ, g0 :¼ gða0Þ,
g00 :¼ g0ða0Þ, and g000 :¼ g00ða0Þ for short. The wormhole is

stable if and only if V 00ða0Þ> 0 while for V 00ða0Þ< 0 a
radial perturbation grows (at least until a nonlinear regime
is reached) and the wormhole is unstable. By using that the
function gða0Þ is always positive for a0 > rhor, we only
have to analyze the sign of V 00ða0Þ for determining which
are the values of the parameters ðm; q; b; a0Þ that make the
wormhole stable. Then, after some simple manipulations,
the stability conditions can be written as follows:

If 2g0 > a0g
0
0; 1þ 20 <

a20
2g0

�
2g000 � g020
2g0 � a0g

0
0

�
: (32)

If 2g0 < a0g
0
0; 1þ 20 >

a20
2g0

�
2g000 � g020
2g0 � a0g

0
0

�
: (33)

Note that the above expressions are in agreement with
those found in [12,25]. Our starting point is to investigate
how the regions of stability for the BI wormhole change
with the parameter b. First (see Fig. 4), we check that when
b ! 1 the stability regions correspond to the RN worm-
holes (see Fig. 4(a)). By taking b in the range [1,2] we get
that there are different types of stability zones. Basically,
we have a stable wormhole with 0�0�1 (indicating that
0 could represent the speed of sound), 0 � 0 (being this
characteristic of wormhole matter), and a third case with

0�1, which would correspond to a superluminal sound
velocity in the wormhole throat (see Figs. 4(b)–4(d)).
When the BI parameter is b ¼ 1 (that is, considerably far
away from the Maxwell limit) and considering larger
values of the charge we obtain that the stability regions
are considerably enlarged. An interesting aspect is that for
quite similar original manifolds one obtains very different
stability domains (see Fig. 5). For example, for q ¼ 2
(such that there are two horizons in the original manifold,
the outer one placed at rþh � 2:26) stability is achieved

with 0 � 0 � 1; however, for q ¼ 1:5 (also two horizons,

1 2 3 4 5 6
4

2

0

2

4

6

a0

0

RN

2 3 4 5 6
4

2

0

2

4

6

a0

0

A

2 3 4 5 6
4
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FIG. 4 (color online). We show the stability regions in four
different cases: extremal RN with m ¼ 1, q ¼ 1 (upper left
panel), EBI with m ¼ 1, q ¼ 1, b ¼ 1 (upper right panel),
EBI with m ¼ 1, q ¼ 1, b ¼ 1:32 (lower left panel), and EBI
with m ¼ 1, q ¼ 1, b ¼ 2 (lower right panel).
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FIG. 5 (color online). We show the stability regions in two
extreme cases, corresponding to small charge q ¼ 0:01 (left
panel) and large charge q ¼ 2 (right panel). In both cases we
take m ¼ b ¼ 1.
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the outer at rþh � 5:54) stability requires 0 � 2 (see

Fig. 5(b)). Later on, we have also examined the stability
regions corresponding to the metrics (9) and (10). In the
former case, by considering the first correction to RN
geometry (that is, b�1 � Oð10�2Þ) we find that essentially
there is no appreciable difference between the RN and BI
regions of stability when the charge values are in the range
q 2 ½0:01; 3�. On the other hand, for the metric (10), with a
fixed BI parameter (b ¼ 1) and varying 0:01 � q � 3 we
arrive to the conclusion that, when the condition 2m< a
holds, only regions of stability with 0 � 0 are admissible.

VI. CONCLUSION

The generalization of Maxwell electromagnetism to a
nonlinear theory in the way proposed by Born and Infeld
introduces a new parameter, which allows for more free-
dom in the framework of determining the most viable
charged wormhole configurations. If wormholes could ac-
tually exist, one would be interested in those which are
stable—at least under the most simple kind of perturba-
tions—and which, besides, require as little amount of
exotic matter as possible. Of course, the case could be
that a given change of the theory leads to a worse situation,
i.e., that configurations turn out to be more unstable or
require more matter violating the energy conditions as the
departure from the standard theory becomes relevant.
However, this seems not to be the case with Born-Infeld
electrodynamics coupled with Einstein’s gravity: Here we
have examined the mechanical stability and exotic matter
content of thin-shell wormholes within Einstein-Born-
Infeld theory, and—as long as large values of the charge
are considered—we have found that for small values of the
Born-Infeld parameter, corresponding to a situation far
away from the Maxwell limit, both the size of the stability
regions in parameter space are enlarged, and the amount of
exotic matter is reduced in relation with the standard case.
Thus our results suggest that in a physical scenario differ-
ent from that consistent with present-day observation (as in
the early universe, when nonlinear effects could be more
relevant) charged wormholes could have been more likely
to exist.
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APPENDIX: THE GRAVITATIONAL FIELD

The wormholes studied could be both attractive or re-
pulsive. To characterize this aspect of the configurations
we analyze the force on a test particle at rest in the
geometries described above. For this, we evaluate the
radial acceleration given by

d2r

d�2
¼ ��r

tt

�
dt

d�

�
2
: (A1)

The sign of the acceleration of a particle initially at rest is
then given by minus the sign of the component �r

tt of the

Attractive WormholesRepulsive Wormholes
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1.4

1.5

1.6

1.7

1.8

1.9

2.0

FIG. 6 (color online). We show the regions where the worm-
holes are attractive or repulsive for q ¼ m ¼ 1. The dashed zone
corresponds to attractive wormholes while the undashed regions
are associated to repulsive ones.
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FIG. 7 (color online). We show the regions where the worm-
holes are attractive or repulsive for q ¼ m ¼ 1. The dashed zone
corresponds to attractive wormholes while the undashed regions
are associated to repulsive ones.
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connection, which for the metric considered is equal to
gðrÞg0ðrÞ=2. Thus we have an attractive gravitational field
for g0 > 0, and a repulsive field for g0 < 0 (of course, we
consider only the possibility g > 0). For example, we can
verify numerically that for q ¼ 1, m ¼ 1, both in the RN
(b ! 1) case and in the case b ¼ 1 (very far from the RN
solution) we have g0 > 0 for r > rhor. In general, however,
we should take care about the sign of gðrÞ. To avoid this
problem in a point which is not the central aspect of our
analysis, we shall simply restrict a detailed study to the
case of no horizons in the original manifold.

We therefore take q ¼ 1, m ¼ 1, and choose the pa-
rameter b appropriately. For b within the interval [1.33, 3]
we numerically find (see Fig. 6) that for 0< rwh < 1:3 the
gravitational field of the configurations turns to be repul-
sive, while for 1:3< rwh < 100 the wormholes are attrac-
tive. This could suggest that for these values of the

parameters the wormholes are always attractive as long
as rwh > 1:3. However, a careful analysis shows that this is
not true. For very large wormhole radii (typically rwh �
5	 105 � 2	 106) a kind of ‘‘islands’’ in the parameter
space appears in which the gravitational field is repulsive.
Moreover, the size of these ‘‘islands’’ is increased for
larger values of b (see the case b� 30 in Fig. 7), though
always far from the Maxwell limit. One may also wonder
about the complementary situation, that is, possible attrac-
tive wormholes for very small radii. But for the values of q
and m considered this is not the case. As a final comment
we mention that by comparing the cases with values of the
parameters such that the exotic matter amount associated
to Born-Infeld theory turns out to be smaller than the
corresponding to the RN wormholes, we obtain that the
field associated to these wormhole configurations is
attractive.
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