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Abstract: Copper(I) oxide has been found to effectively catalyse
the multicomponent click synthesis of fully substituted 5-alkynyl
1,2,3-triazoles from organic halides, sodium azide, and terminal
alkynes in methanol under ambient conditions.
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In the dawn of the 21st century, we have witnessed a reviv-
al of interest in the Huisgen 1,3-dipolar cycloaddition
reaction of organic azides and alkynes1 after the pivotal
discovery by the groups of Meldal2 and Sharpless.3

Copper(I) catalysis was found to dramatically accelerate
the reaction under mild conditions while achieving a high
regioselectivity towards the 1,4-regioisomer of the tri-
azole product. This powerful, highly reliable, and selec-
tive reaction is the paradigm of a click reaction, as it meets
the set of stringent criteria required in click chemistry as
defined by Sharpless et al.4 Consequently, this protocol
has found increasing application in a variety of disciplines
such as organic chemistry, drug discovery and medicinal
chemistry, polymer and materials science, or bioconjuga-
tion.5

The copper-catalysed azide–alkyne cycloaddition (Cu-
AAC) provides a direct entry into 1,4-disubstituted 1,2,3-
triazoles, whereas the formation of the 1,4,5-trisubstituted
derivatives relies on the use of ruthenium catalysts6 or
modification of preformed 1,2,3-triazoles.7 In the latter
context, three different approaches have been devised for
the introduction of substituents at the 5-position of the tri-
azole unit, namely: (a) the interception of stoichiometri-
cally functionalised 5-cuprated-1,2,3-triazoles, (b) the use
of stoichiometrically functionalised terminal alkynes, and
(c) the catalytic direct functionalisation of C–H bonds.7

The synthesis of 5-alkynyl 1,2,3-triazoles has been mainly
accomplished following the first approach. Wu et al. de-
scribed thus the copper-mediated synthesis of fully substi-
tuted 1,2,3-triazoles by reacting organic azides and

terminal alkynes with stoichiometric CuI and triethyl-
amine, using ICl as a trapping agent of the intermediate
copper(I) triazolide.8a The corresponding 5-iodo-1,2,3-tri-
azoles were further subjected to the palladium-catalysed
Sonogashira–Hagihara cross-coupling reaction with ter-
minal alkynes, giving rise to 5-alkynyl 1,2,3-triazoles.8b A
more direct strategy to access this type of compounds was
reported by Porco’s group, in which, organic azides and
terminal alkynes reacted in a catalytic system comprised
of Cu(MeCN)4PF6, N,N,N′-trimethylethylenediamine as
ligand, Hünig’s base, molecular oxygen, and 4-methyl-
morpholine N-oxide as co-oxidant in dichloromethane.9

As noted by the authors, the Glaser coupling and cycload-
dition towards the nonalkynylated 1,4-disubstituted tri-
azoles were competing reactions which accounted for the
low yields attained in many cases. Soon after, Chen et al.
presented the 1,3-dipolar cycloaddition–coupling reaction
of terminal alkynes, phenylboronic acids, and sodium
azide catalysed by CuI (10 mol%) and CuSO4·5H2O
(20 mol%) in 1,4-dioxane–water.10 Disubstituted 1-aryl-
5-alkynyl 1,2,3-triazoles have been prepared, in an indi-
rect manner, through the cycloaddition of 2-morpholino-
but-1-en-3-yne with aryl azides.11 Due to our ongoing
interest in click chemistry12 and to the scant number of
methodologies that enable the formation of 5-alkynyl
1,2,3-triazoles in an efficient manner, we want to present
herein the first general methodology for the copper-cata-
lysed multicomponent synthesis of 5-alkynyl-1,4-disub-
stituted 1,2,3-triazoles starting from organic halides,
terminal alkynes, and sodium azide under ambient condi-
tions.

The reaction of benzyl bromide (1a), phenylacetylene
(2a), and sodium azide in the presence of a copper source
was used as a model reaction in order to optimise the cat-
alytic system and conditions (Table 1). It is worth noting
that, among the organic solvents tested (toluene, CH2Cl2,
MeCN, THF, H2O, EtOH, and MeOH), exclusively meth-
anol gave the desired product 3aa. In fact, the presence of
methanol seems to be crucial for the reaction to take place
as we never detected this product in our previous research
on click chemistry.12 Interestingly, the reaction proceeded
at room temperature irrespective of the copper source at
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low catalyst loading, though Cu2O exhibited the highest
performance (Table 1, entry 6).

Following the optimised conditions, an array of 5-al-
kynyl-1,4-disusbstituted 1,2,3-triazoles were synthesised
(Scheme 1). Electronically different benzyl bromides and
chlorides 1a–f reacted with phenylacetylene (2a) to fur-
nish the corresponding products 3aa–fa in moderate to
high yields. Allylic bromides and ethyl 2-bromoacetate
reacted smoothly and high yielding, giving rise to 3ga,
3ha, and 3ia, respectively. Electron-neutral, -rich, and
-deficient aryl acetylenes 2b–d behaved similarly when
combined with benzyl bromide (1a). Moreover, triazoles
bearing two aliphatic substituents at the 4,5-positions
(3ae–ag) were also efficiently obtained.

It is worth noting that products 3 can be considered the re-
sult of the Huisgen 1,3-dipolar cycloaddition over sym-
metrically substituted 1,3-diynes. This reaction has been
barely studied due to the lack of selectivity; the thermal
conditions applied require specific sterically demanding
substrates in order to prevent the double cycloaddition and
polymerisation side reactions, and even then, the yields
reported were rather poor.13 This kind of process was dis-
carded in our methodology as the reaction of 1,4-diphen-
ylbuta-1,3-diyne with benzyl bromide and sodium azide,
under the standard conditions, led to the unchanged start-
ing diyne and benzyl azide. The possibility of carbon–
hydrogen bond activation at the 5-position of the parent
1,4-disubstituted triazole was also ruled out because the
reaction of 1-benzyl-4-phenyl-1H-1,2,3-triazole with
phenylacetylene also failed. These results, together with
the experiment depicted in Scheme 2, involving equimo-
lecular amounts of 1a and 2a in CD3OD,14 point to a cop-
per(I) triazolide3,15 as the most plausible precursor of both
deuterated 4aa and compounds 3 after protonation–
deuteration or coupling with the alkyne, respectively.

Scheme 1  Multicomponent synthesis of fully substituted 5-alkynyl
1,2,3-triazoles catalysed by Cu2O. Reagents and conditions: 1 (0.5
mmol), 2 (1.0 mmol), NaN3 (0.6 mmol), Cu2O (1.4 mg, 1 mol% re-
ferred to 2), MeOH (2 mL), r.t. Reaction time and isolated yield in pa-
renthesis. X = Br unless otherwise stated

Table 1  Screening of the Catalysts in the Synthesis of 3aaa

Entry Catalyst Conversion (%)b

1 Cu 85

2 CuCl 83

3 CuCl2 82

4 CuBr 70

5 CuI 83

6 Cu2O 90

7 CuO 64

a Reaction conditions: 1a (0.5 mmol), 2a (1.0 mmol), NaN3 (0.6 mmol), 
catalyst (0.01 mmol), MeOH (2 mL), r.t.
b Conversion into 3aa after 24 h determined by GC.
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In order to get an insight into the reaction mechanism, re-
agent-grade MeOH (99.8%), anhydrous MeOH (99.8%,
<0.002% water), and CD3OD were used as solvents under
different atmospheres in the title reaction. Conversions
>80% into 3aa, without byproduct formation, were only
achieved under the standard conditions (i.e., in the pres-
ence of air) independently of the methanol utilised. In
contrast, when the above solvents were subjected to de-
gasification, prior to the reaction, 3aa was produced in 1–
9%. Finally, substantial amounts of alkyne homocoupling
(21–25%) together with 3aa (67–70%) were recorded in
the presence of molecular oxygen (balloon). From these
results it can be inferred that the oxygen dissolved is ox-
idising copper in the catalytic cycle (Scheme 3). Given
that the reductive elimination from copper(II) species is
an unfavoured process,16 oxidation of copper(II) to cop-
per(III) and subsequent reductive elimination,17 with re-
generation of copper(I), is invoked as similarly suggested
by Porco et al.9 In addition, the equilibrium solubility of
oxygen in methanol seems to be the ideal one to drive the
reaction selectively toward the fully substituted triazole,
making unnecessary the use of a chemical oxidant.

Scheme 3 Proposed catalytic cycle

In conclusion, a straightforward synthesis of fully substi-
tuted 1,2,3-triazoles with an alkynyl moiety at the 5-posi-
tion has been successfully introduced from organic
halides, terminal alkynes, and sodium azide, using a very
simple catalytic system composed of copper(I) oxide and
methanol under ambient conditions.18 This discovery will
be of great interest for the varied disciplines dealing with

click chemistry. Further research on the mechanism,
scope, and applications of this multicomponent reaction
are under way. In particular, the introduction of other sub-
stituents at the 5-position will be especially challenging.
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