
O

T
A

J
F
a

b

c

a

A
R
R
2
A
A

K
A
B
C
F
T
V

1

t
i
c
i
a
f
a
t
t

(

h
1

Dendrochronologia 37 (2016) 116–125

Contents lists available at ScienceDirect

Dendrochronologia

journa l homepage: www.e lsev ier .com/ locate /dendro

riginal  article

ree  age  and  bark  thickness  as  traits  linked  to  frost  ring  probability  on
raucaria  araucana  trees  in  northern  Patagonia

ulieta  Gabriela  Arco  Molina a,∗,  Martín  Ariel  Hadad a,b, Daniel  Patón  Domínguez c,
idel Alejandro  Roig a

Departamento de Dendrocronología e Historia Ambiental, IANIGLA-CCT CONICET—Mendoza, Av. Ruiz Leal s/n, Mendoza, Argentina
CIGEOBIO-CONICET—San Juan, Universidad Nacional de San Juan, Av. Ignacio de la Roza 5900 Oeste, San Juan, Argentina
Área de Ecología, Facultad de Ciencias, Universidad de Extremadura, Av. Elvás s/n 06071, Badajoz, Spain

 r  t  i  c  l e  i  n  f  o

rticle history:
eceived 1 June 2015
eceived in revised form
8 December 2015
ccepted 11 January 2016
vailable online 22 January 2016

eywords:
raucaria araucana
ark
ambial age
rost ring
hermal protection

a  b  s  t  r  a  c  t

Frost  events  may  damage  the cambium  and  consequently  the  newly  produced  tracheids  whose  cell  walls
have  not  yet  completed  their lignifications,  leading  to the  formation  of frost  rings.  This  study  deals  with
the  presence  of  frost  rings  in  Araucaria  araucana  trees  according  to  cambial  age and  bark  thickness,
under  the  assumption  that  these  factors  may  be  involved  in  physical  or physiological  mechanisms  that
increase  resistance  to  freezing  temperatures  that  impact  the cambial  tissue.  The  study  was  conducted  in
northern  Patagonia  at two sites  of  contrasting  geomorphology,  and therefore  potentially  associated  with
a differential  degree  of  exposure  to extreme  cold.  Wood  plus  bark  cores  were  extracted  from  main  stems
at two  heights  from  the  ground  and  from  each  of the  four cardinal  point  directions  for  30  individuals
per site.  A  Linear  Mixed  Model  and  a Generalized  Linear  Mixed  Model  were  applied  in  order  to  relate
the  bark  thickness  and the frequency  of  frost  rings  in accordance  with  the different  sampling  points  on
the  stem.  It was  observed  that  as bark  becomes  thicker  with  cambial  age, the  frequency  of  frost  rings
decreases,  indicating  a possible  thermal-induced  mechanism  of  bark  protection.  Consequently,  there  is
ascular cambium an increase  in  the  presence  of  frost  rings  at the  younger  stages  of  tree  life.  Although  the  mechanisms  of
cold hardiness  in trees  can  be  complex,  including  aspects  of  the  tree physiology,  our  data  indicated  that
as  tree  age  increases,  the thickness  of  the bark  is higher,  resulting  in  a  potential  effect  of  isolation  and
passive  protection  against  the  harmful  effects  of  frosts.  This  mechanism  may  be  relevant  in the ecology,
conservation  and  management  of  forests  faced  with  extreme  variability  in future  climate  and  changing
scenarios.
. Introduction

Global warming in the twentieth century is considered one of
he factors responsible for recent changes in the frequency and
ntensity of climate extremes (IPCC, 2007). Since predictions of
limate change include an increase of temperature in temperate lat-
tudes, a consequence of this phenomenon can be linked to a loss of
cclimation to low growth temperatures, meaning a greater risk of

rost damage during periods of active plant development (Cannell
nd Smith, 1986; Inouye, 2000; Augspurger, 2009). Extremely low
emperatures are an important limiting factor for plant produc-
ion and their distribution in large areas of the world, since two
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thirds of the world’s landmass is annually subjected to tempera-
tures below the freezing point (Lärcher, 2001). As low temperature
stress impairs metabolic processes and dry matter production with
different degrees of reversibility, frost action over plants has signifi-
cant implications on the equilibrium of native vegetation, as well as
high-yield crops (Lärcher, 1981). Based on these facts, it becomes
relevant a better understanding of how plants may  react to such
potential changes induced by frosts.

Despite the fact that plants possess mechanisms to resist the
effects of low temperatures on their development (e.g., cortical
isolation, biochemical and enzymatic reactions, mitochondria rate
respiration, increase in solute cell contents, etc.—see Lyons and
Raison, 1970; Sakai and Lärcher, 1987; Hasanuzzaman et al., 2013),

a freezing event may  cause injuries in the cambial tissue, giving
rise to two  possible phenomena: (1) death of the meristems with
consequent death of the plant, and (2) partial death of the cam-
bial tissue and its regeneration after frost. Wood injuries derived
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y frosts were initially recognized by Rhoads (1923) as growth
ings with anatomical pathologies caused by freezing tempera-
ures, and later defined as frost rings signaled by cell morphology,
hape and size that vary from the normal pattern (Kaennel and
chweingruber, 1995). Anatomically, the formation of ice crystals
n the cambium zone results in freezing-altered cell wall thickness,
ariations in the matrix of the cellulose/hemicellulose/lignin con-
ents and, moreover, in deformed or collapsed cells with deposits of
ense material in their inner walls (Lee et al., 2007). Consequently,

rost wounds in the xylem may  have collateral effects in disrup-
ions of hydraulic efficiency and risk to trigger cavitation in vessels
Sperry and Sullivan, 1992; Martínez-Vilalta and Pockman, 2002;

illson and Jackson, 2006).
Although cold or freezing stress resistance by plants com-

rises many different genetic, molecular and physiological features
Sakai and Lärcher, 1987; Hughes and Alison Dunn, 1996; Beck
t al., 2007), there is a growing consensus that other simple
haracteristics may  be associated to the decrease in the tree’s sen-
itivity to frost, such as age and bark thickness (Gurskaya and
hiyatov, 2006). Total bark thickness (functional bark + rhytidome)
s particularly considered to play a primary role in the thermal
rotection of the vascular cambium (Stöckli and Schweingruber,
996; Treter and Block, 2004; Payette et al., 2010). In this sense, if
ark thickness increases with age, the vascular cambium becomes

ncreasingly protected against extreme colds. Several evidences
ndicate that most of the frost injuries are found in the rings that
re close to the pith, suggesting a higher vulnerability of cam-
ium to frost when the tree is young, and consequently its bark is
till thin (Glerum, 1975; LaMarche and Hirschboeck, 1984; Stöckli
nd Schweingruber, 1996; Treter and Block, 2004; Gurskaya and
hiyatov, 2006; Gurskaya, 2007; Payette et al., 2010; Kidd and
openheaver, 2014). Consequently, in tree species with age-related
ark thickness, the frequency of frost rings may  vary with the cam-
ial age, that is, from juvenile to mature wood (Payette et al., 2010).

On the other hand, Schweingruber (2007) claimed that both fre-
uency and intensity of the frost injury varies around the stem’s
ircumference. This could be attributed to different exposures of
tems to cold air or local variations of bark thickness. Moreover,
he localization of the frost injury within the growth ring makes it
ossible to classify the frost event in relation to the growing activ-

ty (Gurskaya, 2014). In this sense, Schweingruber (2007) pointed
ut that frost damage at the beginning of the growth ring could

ndicate an extremely cold condition prior to the growing season
winter months), while frost injury on earlywood and latewood
s produced during the growing season by late and early frosts,
espectively (Glerum and Farrar, 1966). Although it is very unusual,
wo frost events in the same growth ring have also been reported
Gurskaya and Shiyatov, 2002; Hadad et al., 2012).

Among multiple applications, frost rings offer the possibility
o use them as markers to successfully cross-date tree-ring series
Glerum, 1975), to estimate the degree of plant resistance to low
emperatures (Gurskaya and Shiyatov, 2002), and to construct long-
erm extreme cold event chronologies at large geographic scales
Gurskaya and Shiyatov, 2002; Treter and Block, 2004; Gurskaya,
007; Hadad et al., 2012). Moreover, frost rings could indicate when

 large-scale atmospheric circulation and its related weather events
lay a role in this particular tree-growth response at local and/or
egional scales (e.g., Mock et al., 2007) and when other physical
henomena, like volcanic eruptions, may  be responsible for the
ccurrence of widespread frost events (LaMarche and Hirschboeck,
984; Brunstein, 1996; Hantemirov et al., 2004; Salzer and Hughes,

007, 2010).

In the Andes of Argentina between 37◦20′–40◦20′ SL, and from
00 to 1800 m altitude, the temperate forests of Araucaria araucana
Molina) K. Koch (“pehuén”) spread in an ample ecological setting
rom the humid Andes foothills to the dry ecotone of the Patagonian
nologia 37 (2016) 116–125 117

steppe (Roig, 1998; Roig and Villalba, 2008). Growing under a cold
temperate climate, A. araucana may  attain centennial-to-millennial
ages and a significant bark thickness development at tree maturity
(Castro, 2009). It has been argued that the thickness of this bark can
efficiently protect the inner living tissues (lateral cambium) from
fires and other physical injury-related factors (Veblen et al., 1996;
Roig and Villalba, 2008).

Recent studies reported the presence of frost-induced damages
on the growth rings of A. araucana trees, pointing out the poten-
tial of this species to record past extreme cold events through
dendrochronological techniques (Hadad et al., 2012). However, it
remains poorly unknown whether there is a differential impact
on frost ring formation depending on tree ontogeny and the age-
related development of other tree organs, such as the bark. The
hypothesis for this study is that bark thickness in A. araucana is
age-dependent, linking this relationship to the probability that the
derivative cells may  be mostly exposed to different levels of frost
damage when the trees are in their early stages of life. There-
fore, if the increase in the bark thickness means more insulation,
then the cambium may  be more protected from frost as the tree
ages. In this sense, a morphological traits such as the bark thick-
ness could be an advantage to protect the vascular cambium from
extreme colds during advanced stages of youth tree development,
but may  be inefficient during recruitment and development of
new seedling generations, where plants have not yet formed an
efficient bark isolation (Hantemirov et al., 2000; Gu et al., 2008).
These considerations may be relevant topics in the ecology of plant
communities under a global warming scenario, where more fre-
quent and intense climate extremes, including freezing events, are
expected.

2. Materials and methods

2.1. Study area

The study sites are located at the northern distribution area of
the A. araucana forests, characterized by open woodlands intermin-
gled by the Patagonian steppe (Golluscio et al., 1982; Schlichter and
Laclau, 1998). Soils receive 500 mm of precipitation per year and the
mean annual temperature is 12.4 ◦C. Winter months have a uniform
atmospheric circulation originated from the Pacific, whereas sum-
mer  has a relatively weak zonal component superimposed on the
meridional gradient. Therefore, the west winds have a southerly
component (west–southwest to southwest). These winds are char-
acterized not only by their prevalence during the entire year but
also by their higher seasonal speeds, particularly from October to
February (summer) (Prohaska, 1976).

Temperature in our study region is the highest in Patagonia at
a continental level, with harsh winters and temperate summers
(Rubí Bianchi and Cravero, 2010). The relative humidity decreases
from the Andes to the steppe, which causes an increase in the daily
thermal amplitude in the same direction. Both conditions enhance
the likelihood of frost occurrence (Bustos, 2001). This area expe-
riences a mean annual frost-free period of 90 days (Movia et al.,
1982), with December 1st as the date of the last late frost and March
21st as the date of the first early frost (Bustos, 2001). This period
of frost risk, either corresponding to early or late frosts, concurs
with the period of active division of the cambial cells and with the
consequent growth ring formation in A. araucana.
The sites considered in this study represent two  different topo-
graphical conditions: one is the Primeros Pinos (PP) site located in
a plateau east from the mountain foothills and the second one is
the Picún Leufú (PL) site located on the SE slope of the foothills of
the Andes, which is more protected from western winds (Fig. 1).
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ig. 1. Location of study sites in northern Patagonia. (a) Province of Neuquén, sh
1680  masl, 38◦52′0′′S–70◦34′27′′W).  (d) The PL is a site where the forest grows on 

.2. Fieldwork

Wood samples were collected with an increment borer (Ø 5 mm)
rom the main stems of 30 live A. araucana trees per site. Trees

ere selected with stem diameters between 15 and 40 cm at breast
eight, which approximately correspond to trees of ≤200-yrs of age
Hadad, 2013). In order to reduce the influence of forest microcli-

ate, as may  occur in closed forests (Gurskaya and Shiyatov, 2006),
rees sampled were separated by a minimum of 3 m distance from
ach other. Wood samples were taken from stems at two  positions
bove ground: 0.50 m and 1.50 m.  At each height, stem diameter
as measured and four samples were collected, each correspond-

ng to the cardinal directions (N, S, E, W)  to assess whether the
revalence of the west–southwest and southwest winds during
ummer have a differential effect in the occurrence of frost dam-
ge to the vascular cambium depending on the orientation of the
tems. In this sense, a total of eight cores were taken per tree. Cardi-
al directions were also used to standardize the sampling method
educing errors due to potential circumference anomalies. At the
ime of sampling, thickness of bark was measured in each of the
ollected woods. A total of 480 wood samples were collected for
his study.

.3. Laboratory work

Wood samples were mounted on wooden supports and deli-
ately polished to attain a perfect anatomical identification of the
oundary between growth rings. Afterwards, growth rings were
isually dated following traditional dendrochronological protocols
Stokes and Smiley, 1968). Ring widths were measured using a

easuring device (Velmex, USA) with a precision of 0.001 mm.
tatistical quality control of the ring-width measurements was  per-
ormed using the COFECHA program (Holmes, 1983). Samples with

ating problems were rejected, reaching a final sampling of 197
eries from 25 trees at the PP site and 223 series from 28 trees at
he PL site.

Frost rings were anatomically identified during the sample dat-
ng procedure. Every growth ring showing a frost injury was  marked
 the sample sites. (b) PL site (1670 masl, 39◦08′44.8′′S–70◦35′33.2′′W).  (c) PP site
heast facing steep slope. (e) The forest at the PP site is placed on a high plateau.

as a frost ring. Each frost ring was distinguished according to the
distance of sampling from the ground, the cardinal orientation and
the inner position of the frost injury in the growth ring. In relation
to the last observation, and based on Stöckli and Schweingruber
(1996), frost rings were classified into three types: (1) frost injury
at the beginning of the earlywood (EWF), (2) frost injury at the mid-
dle of the earlywood (MEWF), and (3) frost injury in the transition
between the early and the latewood portion (LWF). The position of
the frost injury within the growth ring indicates if the frost damage
was due to a late or an early frost event during the growing season.

2.4. Statistical analysis

The cambial age of the trees (rings from the pith) was deter-
mined at each stem sampling position relative to ground level. For
those series not reaching the pith, but with the inner arch close to it,
the number of missing rings was estimated following the geomet-
ric method proposed by Duncan (1989). Considering the four cores
per height, ordering the frost ring records from the first cambial
year and counting the number of frost rings per year, we  obtained
the number of frost rings in relation to the cambial age. However, in
order to avoid an overestimation of the number of frost rings, only
one frost ring per cambial age and per tree was considered when
relating the presence of frost rings with cambial age. The Pearson
correlation was used to correlate the thickness of the bark with
cambial age. Furthermore, to compare the frequency of frost rings
in relation to bark thickness in the same period of tree life, both
variables were analyzed at 30 year intervals. At each age class the
mean and standard deviation of both variables were calculated and
a trend line was  fitted. Then, a regression analysis was done to test
the relationship between the probability of frost rings and the bark
thickness at different age classes. On the other hand, it was deter-

mined the percentage of frost rings in relation to the total number of
growth rings analyzed, the percentage of growth rings with double
frost injuries, and the percentage of EWF, MEWF  and LWF  rings
in relation to the total frost rings recorded. A Logarithmic Lin-
ear Model (MASS library of R: GLM, formula = NUM ∼ SITE + TYPE,
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ig. 2. Frost injuries in the xylem of Araucaria araucana trees growing at the northe
 late frost event, identified at the middle of the earlywood and composed by deform
4×).  Black arrows show the limit of the growth ring. (b) Detail of collapsed and defo
rost  region with some tracheids greatly collapsed and extremely thin-walled (arro

ata = loglinear) was used to test whether the type of structure of
rost rings varies between the two analyzed sites.

The bark thickness and the presence of frost rings were ana-
yzed according to both sampling distances from the ground and
ardinal orientations. Statistics were performed by considering the
eriod of time shared by the eight cores of each tree. A Linear Mixed
odel (LMM)  and a Generalized Linear Mixed Model (GLMM)  were

mployed to analyze the bark thickness and the presence of frost
ings, respectively. Those models are a valuable methodology to
nalyze complex data such as that contained in this paper. The sam-
ling involved many sources of variability. Therefore, the LMM  and
he GLMM included factors with fixed and random effects. In this

anner, the real effect of a causal factor that affects a process was
etermined, avoiding irrelevant sources of variability (Venables

nd Ripley, 2002; Zuur et al., 2009). For the analysis of frost ring
resence, a binomial family with a logit link function was specified

n the GLMM,  that predicted the probability of frost rings in the
otal growth rings analyzed at each core.
ural geographical range of the species. (a) A general view of a frost injury caused by
ollapsed and distended rays that are offset at the zone of the injury (white arrows)

 tracheid cells (asterisks and arrows) (20×). (c) A SEM image showing the traumatic
ong thick-walled and less collapsed tracheids.

In this sense, the conceptual model for frost ring presence was:

Frostringpresence ∼ Fixedeffects(Orientation + Height)

+ Randomeffects(Intra-treevariabilityinsideofsitevariability).

For the bark thickness, a similar model was  developed. Under
the R notation and by using the library nlme (Pinheiro and Bates,
2000) for the LMM,  and the library lme4 (Bates, 2010) for the GLMM,
the syntax of both models was:

Frostringpresence ∼ Fixed : Orientation +
Height, Random : ∼Site|Tree
Barkthickness ∼ Fixed : Orientation +
Height, Random : ∼Site|Tree
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Table 1
Number of analyzed tree rings, number of frost rings and number of types of frost rings according to sampling height in Araucaria araucana stems.

Stem height (m)  Tree rings Primeros Pinos Picún Leufú

Total tree rings % of tree rings % of frost rings Total tree rings % of tree rings % of frost rings

0.5 Tree rings analyzed 10,134 100 13,827 100
Frost ring 482 4.76 100 106 0.77 100
Double frost ring 12 2.49 0 0 0
EWF  frost ring 94 19.5 18 16.98
MEWF  frost ring 362 75.1 87 82.08
LWF  frost ring 14 2.9 1 0.94

1.5 Tree rings analyzed 8,001 100 11,466 100
Frost ring 327 4.09 100 94 0.82 100
Double frost ring 11 3.36 0 0 0
EWF  frost ring 35 10.7 13 13.83
MEWF  frost ring 277 84.71 81 86.17
LWF  frost ring 4 1.22 0 0
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ig. 3. (a) Variation of the bark thickness in Araucaria araucana according to tree ag
nd  PL sites. (b) A tree stem showing a hard and tick bark organized in polyhedral
he  position of the vascular cambium.

The significance of the different values of the models was  deter-
ined by maximum likelihood analysis. All the statistics were

eferred to 5% of significance level.

. Results

.1. Identification and classification of frost rings

The frost injuries in the transversal xylem of the A. arau-
ana trees were distinguished by a traumatic tissue composed by
eformed and collapsed tracheids intermingled with locally dis-
ended and offset rays (Fig. 2). At both PP and PL sampled sites,
e analyzed 43,428 growth rings (41.76% at PP and 58.24% at PL),

nd identified 1,009 frost rings. From these frost rings, 80.18% were
ecorded at PP and 19.82% at PL. Frost injuries exhibited differ-
nt positions within the growth ring. We  observed that MEWF

nd LWF  rings occurred more and less frequently, respectively,
ndependently of sites and stem position of the sample (Table 1).
ometimes, two successive frost injuries within the same growth
ing appeared at the PP site. This particular structure was recog-
ized as a double frost ring. The logarithmic linear analysis showed
h sampled stem heights (0.5 m and 1.5 m) were considered for each tree at both PP
d plates. (c) An increment core showing the bark thickness. Black arrow indicates

no significant differences in the type of structure of frost rings
among sites (p-value = 0.29). The percentage of frost rings in rela-
tion to total tree rings analyzed was  similar between the two
sampling stem heights at both PP and PL sites (Table 1).

3.2. Relationship between bark thickness, frost ring probability
and cambial age

When bark thickness was compared with cambial age, it was
observed that bark width increased with age, both at PP (r = 0.69)
and PL (r = 0.57) sites (Fig. 3). Furthermore, when analyzing the
number of frost rings in relation to cambial age at both sites, it was
clear that during the early period of the tree life the highest num-
ber of frost rings was recorded, while as cambial age increased the
number of frost rings dropped progressively (Fig. 4). Even when
frost rings were logged until about 150 years of the cambial age,
80% of total frost rings were identified during the first 45 and 70

years of growth at PP and PL, respectively. On the other hand, when
analyzing the bark thickness and the frequency of frost rings at dif-
ferent age classes, it was observed that the bark thickness increased
linearly with increasing age, while the frequency of frost rings
decreased exponentially with cambial age, at least during the first
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Fig. 4. Number of frost rings according to cambial age of Araucaria araucana at (a) PP and (b) PL. Gray areas indicate sampling depth.
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ig. 5. (a) Mean of the frequency of frost rings and (b) mean of the bark thickness a
ine  is fitted in each case.

10 years of the tree’s life (Fig. 5). Moreover, when the probability
f frost rings and the bark thickness at different age classes were
elated, it resulted in a negative exponential relationship between
hese variables through the following regression function:

Probability of frost rings = 6.79 × exp (−2.51 × Bark thickness, cm)
Fig. 6)

.3. Probability of frost rings and bark thickness
Results of both LMM  and GLMM for bark thickness and proba-
ility of frost rings were statistically significant. In the case of frost
ing probability, the sampling height showed a Chi-square-value
f 36.17 (p-value < 1E-4) and the cardinal orientation a Chi-square-
alue of 9.55 (p-value = 0.0228). For bark thickness the F-value of
rent age classes in A. araucana trees. Bars indicate the standard deviation. A trend

sampling height was  218.44 (p-value < 1E-4) and for cardinal ori-
entation the F-value was  5.61 (p-value = 9E-4). The coefficients of
fixed effects for frost ring probability indicated that west and south
sampling orientations have a positive effect on frost ring probability
(Table 2). Moreover, sampling height position also showed a posi-
tive effect. In the case of the bark thickness, only height and south
orientation were significant, showing a negative effect (Table 3).

4. Discussion
Prior reports indicate that A. araucana may  record episodes of
extreme cold in their wood, being a valuable proxy of past extreme
temperatures in Patagonia (Hadad et al., 2012). Thus, a frost ring
record allows not only to identify cold years but also to analyze
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Table 2
Fixed effects for the Linear Mixed Model that relates bark thickness with cardinal orientation and sampling heights as fixed effects, and site and intra-tree variability as
random effects.

Parameter Coefficients Standard error t-value

Intercept 2.997 0.116 25.914***

North orientation −0.031 0.073 −0.426 ns
West  orientation −0.083 0.073 −1.14 ns
South  orientation −0.272 0.073 −3.735***

Height: 1.5 m −0.761 0.051 −14.78***

Significance levels: *0.05, **0.01, ***0.001.
No significant: ns.

Table 3
Fixed effects for the Generalized Linear Mixed Model that relates frost ring presence with cardinal orientation and sampling heights as fixed effects, and site and intra-tree
variability as random effects.

Parameter Coefficients Standard error z-value

Intercept −5.889 0.949 −6.209***

North orientation 0.169 0.144 1.176 ns
West  orientation 0.395 0.137 2.872**

South orientation 0.328 0.139 2.357*

Height: 1.5 m 0.593 0.098 6.024***

Significance levels: *0.05, **0.01, ***0.001.
No significant: ns.
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ig. 6. An exponential regression curve fitted for the data of probability of frost rings
nd  the bark thickness at different age classes (years) in A. araucana trees.

he frequency of these cold events, contributing to the discussion
f the ecological implications of increasing weather extremes in
he context of a warmer global climate (IPCC, 2007). However,
lthough a frost record in wood is a useful tool to derive long-term
xtreme episodes in climate, many aspects related to the sensitiv-
ty of stems, including tree age and bark thickness as protective
raits over meristems, still remain poorly documented. This in turn
as an enormous implication to discern key ecophysiological con-
equences of freezing stress in forest ecosystem dynamics.

The formation of a frost ring may  be related to diverse biophys-
cal conditions, including intensity and duration of frost (Glerum,
975; Stöckli and Schweingruber, 1996; Gurskaya, 2007), as well
s topography at the stand level and forest structure (Geiger et al.,
003; Payette et al., 2010). In addition, and even when frost dam-
ge can be significant enough to lead to mortality of different plant
issues (Arco Molina et al., 2015), limits to frost resistance are vari-
ble and may  depend on tree species, health, phenological stage,
nd the cryoprotectant function of the citoplasmatic cell density,
mong others (Pascale and Damario, 2004).
Frost damage in A. araucana wood was easily distinguishable
s a traumatic ring area where the axial tracheids experienced the
ontraction (collapse) of its walls and the lost of their axial ori-
ntation. Moreover, rays appeared locally distended and deflected
from the usual radial course of alignment when they were viewed
in cross section. Even when the damaged area was  characterized by
such abnormalities of the tissue, the vascular cambium in A. arau-
cana underwent a relatively rapid recovery on the production of
new series of normal tracheids after the traumatic tissue during
the same growing season (Fig. 2).

According to the observations of this study, the distribution of
frost rings along the axis of the stem of A. araucaria showed a sim-
ilar proportion in number at both 0.5 m and 1.5 m sampled points,
independently of sites (Table 1). Gurskaya and Shiyatov (2006)
studied the proportion of frost rings along the stems of Larix sibir-
ica and Picea obovata, observing that the greater the distance from
the ground the lower the frequency of the frost rings. The authors
argued that during a freeze event the air masses are thermally
stratified, with the colder layers remaining near the ground sur-
face (Gurskaya and Shiyatov, 2006; Gurskaya, 2014). However, this
thermal stratification can be modified by wind, mixing the layers
of air with a consequent homogenization of the temperatures (Dy
and Payette, 2007). A similar condition may  be expected for our
study sites, where strong and frequent winds, particularly between
the spring-summer months of November and January, can mix air
layers, preventing thermal stratification (Conti, 1998).

According to the results obtained, it could be speculated that
as the bark of A. araucana becomes thicker, the thermal protec-
tion of the cambium in situations of extreme colds increases. This
may be partially explained by the fact that trees with thicker bark
could accumulate more heat along the day, so that the cambial
zone remains warmer during a freeze. Under these conditions,
frost-related damages in wood are rarely produced (Gurskaya and
Shiyatov, 2006). Additionally, the sensitivity to frost varies in rela-
tion to the different parts of the tree stem and branches (Stöckli and
Schweingruber, 1996; Schweingruber, 2007). When analyzing frost
rings along the basal section of the trunk in A. araucana stems, it was
observed that the probability of the vascular cambium to be dam-
aged by frost is significantly lower at 0.5 m than at 1.5 m from the
ground (Table 3). Coincidentally, the bark thickness was inversely

related to the stem height, being significantly thicker at 0.5 m than
at 1.5 m high from the ground level (Table 2). Moreover, when
analyzing the frequency of frost rings and bark thickness at dif-
ferent age classes, it was  observed that the frequency of frost rings
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ecreased and bark thickness increased with increasing cambial
ge (Fig. 5), demonstrating an exponentially negative relationship
etween both variables (Fig. 6). These results suggested an inverse
elation between the width of the bark and the probability of frost
ing occurrence. On the other hand, when analyzing the presence of
rost rings in relation to cardinal orientations, it was observed that
he probability of frost ring was significantly higher in the south
nd west sides of the tree stems at both sites (Table 3). There are
wo possibilities to cause this result. First, the higher probability
f frost ring in those sides of the stems concurred with the most
requent wind directions recorded for the study region, indicating
hat the cambium at that position may  be more exposed to frost
amage. A second cause is maybe related to the latitude where the
tudied trees are located. The north and east orientations are the
armest sides, which corresponds to the Southern Hemisphere.

hus, the north and east sides of the tree stems may  accumulate
ore heat during the day and probably remain warmer than the

outh and west sides, thereby increasing the resistance of the cam-
ium to damage by freezing temperatures. In this sense, any cause
r the combination of both, may  be responsible for the higher prob-
bility of frost rings in the south and west sides of the tree stems.
n short, both the thickness of the bark and the orientation of the
runk can influence the degree of probability of which cambium
an be damaged by an extreme cold.

The results of this study confirm the conjecture that as trees
et older they gradually lose their capacity to record frosts in their
ood structure (Fayle, 1981; Stöckli and Schweingruber, 1996;

reter and Block, 2004; Schweingruber, 2007; Payette et al., 2010).
n A. araucana this could be partially explained by the direct rela-
ionship between bark thickness and tree age (Figs. 3 and 5),
nder the evidence that bark thickness is age-dependent. It was
bserved that these trees were particularly sensitive to be injured
y frosts during the first 100 cambial years, a period correspond-

ng to the juvenile stage of their life (Hadad et al., 2015). Gurskaya
nd Shiyatov (2006) indicated that a similar relationship was
bserved in P. obovata and L. sibirica, two species where bark thick-
ess increased with tree age. By contrast, frost rings have been
bserved at any age of the tree life for species with a thin bark

ayer (Hantemirov et al., 2000). In A. araucana trees, 80% of frost
ings was confined to the first 45 years of cambial age at the PP site
nd to the first 70 years of life in PL, although occasional records
f frost rings were observed for up to 150 years of cambial age
Fig. 4). These occasional records might be the result of unusu-
lly intensive frosts that may  affect both juvenile and older trees.
n agreement with these results it was reported that 80% of the
rost rings was recorded during the first 30 and 20 cambial years
n P. obovata and L. sibirica, respectively (Gurskaya and Shiyatov,
006). Moreover, Kidd and Copenheaver (2014) reported that 90%
f the frost rings occurred between cambial ages 1 and 10 in Pinus
anksiana, although tree age ranged from 13 to 104 years. There-
ore, it appears that the sensitivity of A. araucaria to be damaged by
rost decreases with increasing age, stem diameter and bark thick-
ess (in agreement with the observations made by Glerum, 1975;
töckli and Schweingruber, 1996; Gurskaya and Shiyatov, 2002;
reter and Block, 2004; Gurskaya, 2007; Waito et al., 2013; Kidd
nd Copenheaver, 2014), demonstrating that a higher probability
f frost rings occurs at the juvenile portions of the xylem (as pointed
ut by LaMarche, 1970; Fayle, 1981; Brunstein, 1996; Gurskaya and
hiyatov, 2002; Payette et al., 2010).

Topography and other factors such as microclimate, canopy
ensity and soil moisture, have been indicated as possible factors

ontributing to forest susceptibility to extreme cold events (Dy
nd Payette, 2007; Payette et al., 2010; Gurskaya, 2014; Kidd and
openheaver, 2014). Differences in the frequency and probability
f frost rings recorded at PP and PL sites, separated by 30 km,  could
e due to differences in topography. While the PL forest is located
nologia 37 (2016) 116–125 123

on a slope facing SE, and consequently relatively more protected
from the westerlies, the trees on the PP site develop in a basaltic
highland plateau, more exposed to the flow frequency and severity
of these winds.

The position of the frost injury inside the growth ring may  indi-
cate the chance of occurrence of a frost during the period of the
active plant growth development (Treter and Block, 2004; Payette
et al., 2010). This makes it possible to distinguish if the climate event
corresponds to a late (spring) or an early (autumn) frost (Treter and
Block, 2004). According to the observations here reported, most of
the frost rings in A. araucana are located at the earlywood zone, indi-
cating a preponderance of late frosts (Table 1). These results agree
with those reported by Hadad et al. (2012) from other A. araucana
forest populations in northern Patagonia, a region where late frosts
are frequent. Similar reactions of wood to late frost injuries have
been observed in species from other regions of the world such as:
Pinus obovata, L. sibirica (Gurskaya and Shiyatov, 2006), Picea mar-
iana (Payette et al., 2010) and P. banksiana (Kidd and Copenheaver,
2014), suggesting a higher vulnerability of cambial cells during
xylem differentiation to cold. Although northern Patagonia may
experience early frosts (Bustos, 2001) with proven evidence of frost
ring formation, no significant number of latewood frost rings were
detected. This could be related to the low mean temperature in
the last stage of the growing season, which leads to a lower rate of
cambial activity and hence the mother xylem cells are rarely dam-
aged by early frosts (Gurskaya, 2014). A similar fact has also been
hypothesized for P. mariana (Payette et al., 2010). Particular growth
rings with two frost injuries may  indicate unusual cold summers,
as claimed by Gurskaya and Shiyatov (2002). These rings, rare in
A. araucana, were detected in the most exposed site to wind (PP
site) and from other similar forest environments located 100 km
far away from this site (Hadad et al., 2012).

5. Conclusions

In the present study the frost injuries were anatomically and
dendrochronologically identified in the xylem of A. araucana, an
endemic tree from northern Patagonia, being these injuries related
to developmental traits. The presence and probability of frost rings,
the bark thickness and the cambial age exhibited singular relation-
ships, evidencing that bark thickness is age-dependent and that
frost ring probability decreases as the thickness of bark and cambial
age increase. Results showed a parallel increase in bark thickness
and cambial age, and a decrease in the probability of frost rings. As
shown by the physical evidence (frost rings and bark thickness) it
is arguable that the bark has an insulating and protective capacity
against the potential incidents of frost in the vascular cambium.
However, physiological conditions associated with age and fre-
quency of frost damage should not be discarded, a fact that should
be studied in detail. Consequently, as 21st-century warming model
scenarios predict that extreme cold weather events are still likely
to occur over many regions of the world (Kodra et al., 2011), their
impact over Patagonian forests and their possible consequences in
forest dynamics should be addressed with particular attention.
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