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a b s t r a c t

As agricultural system comprises natural processes that are ruled by thermodynamics, the energy
utilization is well suited for assessing the sustainability in the management of natural resources. The
goals of this paper are 1) to assess the energy use efficiency of the main crops during the 1992e2005
period in Inland Pampa (Argentina); 2) to evaluate the database structure in terms of energy alloca-
tion; 3) to assess the changes in technical efficiency using frontier analysis and 4) to identify the best
explanatory variables for energy efficiency variability. Results showed an upward trend in productivity
per unit area in the crops analyzed (excluding sunflower). Summer soybean and sunflower showed
higher energy efficiency values by the end of time series. The main shift in the energy use pattern was
the reduction of the energy allocated to tillage. The overall performance of the wheat and soybean crops
in the study area appears to be closer to the energy usage pattern shown by the top 5% energy use
efficiency crop fields. The exploratory analysis using classification and regression trees (CART) revealed
that the energy allocation to tillage; and the crop specie were the attributes that mainly explained the
energy efficiency changes.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Modern agricultural systems are artificially arranged in order to
produce food and fiber [1,2]. Current agricultural practices reduce
the plant component of these systems to one or two dominant
species. The persistence of this artificially ecosystem design
involves the use of complementary sources of energy in order to
control the growth and development of undesired community
components (e.g. pests). This additional energy requirement
substantially reduces the energy efficiency of agroecosystems
compared with natural systems [3e5]. Furthermore, the potential
negative impact over the function and structure of agroecosystems
due to this intensification usage of natural resources has led to the
need for developing environmental indicators under the headings
of sustainability [6].

Environmental indicators should be characterized by such
factors as the simplicity and transparency of the assessment
method, and should indicate items and trends obviously relevant in
terms of importance for sustainability [7] Several environmental
indexes have been developed as tools to more usefully aggregate
and simplify information about environmental impact [8]. These
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indexes vary greatly in terms of methodology, input variables and
the aspects of the environmental impact they address. However, as
there are many conflicting frameworks to develop indicators, it is
unclear the best way to collect data [9] or reach consensus not only
in qualitative but also in the quantitative issues [10]. These limi-
tations have led in recent times to seek other dimensions to assess
the provision of environmental services. The efforts made under
the Millennium Environmental Assessment [11], allowed to redis-
cover the role of physics on the concepts of cost and value, and the
opportunity to explore the implications of ecosystems under the
laws of thermodynamics [12,13]. Therefore, as agricultural system
comprises natural processes that are ruled by thermodynamics, the
energy utilization has to be analyzed with the aim of assessing the
energetic efficiency in the management of natural resources
[14e16].

The intensification process of natural resource usage in modern
agriculture and, particularly the higher energy-dependent
production systems, has also modified the Argentinean cropping
systems [17]. One of this agroecosystem, the Inland Pampa, is
a representative region for showing this modifications due to
recent land-use changes [18]. The Inland Pampa is a sub region of
a fertile plain originally covered by grasslands, which during the
1900s and 2000s was transformed into an agricultural land mosaic
by grazing and farming activities. However, since 1990 the tradi-
tional mixed grazingecropping systems were being replaced by
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permanent agriculture [19,20]. The goal of this paper is to study the
energy use efficiency of the four main crops in Inland Pampa
(Argentina) using a large production database. The specifics goals
are 1) to assess the energy use and energy use efficiency of maize,
sunflower, soybean and wheat crops during the 1991e2005 period
in the Inland Pampa (Argentina); 2) to evaluate the database
structure in terms of energy allocation; 3) to assess the changes in
technical efficiency using frontier analysis and 4) to identify the
best explanatory variables for energy efficiency variability.

2. Materials & methods

2.1. Site analyzed

The Inland Pampa (Argentina) (34e35�S; 61e63�W) comprises
a land area of about 4.5 million ha in the center of Argentina and is
located in the centre and the west side of the Province of Buenos
Aires. The most frequently cropped soils in the region are Mollisols,
developed from eolian sediments of the Pleistocene era, with
dominantly udic and thermic water and temperature regimes,
respectively [21]. Average annual rainfall decreases from about
900 mm in the east to 750 mm in the west [22]. In the eastern part
of the gradient the moisture range of the soil changes from udic to
ustic [23] and is mainly ustic in the western part [24].

2.2. Database structure

The study was conducted by using a 185-farm database
(1992e2005) obtained by the AACREA farmers association, from
Inland Pampa (Argentina) [25]. From this dataset we used data
from the four main crops in the area: maize (Zea mays L.), sunflower
(Helianthus annuus L.), wheat (Triticum aestivum) and soybean
(Glycine max L.). Soybeanwas considered both as spring or summer
crop (i.e. in a wheat-soybean double crop). The database contains
21,278 cases and it was split into seven two-year period subsets
(Table 1). For every individual crop field harvested in each year,
records contain information about crop yield, tillage operations,
pesticides and fertilizer used (name and dose applied), and area
occupied.

2.3. Method of energy balance accounting

A process analysis was used in this study to measure energy
flow in the database analyzed [26,27]. According to this method, all
energy inputs (direct and indirect) to an agricultural system are
considered, based on physical material flows and the indirect
energy use is only included one step backwards from the farm (i.e.
the so-called farm gate approach [28]). This means that energy
required for packing, storing, drying and transporting products
were not accounted in final calculations. For each year analyzed,
total indirect and direct energy (MJ) were calculated for each one
single crop field. Direct energy input was considered as the energy
used on farm, comprising diesel and lubricants for tillage
Table 1
Number of crop fields analyzed in the database analyzed.

Crop specie Two-year period

1992e1993 1994e1995 1996e1997

Maize (M) 544 645 744
Wheat (W) 206 503 763
Spring soybean (S1) 170 106 143
Summer soybean (S2) 92 66 150
Sunflower (Su) 526 1062 1247
operations. The electricity consumption was not considered, as
previous on-farm estimations of energy use [29] showed a low
allocation of energy use in electricity, as no irrigation systems are
commonly applied in the study site. Indirect energy input includes
the energy needed for the production of mineral fertilizers, plant
protection agents and farm machinery. For assessing the energy
input allocation, total energy input were split in three main cate-
gories: fertilizers, tillage, and pesticides (each one includes both
direct and indirect energy costs). Human labor was not include in
final accounting as it represents very low percentages (<0.02%) of
energy input for modern production systems [30]. Solar energy was
either not included in the energy balance, because it exceed few
times the fossil energy used and it would mask the variation in the
input of fossil energy [31]. Each energy input was considered on an
area-based account and they were lately multiplied by their cor-
responding energetic values. Output energy of each field was
calculated by multiplying the crop yield (from the database) with
the energy crop content. All energetic values were extract from
scientific literature sources [28,30e39]. Values of energy input and
output (expressed in MJ/ha) were used to calculated the energy
balance (Output/Input ratio), which express the total of crop energy
produced per unit of energy output. A series of Spearman rank
correlations were used for assessing the correlation between
response variables and time. Differences among crops were
assessed using a Kruskal-Wallis test followed by a Dunn’s multiple-
comparison test [40].

2.4. Energy use efficiency frontier

In order to assess the difference between each crop field and
the most energy-efficient ones (in each crop and year combina-
tion), we compared the average energy use values of the 5% most
energy records with those of all crop fields, using quantile
regression (QR). QR is a suitable statistical method for analyzing
the upper limit of a response variable distribution [41]. Thus, for
each one of the crop � year subset, the 95% QR (s ¼ 0.95) was
calculated in order to estimate the highest achievable crop field
performance regarding energy return. QR was performed using
Blossom software (available at www.fort.usgs/gov/products/
software/blossom.asp). In Fig. 1, it is represented the regression
line using 5% of the dataset. Using the QR linear regression line as
frontier of high efficiency achievable, it is possible to define
a technical efficiency value [42], assuming constant returns to
scale (i.e. the amount of energy input needed to produce an
additional energy output is constant, no matter what is the level
of energy input used):

TEff ¼ AB=AC (1)

where, TEff has always values lower than 1 and shows the
proportion of energy used in each crop field in relation to the
energy use level by the top 5% performing crop fields. An alterna-
tive data envelopment analysis (DEA) [43] could be applied to
database analysis, for allowing scale efficiency calculations due to
1998e1999 2000e2001 2002e2003 2004e2005

1104 1169 309 549
717 1187 672 999
547 1413 514 1267
330 356 153 302

1240 1222 201 60

http://www.fort.usgs/gov/products/software/blossom.asp
http://www.fort.usgs/gov/products/software/blossom.asp


Table 2
Variable importance ranking [0e1] of the explanatory variables used in the CART
analysis.

Explanatory variable Abbreviation Importance

Crop specie CROP 0.73
Year analyzed YEAR 0.50
Area of the crop field (ha) AREA 0.04
Fraction of total energy input allocated to fertilizers F 0.37
Fraction of total energy input allocated to pesticides P 0.45
Fraction of total energy input allocated to tillage T 1.00
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Fig. 2. Mean and standard error of energy input a) and output b) of each crop during
the period studied. Crops are: sunflower (Su); maize (M); spring soybean (S1); soybean
after wheat (S2); and wheat (W). Full line only connects the mean symbols to highlight
the time trend.
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Fig. 1. A demonstrative output and input relationship. The broken line represents the
linear regression using the top 5% performing crop fields. Letters on the dotted line
represents the segments for technical efficiency (TEff) calculation procedure (see text
for details).

D.O. Ferraro / Energy 44 (2012) 490e497492
variable scale returns. However, the election of the QR approach has
the main advantage of allowing statistical inferences to be drawn
from the results, and to distinguish between real technical
inefficiencies and statistical noise [44]. Eventually, when variable
returns to scale are considered, the technical efficiency indices are
greater than, or equal to, the efficiencies under constant returns to
scale.

2.5. Explanatory factors for TEff

Finally, in order to find the best explanatory factors for TEff, we
analyzed the database using k-means cluster analysis and classi-
fication and regression trees (CART) [45,46]. Firstly, field crops
were clustered using Teff through an unsupervised k-means
cluster algorithm [47]. The clustering algorithm is based on a least
sum-of-squares estimation, and attempts to group the crop fields
increasing cluster internal homogeneity and external or between-
group heterogeneity. A standard cross-validation procedure was
applied for determining the final number of cluster. In cross-
validation, repeated (v) random samples are drawn from the
data for the analysis, and the respective model is then applied to
compute predicted values. After obtaining the final configuration,
a subset of the most contrasting k-means clusters was analyzed
using CART. CART is a non-parametric statistical method that
recursively partitions the multidimensional space defined by the
explanatory factors into subsets as homogeneous as possible [48].
Also, CART is extremely robust to the effect of outliers as well as
they are able of dealing with missing values by minimizing or
eliminating the effect of such values on model performance.
Basically, a regression tree partitions the space of all possible field
attributes (both categorical and continuous), starting with all field
attributes (at the root of the tree) and successively splitting that
space in subsets as different as possible [45]. Initial CART analysis
results in very large trees (i.e. the algorithm extracts complete
descriptive information from the data, including noise), which are
pruned back to an optimal sized tree based on relative error rates
(misclassification error) for minimizing its costecomplexity.
There are several pruning methods; in this study, the pruning
method on misclassification error within one standard deviation
of the minimum relative error was used [45]. Validation is an
important component to test the learning status of the model. In
this work, crop fields were randomly separated into two different
datasets, one for training (2/3 of the original dataset: the learn
set) and another for the testing of the developed tree (1/3 of the
original dataset: the test set). A standard cross-validation proce-
dure was applied for calculating both the whole misclassification
error of both the learn set (i.e. CV learn) and the error set
(CV error). In CART the equivalent to the R2 of linear regression is
(1 � CV error) [45]. This estimates the “portion of variance
explained by the model” [49]. Finally, the CART procedure
considers the importance of the independent variables, which are
ranked in descending order of their contribution to tree
construction. The procedure looks at the improvement measure
attributable to each variable in its role as a surrogate to the
primary split. The values of these improvements are summed
over each node of the tree and scaled relative to the best per-
forming variable. The variable with the highest sum of improve-
ments is scored 100, and all other variables have lower scores
ranging downwards towards zero [48]. The explanatory factors
used in CART were those described in Table 2.
3. Results and discussion

Although at the beginning of the data period studied all crops
(except summer soybean) showed similar values of energy use by
the end of this series, wheat (W) and maize (M) exhibited two- and
three-fold values of energy use compared with the other non-
cereal crops (Fig. 2a). The average energy input per hectare
increased from 1992 to 2005 in maize, wheat and summer soybean
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(S2) (Spearman rank correlations (SRC) ¼ 0.26; 0.11; 0.07, respec-
tively). Spring summer (S1) did not show a significant time trend
regarding energy input, while sunflower (Su) was the only crop that
showed a significant negative trend regarding energy use per
hectare during the period studied (SRC ¼ �0.38). When energy
output (i.e. crop yield adjusted by the grain specific energy) was
assessed, maize showed the highest values during all the period
studied, and these differences increased by the end of the time
series (Fig. 2b). Sunflower was the only crop that showed a non-
significant correlation between time and energy output. The rest
of the studied crops showed an increased in energy output (SRC:
M ¼ 0.36; S1 ¼ 0.46; S2 ¼ 0.31; W ¼ 0.36, Fig. 2b).

When energy allocation is studied all the crops showed
a remarkable reduction in tillage energy use (Fig. 3). In all cases
(except summer soybean) tillage represented ca. 85% of total
energy use by 1992e1993. Maize and wheat showed the highest
reductions in tillage energy allocation, reaching values of 20% by
the end of the time series (Fig. 3). Moreover, these two cereal
crops showed a significant changed in energy allocated to fertil-
izers increasing the partition in the total energy budget from
values lower than 20 % to 65 % (maize) and 70% (wheat)
(SRC ¼ 0.63 and 0.58, for maize and wheat, respectively). Non-
cereal crops (i.e. soybean and sunflower) showed different
energy allocation patterns from maize and wheat (Fig. 3). Energy
allocated to fertilizer showed a low significant increased only in
sunflower, and this energy fraction never exceeded 20% of total
budget in the non-cereal crops, during the whole period studied.
Regarding energy allocated to pesticide use, all crops showed
increments in this fraction. The lowest increment value was
observed in summer soybean (SRC ¼ 0.10) while the highest
increment value was observed in spring soybean (SRC ¼ 0.55)
increasing from 10% in 1992 to almost 60% of total energy use
by 2005.

The calculated ratio between total energy used and crop yield
(i.e. O/I) for maize, wheat and summer soybean showed no
significant trend during the period studied, with mean O/I values
of 21.4, 12.3, and 20.7 MJ/MJ, respectively (Fig. 4). The significant
reduction in total energy use for sunflower (Fig. 1a) was the main
cause for the observed improved in the O/I ratio for this crop, by
the end of the period studied (Fig. 4). Also, spring soybean showed
a consistent pattern of increasing in O/I values during the period
studied raising from an average of 12 to 28 by the end of the time
series. Although there were significant differences among the time
periods studied (Kruskal Wallis, P < 0.05), technical efficiency
(TEff) for the whole database showed no significant linear trend
(P > 0.05) during the period studied (Fig. 5). Mean values range
from 0.42 to 0.58, with an overall mean of 0.50. It means that, in
average, the most efficient crop fields in each year used ca. 50%
less energy for the same output level than the mean value of the
whole database. Regarding each crop distance from the high-
efficiency frontier (i.e. TEff ¼ 1) as an average of the outcome
from 1992 to 2005 (Fig. 6), both wheat and soybean showed more
closer values to the highest achievable efficiency value deter-
mined by the top 5% performing crop fields analyzed. Finally, it
was possible to assess some specific patterns when changes in
time of the different crops are analyzed (Fig. 7). Both maize and
sunflower exhibited a negative and significant trend in TEff values
during the period studied (SRC ¼ �0.04 and �0.09, respectively).
In contrast, both wheat and summer soybean showed a positive
and significant time trend in TEff during the period studied
Fig. 3. Mean and standard error of the fraction of total energy input allocated to
fertilizer (F); tillage (T); and pesticides (P) of each crop during the period studied. Crop
legends as in Fig. 2. Full line connects the mean symbols as in Fig. 2.
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Fig. 5. Mean and interquantile range (25e75 percent) of technical efficiency (TEff)
values of the crop fields measured as the ratio between total input energy used in the
higher 5% of performing crop fields and the energy used in each crop field. The closer
the TEff value to 1, the closer the energy used compared with the higher 5% performing
fields (see Fig. 1 for further explanation). Crop legends as in Fig. 2. Full line connects the
mean symbols as in Fig. 2. Spearman’s rank correlation (r) was not significant
(P > 0.05).

Fig. 6. Mean and interquantile range (25e75 percent) of technical efficiency (TEff)
values of the crop species during the whole period studied (1992e2005). Crop legends
as in Fig. 2. Full line connects the mean symbols as in Fig. 2. Different letters indicates
significant differences (Dunn’s multiple comparison test, P < 0.05). Full line connects
the mean symbols as in Fig. 2.
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(Fig. 7). Summer soybean showed no significant TEff trend in the
1992e2005 intervals and also depicted the higher interquantile
ranges during the period studied.

The k-means cluster analysis initially selected sixteen crop
field sets. Five of these clusters were lately selected for CART
analyses (Fig. 8). These five clusters represent a gradient of TEff
values and their selection increase the chance to find a signifi-
cant explanation model. CART analysis using this subset was able
to explain 40% of the total variability (1 � CV ¼ 0.40) and defined
ten terminal nodes (Fig. 9). At the top of the tree, the CART
model use CROP for splitting the maize crop fields from the rest
Fig. 4. Mean and interquantile range (25e75 percent) of output to input (O/I) energy
ratio expressed both in MJ/MJ and kg/MJ of each crop during the period studied. Crop
legends as in Fig. 2. Full line connects the mean symbols as in Fig. 2. Only significant
spearman’s rank correlation (r) are showed (P > 0.05).
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of the other crops. The right side of the CART tree was subse-
quently splitted (Fig. 9, ID3) using the fraction of energy input
allocates to tillage (T). The splitting value (SV) for this node was
0.526. When this condition was satisfied (i.e. the right branch of
ID3) the CART model selected T and YEAR for splitting four
terminal nodes, representing all k-means cluster except very
high (VH) TEff (Fig. 9). In the right part of the CART (i.e. T >¼
0.526), the CART model determined five more splitting nodes
(with six terminal nodes), and the fraction of energy allocates to
pesticides (P) were selected in three of them. These terminal
nodes represent the k-means cluster subset of medium (M), high
(H) and very high (VH) TEff values, with the exception of
a terminal node with only eight outlier values (Fig. 9, ID17). At
the bottom of the tree, the CART model was able to split two
terminal nodes that represent very high values of TEff (Fig. 9,
ID18 and ID20). Both terminal nodes came from a common
splitting condition associated to the fraction of energy allocated
to fertilizer (Fig. 9, ID13). The SV of this splitting node indicates
that the VH classification was achieved in crop fields that invest
equal or less that ca. 5% (i.e. F <¼0.056) of the total energy input
in fertilizers. The CART model revealed the non-linear nature of
the relationship between TEff and the explanatory factors, as it
was possible to get an equal classification through different
CART paths. For example, the CART classified two terminal nodes
(Fig. 8, ID11 and ID12) as medium (M) TEff nodes. However, this
status can be achieved either under the condition of low tillage
investment (ID4) and during the most recent years (ID11) or
under higher investment in tillage (ID5) and under an pesticide
energy investment equal or lower than ca. 20% of total energy
input (Fig. 9 ID12). When the variable importance for CART
selection was assessed (Table 2), the algorithms showed that the
fraction of energy allocated to tillage (T) was the most important
variable for building the final CART model of Fig. 8. The impor-
tance of other variables is explained on the value of T. In this
sense, the crop specie (CROP) and year (YEAR) were able to
explain 73 and 50%, respectively, as explained by the fraction of
energy assigned to tillage. The remaining fractions of energy
allocation (pesticides and fertilizers) reached relative values of
less than 50%. Finally, the area of each crop field (AREA),
a possible indirect estimator of landscape effects, reached a very
low value of importance in terms of building the CART model
(Table 2).
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4. Conclusions

This work constitutes the first approach for studying the energy
efficiency in the long term in Argentine agroecosystems. The
evidence showed an upward trend in productivity per unit area in
the production systems studied, with the exception of sunflower
crop. Genetic progress is an aspect not considered in the estimates
of this work and it is often associated with changes in productivity
over time [50]. However, these increases were of a magnitude
greater than the increases in input use (via fertilizers, pesticides or
crops) only for summer soybean (S1) and sunflower (Su), which
resulted in higher energetic efficiencies by the end of the time
series analyzed. In the study area, the most remarkable shift in the
energy use pattern was the reduction of the energy allocated to
tillage, mainly from 1996. This coincides with the introduction of
soybeans genetically modified to tolerate glyphosate, and its
subsequent explosive expansion in the Pampean agroecosystems
[51]. The balance between energy use and output in each crop
through the study period showed a plateau tendency of the O/I
parameter. The O/I values were higher than similar cropping
systems [31,35,52,53], mainly in the non-cereal crops, where the
relative low usage of fertilizers in Argentinean crops is more
evident [54]. In particular, the spring soybean and sunflower crops
appear to have improved their performance in terms of the O/I
during the studied period, doubling their initial values, but also
showed an apparent trend towards the stabilization of this
parameter. Also, it was possible to detect that the within-crop
variation was higher in soybean and sunflower compared with
those for wheat and maize. These variations are important because
they denote that there is scope to adjust the production technol-
ogies for controlling energy consumption within the same crop.
Although some of this variability can be awarded to changes in
natural resource availability, these results show that there is scope
to work on the efficiency determined by the parameter O/I. The
greatest variation detected within than between crops could also
be referred to TEff results. Through this parameter it was possible to
detect slight changes on technical efficiency (i.e. the difference in
energy use in each field crop in relation to themost energy-efficient
ones). The efficiency denoted by the TEff parameter is different
from the O/I traditional measurement. Mainly, TEff indicates how
far are each overall crop performance with respect to the highest
achievable efficiency value (i.e. the one determined by the frontier
analysis). Thus, the overall performance of the wheat and soybean
crops in the study area appears to be closer to the energy usage
pattern shown by the top 5% energy use efficiency crop fields.
However, the most obvious pattern is the low variability among
production systems, which would indicate that a genuine impact in
reducing energy use (or increases in efficiency) would be achieved
through internal production systems adjustments rather than
a radical system change (i.e. crop species change). The exploratory
analysis for explaining the variability of technical efficiency (TEff)
using CART revealed that the energy allocation to tillage and the
crop specie were the attributes that most strongly explain the
energy efficiency changes. Finally, and based on the values of
productivity and energy efficiency, it was possible to identify some
benchmarks in terms of energy allocation that could serve as
indicators for clustering groups of varying energy efficiency.
Moreover, to get a full indication of changes in energy use at



D.O. Ferraro / Energy 44 (2012) 490e497 497
regional level, it should be also considered the crop rotation
effects and productivity variations due to changes in resource
availability not associated to external energy inputs (e.g. soil type or
rainfall).
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