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Abstract

Let M � Sn+1 � Rn+2 be a homogeneous isoparametric hypersurface
and consider the algebraic set of unit tangent vectors generating planar
normal sections at a point E 2 M (denoted by bXE [M ] � TE (M)). The
present paper is devoted to prove that bXE [M ] is connected by arcs.. This
in turn proves that its projective image X [M ] � RP (TE (M)) also has
this property.

1 Introduction.

Table 1, bellow, includes all the homogeneous isoparametric hypersurfaces in
spheres. There are many other isoparametric hypersurfaces of spheres which
are not homogeneous but we shall not consider them here.
Our objective is to present a result concerning the manifolds in Table 1. This

property concerns their algebraic sets of unit tangent vectors generating planar
normal sections at a point E of M (denoted bXE [M ] � S (TE (M))). Hence its
projective image X [M ] � RP (TE (M)) of bXE [M ], also has this property.

Theorem 1 For all the homogeneous isoparametric hypersurfacesMn � Sn+1 �
Rn+2 (those in Table 1), the algebraic set bXE [M ] � S (TE (M)) is connected by
arcs.

The paper is organized as follows. In the next section we recall basic infor-
mation concerning the algebraic set bXE [M ] and its projective image X [M ].
In Section 3 we indicate, for each M in Table 1, the polynomials that de�nebXE [M ]. We include the necessary notations to understand their meaning but

avoid the computations required to get them. Those computations are contained
in [11]. Section 3 has three natural subsections where the spaces M with the
same g are placed together. In Section 4 we indicate how to construct some
subsets of bXE [M ] which are required in the proof of Theorem 1. In Section

�Mathematical Subject Classi�cation 2000, 53C30, 53C42.
yPartial support from CONICET from Argentina, is gratefully acknowledged.

1



5 we mention the subsets that may be constructed, in bXE [M ], for each of the
corresponding manifolds. The properties of these subsets are used in the proof
of Theorem 1 given in Section 6. Using a nice result from [4] we obtain in
Section 7 an interesting consequence of Theorem 1.

Table 1

g M dim m1;m2

1 M1 = Sn n n
2 M2 = Sk � Sn�k n k; (n� k)
3 MR = SO (3) = (Z2 � Z2) 3 1; 1
3 MC = SU (3) =T 2 6 2; 2

3 MH = Sp (3) = (Sp (1))
3

12 4; 4
3 MO = F4=Spin (8) 24 8; 8
4 WR = SO (5) =T 2 8 2; 2

4 WC = U (5) =
�
SU (2)

2 � T 1
�

18 4; 5

4 NR = SO (m)� SO (2) = (SO (m� 2)� Z2) 2m� 2 1;m� 2
4 NC = S (U (m)� U (2)) =

�
SU (m� 2)� T 2

�
4m� 2 2; 2m� 3

4 NH = Sp (m)� Sp (2) =
�
Sp (m� 2)� (Sp (1))2

�
8m� 2 4; 4m� 5

4 N(9;6) = Spin (10) � T= (SU (4) � T ) 30 6; 9
6 MB = G2=T

2 12 2; 2
6 MS = SO (4) =Z2 � Z2 6 1; 1

For these manifolds, g indicates the number of distinct constant principal curvatures,dim
is the corresponding dimension and m1, m2 their multiplicities.

2 The algebraic set of planar normal sections.

Here we use M to indicate any of the hypersurfaces in Table 1. They are orbits
of a point E (kEk = 1) in the tangent linear representation of some symmetric
space where the indicated group is contained in the isotropy.
By de�nition, normal sections are the curves obtained by cutting a subman-

ifold Mn of Rn+2 with the a¢ ne subspace generated by a unit tangent vector
X 2 TE (M) and the normal space T?E (M), at the given point E of M . Any
unit tangent vector X 2 TE (M) de�nes a normal section. This curve can be
given a C1 parametrization around E which is regular and can therefore be
locally parametrized by arc-length. Let us recall that:

De�nition 2 A curve 
 (s) parametrized by arc-length in Rn+k such that E =

 (0) is said to be planar at E if its �rst three derivatives 
0 (0), 
00 (0), 
000 (0)
are linearly dependent in TE

�
Rn+k

�
.

It is known that the unit vectors de�ning planar normal sections at the point
E 2M are characterized by the following condition [9]:
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Condition 3 The normal section of M de�ned by the unit vector X 2 TE (M)
is planar at E if and only if

�
rX�

�
(X;X) = 0.

Here � indicates the second fundamental form ofM in Rn+2 at E and
�
r�
�

its usual covariant derivative. As in [9] we denote by

bXE [M ] =
�
X 2 TE (M) : kXk = 1;

�
rX�

�
(X;X) = 0

	
: (1)

the algebraic set of unit vectors generating planar normal sections at E.
For isoparametric hypersurfaces in the sphere (the case considered here)

this algebraic set is determined by a single polynomial of degree three de�ned
on TE (M) but restricted to the unit sphere: S (TE (M)). This polynomial
is P (X) =


�
rX�

�
(X;X) ;H2

�
where fE;H2g is an orthonormal basis of

TE (M)
?; because

�
rX�

�
(X;X) is orthogonal to E. We call P (X) the poly-

nomial of normal sections of M . The algebraic set bXE [M ] is then de�ned
by: bXE [M ] = fX 2 TE (M) : kXk = 1; P (X) = 0g :

SinceX 2 bXE [M ] implies (�X) 2 bXE [M ] (the antipodal map of S (TE (M))
preserves bXE [M ]) we may consider the quotient of bXE [M ] by the antipodal map
of S (TE (M)) and obtain an algebraic set X [M ] � RP (TE (M)).
It is necessary to describe the polynomials de�ning bXE [M ] for each M . In

the next Section we indicate them and the notation required. As it is clear
from their de�nition, the polynomials are homogeneous, have degree 3, and the
variables in each monomial have degree 1 ([9]).They are constructed in [11].
Since our objective is to prove that bXE [M ] is connected by arcs, it is enough

to prove that � bXE [M ] (the cone over bXE [M ], without the vertex ) is connected
by arcs. This set � bXE [M ] � (TE (M)� f0g) is de�ned by

� bXE [M ] = fX 2 TE (M) : X 6= 0; P (X) = 0g

3 The polynomials.

We indicate the corresponding polynomials that de�ne bXE [M ] for each manifold
in Table 1, following the order and the notation of the table.

Remark 4 The spaces corresponding to g = 1 and g = 2 are symmetric R-
spaces and by a well known result of D. Ferus [2] have parallel second fun-
damental form in their corresponding ambient Euclidean spaces. So, for each
of them, (if n = dim (M)) we have bXE [M ] = S(n�1) and X [M ] = RP(n�1).
Therefore we do not need to consider them in the proof of Theorem 1.

So we start with
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3.1 Spaces with g = 3:

These are the, so called, Cartan isoparametric hypersurfaces MR, MC, MH and
MO. We indicate only required facts to understand the notation. See [11] for
details. Let F = R, C, H, or O and denote by M3 (F ) the 3 � 3 matrices
with entries in F . Let H3 (F ) =

�
u 2M3 (F ) : u

t = u
	
where x 7! x denotes

conjugation in F . An element u 2 H3 (F ) is of the form:

u =

24 �1 x3 x2
x3 �2 x1
x2 x1 �3

35 ; �j 2 R; xj 2 F: (2)

The H3 (F ) are real Jordan Algebras with the product u�v = 1
2 (uv + vu). The

compact groups SO (3) � SU (3) � Sp (3) � F4 act as groups of automorphisms
of the corresponding algebras. Their actions preserve the function tr (u).
Let us consider the subspaces U (F ) = fu 2 H3 (F ) : tr(u) = 0g (F = R, C,

H, O) which are invariant by the corresponding groups.
Let us take the point E = diag (�1; 0; 1) 2 U (F ), 8F and consider the orbits

MF of E by the mentioned groups. Let us take in each U (F ) the inner product
hu; vi = 1

2 tr (u � v). The subspaces U with these inner products are our ambient
Euclidean spaces for the manifolds MR, MC, MH and MO. Note that kEk = 1.
Let us consider in U (F ) the subspace:

a = fdiag (�1; �2; �3) : �1 + �2 + �3 = 0g : (3)

The normal space to MF at E is the same for all F namely TE (MF )
?
= a. We

may identify the tangent space at E with the subspace of U :

TE (MF ) =

8<:
24 0 x3 x2
x3 0 x1
x2 x1 0

35 ; xj 2 F = R;C;H;O
9=; :

The polynomials determining the algebraic sets bXE [MF ] forMF are de�ned
on TE (MF ) (F = R, C, H, O).

PF (X) = Re ((x1x2)x3) ; xj 2 F = R;C;H;O (4)

In all cases, the trilinear function Re ((x1x2)x3) is invariant by cyclic permuta-
tion and satis�es Re ((ab) c) = Re (a (bc)).

3.2 Spaces with g = 4.

We have to divide these spaces in several groups.

3.2.1 Spaces WR and WC.

The polynomials for WR and WC may be simultaneously described. We follow
[8, p.27] and reproduce the necessary notation. Let us take the vector space p
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over the �eld F (F = R or C) of skew symmetric, 5� 5 matrices over F . That
is p = fZ 2M5 (F ) : Z

t = �Zg.
We use the notation:

Z =

266664
0 �z1 �z3 �z5 �z7
z1 0 �z4 �z6 �z8
z3 z4 0 �z2 �z9
z5 z6 z2 0 �z10
z7 z8 z9 z10 0

377775 2 p;
zj = xj + iyj ; j = 1; : : : ; 10

The real case (F = R) is given by the condition yj = 0, j = 1; : : : ; 10. In p we
consider the inner product de�ned by:

hZ;W i =
�
�1
2

�
Re
�
tr
�
Z
�
W
���

= Re
10X
j=1

zjwj :

and the subspace a =
�
H (�1; �2) : �j 2 R

	
� p where

H (�1; �2) = �1 (E2;1 � E1;2) + �2 (E4;3 � E3;4) ; �j 2 R:

Then (�1; �2) is an orthonormal coordinate system for a.
We take the basic vector E de�ned by:

E = H (t1; t2) = H
�
cos

��
8

�
; sin

��
8

��
; kEk = 1

Our manifold WF (F = R or C) is the orbit of E by the adjoint action of the
corresponding group (SO (5) or U (5)) on p.
The normal and tangent spaces at E are:

TE (WF )
?
= a

TE (WF ) = fZ 2 p : x1 = x2 = 0g

�
F = R;C

dimR (TE (WR)) = 8 while dimR (TE (WC)) = 18.
For F = R,we may write a tangent vector toWR at E asX = (0; 0; x3; : : : ; x10)

and the polynomial of normal sections is:

PR (X) = t1 (x7x9x4 + x7x10x6 � x8x3x9 � x8x5x10)+
+t2 (�x7x9x5 � x8x9x6 + x10x3x7 + x10x4x8) :

On the other hand, on the vector Z = (0; 0; x3; : : : ; x10; y1; : : : ; y10) tangent to
WC at E the polynomial is:

PC (Z) = t1C + t2D
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C = (�y2x3y6 � y2y3x6 + y2x5y4 + y2y5x4)+
+ (x4x7x9 + x4y7y9 + y4x7y9 � y4y7x9)+
+ (�x3x8x9 � x3y8y9 � y3x8y9 + y3y8x9)+
+ (x6x7x10 + x6y7y10 + y6x7y10 � y6y7x10)+
+ (�x5x8x10 � x5y8y10 � y5x8y10 + y5y8x10)
D = (�y1x3y6 � y1y3x6 + y1x5y4 + y1y5x4)+
+ (�x5x9x7 � x5y9y7 � y5x9y7 + y5y9x7)+
+ (x3x10x7 + x3y10y7 + y3x10y7 � y3y10x7)+
+ (�x6x9x8 � x6y9y8 � y6x9y8 + y6y9x8)+
+ (x4x10x8 + x4y10y8 + y4x10y8 � y4y10x8)

Clearly PC (Z) reduces to PR (X) when the imaginary parts yj , (j = 1; : : : ; 10)
vanish.

3.2.2 Spaces NR, NC and NH.

These submanifolds are de�ned via Cli¤ord systems. The reader interest in the
construction of these Cli¤ord systems should consult [3]. Since our objective
are the polynomials, we shall limit ourselves to indicate the manifolds. We have
three in�nite families. Note that here n � 3.
The spaces where the Cli¤ord systems act are respectively R2n, R4n, R8n.

But since C2n ' R4n, H2n ' R8n we may think that our system is de�ned on
Fn � Fn = F 2n (F = R, C, H). Then we shall consider the largest case NH in
H2n =Hn �Hn and explain the required reductions to get the other ones.
We write the elements of H2n =Hn �Hn as:

((u1; u2 : : : ; un) ; (v1; : : : vn�1; vn)) 2 H2n (uj ; vk 2 H):

The inner product on H2n is:

((u1; u2 : : : ; un) ; (v1; : : : vn�1; vn)) ;

�
(u01; u

0
2 : : : ; u

0
n) ;

�
v01; : : : v

0
n�1; v

0
n

���
=

=
Pn

j=1



uj ; u

0
j

�
+


vj ; v

0
j

�
where



uj ; u

0
j

�
is the inner product of quaternions. The manifolds are the orbits,

by the corresponding groups, of E 2 H2n given by:

E = ((t1; 0; : : : ; 0) ; (0; : : : ; 0; t2))
t1 = cos

�
�
8

�
; t2 = sin

�
�
8

�
We take the unit vector 
 = ((t2; 0; : : : ; 0) ; (0; : : : ; 0; (�t1))) orthogonal to E.
The normal space at E is TE (M)

?
= RE � R
 and the tangent space to NH

at E is:

TE (NH) =

�
((�; u2 : : : ; un) ; (v1; : : : vn�1; �)) 2 H2n
: uj ; vj 2 H; �; � pure quaternions

�
(5)
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To write down our polynomial we introduce the notation:

� = a1i+ a2j + a3k; � = d1i+ d2j + d3k;
ur = br;o + br;1i+ br;2j + br;3k vr = cr;o + cr;1i+ cr;2j + cr;3k
2 � r � n� 1
un = bn;o + bn;1i+ bn;2j + bn;3k v1 = c1;o + c1;1i+ c1;2j + c1;3k

(6)

Then we may write the polynomial de�ning bXE [NH]. That is:

QH (X) = (t1c1;o + t2bn;o) (a1c1;1 + a2c1;2 + a3c1;3 + d1bn;1 + d2bn;2 + d3bn;3)+

+ (t1c1;o + t2bn;o)
Pn�1

r=2 (br;ocr;o + br;1cr;1 + br;2cr;2 + br;3cr;3)+
+ (�t1c1;1 + t2bn;1) (c1;oa1 � c1;3a2 + c1;2a3 � d1bn;o � d3bn;2 + d2bn;3)+
+ (�t1c1;1 + t2bn;1)

Pn�1
r=2 (�cr;1br;o + cr;obr;1 � cr;3br;2 + cr;2br;3)+

+ (�t1c1;2 + t2bn;2) (c1;3a1 + c1;oa2 � c1;1a3 � d2bn;o + d3bn;1 � d1bn;3)+
+ (�t1c1;2 + t2bn;2)

Pn�1
r=2 (�cr;2br;o + cr;3br;1 + cr;obr;2 � cr;1br;3)+

+ (�t1c1;3 + t2bn;3) (�c1;2a1 + c1;1a2 + c1;oa3 + d1bn;2 � d2bn;1 � d3bn;o)+
+ (�t1c1;3 + t2bn;3)

Pn�1
r=2 (�cr;3br;o � cr;2br;1 + cr;1br;2 + cr;obr;3) :

For the other two spaces NR and NC, we notice that, for F = R, we have
� = � = 0, us = bs;o, vs = cs;o 2 R while for F = C, � = a1i and � = d1i are
pure imaginary and ur = br;o + br;1i, vr = cr;o + cr;1i 2 C. Then we have

For NR.
QR (X) = (t1c1;o + t2bn;o)

Pn�1
r=2 br;ocr;o:

For NC.
QC (X) = (t1c1;o + t2bn;o) (a1c1;1 + d1bn;1)+

+ (t1c1;o + t2bn;o)
Pn�1

r=2 (br;ocr;o + br;1cr;1)+
+ (�t1c1;1 + t2bn;1) (c1;oa1 � d1bn;o)+
+ (�t1c1;1 + t2bn;1)

Pn�1
r=2 (�cr;1br;o + cr;obr;1) :

3.2.3 The space N(9;6).

This space has dimension 30 and m1 = m3 = 9, m2 = m4 = 6. The ambient is
the tangent space of the symmetric space EIII of dimension 32. We adopt the
following notation for the ambient space R32 which we identify with H8:

(A;B) =

��
a1 a2
a3 a4

�
;

�
b5 b6
b7 b8

��
;
ar; bs 2 H
H8 ' R32

We set the inner product on H8 as:

h(A;B) ; (C;D)i =
4X
s=1

has; csi+
8X

k=5

hbk; dki

where has; csi is the inner product of quaternions.
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We take:

E =

��
t1 0
0 0

�
;

�
0 t6
0 0

��
; 
 =

��
t6 0
0 0

�
;

�
0 (�t1)
0 0

��
where, as before, t1 = cos

�
�
8

�
, t6 = sin

�
�
8

�
. Clearly kEk = 1 and the normal

space to N(9;6) at E is the subspace TE
�
N(9;6)

�?
= RE � R
. In turn the

tangent space at E is:

TE
�
N(9;6)

�
=

��
� a2
a3 a4

�
;

�
b5 �
b7 b8

��
ar; bs 2 H; �; � pure quaternions

(7)

To present the polynomial, we require the re�ned notation:

as = us;0 + ius;1 + jus;2 + kus;3; s = 2; 3; 4
br = vr;0 + ivr;1 + jvr;2 + kvr;3; r = 5; 7; 8

� = i�1 + j�2 + k�3 � = i�1 + j�2 + k�3

(8)

Then the expression of the polynomial for X 2 TE
�
N(9;6)

�
is:

P(9;6) (X) = (t1v5;0 + t6u2;0) [h�; b5i+ ha2; �i+ ha3; b7i+ ha4; b8i] +
+ (�t1v5;1 + t6u2;1) [h�; ib5i+ ha2; i�i � ha3; ib7i � ha4; ib8i] +
+ (�t1v5;2 + t6u2;2) [h�; jb5i+ ha2; j�i � ha3; jb7i � ha4; jb8i] +
+ (�t1v5;3 + t6u2;3) [h�; kb5i+ ha2; k�i � ha3; kb7i � ha4; kb8i] +
+ (t1v8;0 � t6u3;0) [h�; b8i+ ha2; b7i � ha3; �i � ha4; b5i] +
+ (�t1v7;1 + t6u4;1) [h�; b7ii+ ha2; b8ii+ ha3; b5ii+ ha4; �ii] +
+ (�t1v7;2 + t6u4;2) [h�; b7ji+ ha2; b8ji+ ha3; b5ji+ ha4; �ji] +
+ (�t1v7;3 + t6u4;3) [h�; b7ki+ ha2; b8ki+ ha3; b5ki+ ha4; �ki] +
+ (�t1v7;0 � t6u4;0) [�h�; b7i+ ha2; b8i+ ha3; b5i � ha4; �i] :

3.3 Spaces with g = 6.

These are MB and MS. The complex simple Lie algebra gC2 , of type G2, has
only two real forms namely the compact one g2 and the split (or normal) real
form g. The real algebra g has a Cartan decomposition g = k� p. That is, the
subalgebra k and the complementary subspace p satisfy

[k; k] � k; [k; p] � p; [p; p] � k:

and k� ip = g2 is the compact real form. As in [8] we identify p with pu := ip
by the map

iX 7! X: (9)

which in turn identi�es g2 and g. Furthermore we have k ' so (4).
As in [5] and [6], it is possible to choose a convenient orthonormal basis for

g2 fHj : 1 � j � 14g such that
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SpanR fH3;H4;H5;H6;H7;H8g = k ' so (4)
SpanR fH1;H2;H9;H10;H11;H12;H13;H14g = p

a = SpanR fH1;H2g

a is a Cartan subalgebra of g2 (and hence a maximal abelian subspace of p).
Since the Cartan subalgebra a is contained in p the restricted roots coincide
with the roots of gC2 . We take the point E = H1 which happens to be a regular
element in a then the orbits of E by the compact groups G2 and SO (4) are
both principal orbits.

MB = G2=T
2 = G2 (E) � g2

MS = SO (4) = (Z2 � Z2) = SO (4) (E) � p � g2
MB � S (g2) = S13 MS � S (p) = S7

We have:

TE (MB) = [g2; E] = SpanR f[Hj ; E] : 3 � j � 14g
TE (MS) = [k; E] = SpanR f[Hj ; E] : 3 � j � 8g

T?E (MB) = T?E (MS) = SpanR fH1;H2g = a

The polynomial for bXE [MB] on X =
P14

j=3 rj [Hj ; E] is:

PB (X) = r3r5r7 + r3r6r8 + r3r11r13 + r3r12r14+
+r4r12r13 + r7r9r11 + r8r9r12
+(�r4r6r7 � r5r9r13 � r6r10r13 � r6r9r14 � r7r10r12)+
+
�
2
3

p
3
�
(�r3r6r7 � r3r12r13 � r6r9r13 + r7r9r12)

+3 (r4r5r8 + r5r10r14 + r8r10r11 � r4r11r14)

(10)

and that de�ning bXE [MS], can be obtained by restriction of PB (X) to TE (MS)
(vanishing rj (9 � j � 14)). We get:

PS (X) = r3r5r7 + r3r6r8 + (�r4r6r7)+
+
�
2p
3

�
(�r3r6r7) + 3 (r4r5r8)

(11)

4 Pro-sets.

As in Section 2 we use M to indicate any of the hypersurfaces in Table 1. The
polynomials of normal sections of our isoparametric hypersurfacesM are de�ned
in TE (M) where we have (in all cases) an orthogonal system of coordinates
fx1; :::; xmg and the polynomials are written is terms of these variables. As we
mentioned above, the polynomials P (X) de�ning bXE [M ] have degree 3 and
the variables in each monomial have degree 1.
We want to indicate the presence of certain subsets of each set of variables

which are (when they exist) particularly important in our objective of proving
Theorem 1.
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De�nition 5 We shall say that a subset A � fx1; :::; xmg is a "pro-set" for the
polynomial P (X) if each of its monomials has one and only one variable in the
subset A.

In the next Section we describe pro-sets for each P (X) where they ex-
ist. Each pro-set A de�nes, obviously, a corresponding companion "subspace"
V (A) � (TE (M)� f0g) by vanishing the variables included in A.

V (A) = fX 6= 0 2 TE (M) : xj (X) = 0; 8xj 2 Ag (12)

Note that we are excluding f0g and we call them "subspaces" of (TE (M)� f0g).
It is obvious that V (A) � � bXE [M ].

5 Description of pro-sets.

We shall indicate only two pro-sets (when they exist) for each space even if there
are others. As mentioned above, we have a companion "subspace" for each of
them.

5.1 In the spaces with g = 3:

By (4) for each F = R;C;H;O we have two obvious pro-sets. Namely: Ak =
fxkg, (k = 1; 2) Notice that Ak contains one real variable for F = R, two for
F = C, four for F = H and eight for F = O. We have the associated "subspaces"
which are denoted by Vk (MF ) for k = 1; 2. Clearly dimVk (MF ) = 2; 4; 8; 16,
k = 1; 2, for F = R; C; H; O, respectively.
Let us denote by S (Vk (MF )) the unit sphere in Vk (MF ). We notice that:

S (V1 (MF )) \ S (V2 (MF )) �
�
n
X 2 TE (MF ) : kx3k2 = 1

o
' S (F ) 6= �

and dim (S (F )) = 0; 1; 3; 7 (F= R; C; H; O).
We must observe also that:

V1 (MF ) + V2 (MF ) = (TE (MF )� f0g) ; F = R; C; H; O: (13)

5.2 In the spaces with g = 4.

5.2.1 Spaces WR and WC.

ForWR = SO (5) =T 2 we have the polynomial PR (X) with variables fx3; : : : ; x10g,
we �nd the pro-sets:

A1 (WR) = fx7; x8g A2 (WR) = fx9; x10g

and the associated "subspaces" V1 (WR) and V2 (WR). Here the dimension
of V1 (WR) and V2 (WR) is 6. Then dim (V1 (WR) \ V2 (WR)) = 4. Therefore
S (V1 (WR)) \ S (V2 (WR)) ' S3.

10



Similarly for WC (recalling that zj = xj + iyj) we �nd pro-sets:

A1 (WC) = fy1; y2; x7; y7; x8; y8; g
A2 (WC) = fx3; y3; x5; y5; x9; y9; x10; y10g

and the corresponding "subspaces" are: V1 (WC) and V2 (WC). Then the dimen-
sion of V1 (WC) is 12 and that of V2 (WC) is 10. Again dim (V1 (WC) \ V2 (WC)) =
4 and S (V1 (WC)) \ S (V2 (WC)) ' S3.
We must observe also that, in both cases,

V1 (WF ) + V2 (WF ) = (TE (MF )� f0g) ; F = R; C: (14)

5.2.2 Spaces NR, NC, NH.

Note that here n � 3.
For NR. Recalling (6) we see that for NR we have � = � = 0 and the

whole set of variables is fcr;o; bs;o; r = 1; :::; n� 1; s = 2; :::; ng. Two pro-sets
for QR (X) are:

A1 (NR) = fc1;o; bn;og
A2 (NR) = fbr;o; 2 � r � n� 1g

and associated to them we have: V1 (NR) and V2 (NR). Let us observe that
dimV1 (NR) = 2n� 4 and dimV2 (NR) = n. Also notice that:

S (V1 (NR)) \ S (V2 (NR)) �
�
n
X 2 TE (NR) :

Pn�1
s=2 c

2
s;o = 1

o
' Sn�3: (15)

V1 (NR) + V2 (NR) = (TE (NR)� f0g) : (16)

For NC. We have the set of variables:

� = a1i; � = d1i;
us = bs;o + bs;1i vs = cs;o + cs;1i
s = 1; :::; n

and two pro-sets for QC (X) are:

A1 (NC) = fc1;1; bn;1; vr; (2 � r � n� 1)g
A2 (NC) = fa1; d1; ur; (2 � r � n� 1)g

The associated "subspaces" are V1 (NC) and V2 (NC). We have:

S (V1 (NC)) \ S (V2 (NC)) �
�
n
X 2 TE (NC) : jc1;oj2 + jbn;oj2 = 1

o
' S1:

V1 (NC) + V2 (NC) = (TE (NC)� f0g) : (17)

For NH. Looking at QH (X) and (6) we �nd

11



A1 (NH) = f�; �; vr; (2 � r � n� 1)g
A2 (NH) = f�; �; ur; (2 � r � n� 1)g (18)

They are pro-sets but we notice that here we have a situation di¤erent from
previous cases, that is:

A1 (NH) \A2 (NH) = f�; �g : (19)

The corresponding "subspaces" are V1 (NH) and V2 (NH) and we observe that

S (V1 (NH)) \ S (V2 (NH)) �
�
n
X 2 TE (NH) : jv1j2 + junj2 = 1

o
' S7: (20)

We have here another di¤erence with the previous cases. Namely:

V1 (NH) + V2 (NH) & (TE (MF )� f0g) (21)

This situation is responsible for the need of an "ad hock" proof for this space.
For N(9;6). The polynomial P(9;6) (X), when expanded in its real variables,

has 252 monomials and a patient search into them shows that there are no
pro-sets among its 30 variables.

5.3 In the spaces with g = 6:

In MB whose polynomial is (10) we have the pro-sets:

A1 (MB) = fr3; r4; r9; r10g ; A2 (MB) = fr5; r6; r11; r12g

and corresponding "subspaces" V1 (MB) and V2 (MB). Clearly:

S (V1 (MB)) \ S (V2 (MB)) �
�
�
X 2 TE (MB) : r

2
7 + r

2
8 + r

2
13 + r

2
14 = 1

	
' S3:

Furthermore

V1 (MB) + V2 (MB) = (TE (MB)� f0g) : (22)

Similarly for MS:

A1 (MS) = fr3; r4g A2 (MS) = fr5; r6g

with "subspaces" V1 (MB) and V2 (MB). We have here

S (V1 (MS)) \ S (V2 (MS)) �
�
�
X 2 TE (MS) : r

2
7 + r

2
8 = 1

	
' S1:

and also:
V1 (MS) + V2 (MS) = (TE (MS)� f0g) : (23)

12



6 Proof of the Theorem.

This section contains the proof of Theorem 1.

6.1 General case.

We shall do �rst the proof for the spaces in Table 1 di¤erent from NH andN(9;6).
We use the generic notation M for our manifold and let fx1; :::; xmg be the or-
thogonal coordinates in TE (M) in which the polynomial PM (X) is written. We
have determined two pro-sets Aj (M) (j = 1; 2) and corresponding "subspaces"
Vj (M). In all cases considered (those in Table 1 except NH andN(9;6)) we have:

A1 (M) \A2 (M) = �
V1 (M) + V2 (M) = (TE (M)� f0g)
S (V1 (M)) \ S (V2 (M)) 6= �

(24)

Let us take now an arbitrary point X in � bX [M ]. We write it in terms of
the coordinates as X = (x1; :::; xm) 6= 0. It satis�es: PM (X) = 0.
Now (with the coordinates of X) we construct two new points in TE (M)

namely:

Y coodinates of X that are in A1 (M) others 0
Z coodinates of X that are not in A1 (M) others 0

(25)

We have now three alternatives namely:

((1)) Y 6= 0 and Z 6= 0
((2)) Y = 0 =) Z = X 6= 0
((3)) Z = 0 =) Y = X 6= 0

(26)

(the alternative Y = 0 = Z is ruled out since X 2 � bX [M ]).
Let us assume �rst that we have the situation ((1)) (in (26)).
We must observe that by de�nition and (24) we have Z 2 V1 (M) and Y 2

V2 (M) and also hY; Zi = 0.
Let us take now the points

X (t) = (tY ) + Z 2 TE (M) ; 8 t 2 [0; 1] :

Of course X (1) = X 2 � bX [M ] and X (0) = Z 2 V1 (M) � � bX [M ]. Also, by
assumption ((1)) (26), X (t) 6= 0, 8 t 2 (0; 1].
Since A1 (M) is a pro-set, in every monomial of PM (X) there is one and

only one variable in A1 (M) and we see that

PM (X (t)) = tPM (X) = 0; 8 t 2 (0; 1]
Then we have that

X (t) 2 � bX [M ] ; 8 t 2 [0; 1] :
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and therefore we have a continuous curve X (t) 2 � bXE [M ], 8 t 2 [0; 1] which
joins the starting point X 2 � bXE [M ] to the point Z 2 V1 (M) � � bX [M ].
So we have proved that any X 2 � bXE [M ], for which ((1)) of (26) holds, can

be joined, by a continuous curve contained in � bXE [M ], to a point in V1 (M) �
� bX [M ].
We have to consider now the cases ((2)) and ((3)) (in (26)).
Assume ((2)) :
If X = Z 2 V1 (M) then it obviously can be joined (by a continuous curve

contained in V1 (M)) to any other point in V1 (M) � � bX [M ].
Assume ((3)).
We have X = Y 2 V2 (M), then (as was shown for all the hypersurfaces

M 6= NH, N(9;6)) we have: S (V1 (M)) \ S (V2 (M)) � Sp for some p � 0.
Then we have two sets, connected by arcs, namely V1 (M) and V2 (M), with
at least a point in common. Therefore any point X 2 V2 (M) can be joined
(by a continuous curve in � bXE [M ]) to any other in V1 (M). This shows that
� bXE [M ] is connected by arcs, and in turn so are bXE [M ] and X [M ].
We do now a somewhat di¤erent proof for NH.

6.2 Proof for NH.

The reasons for taking this case separately are (19) and (21).
We take an arbitrary point X in � bX [NH] then:

QH (X) = 0; X 6= 0 (27)

and write it in coordinates as:

X = ((�; u2; : : : ; un) ; (v1; : : : ; vn�1; �)) 2 TE (NH)
uj ; vj 2 H; �; � pure quaternions.

Now (with the coordinates of X) we construct two new points in TE (M) as
in (25) but with A1 (NH) (18) instead of A1 (M). Then Z and Y are respectively
of the form:

Z = ((0; u2; : : : ; un�1; un) ; (v1; 0 : : : ; 0; 0)) 2 V1 (NH) � � bX [NH]
Y = ((�; 0; : : : ; 0; 0) ; (0; v2 : : : ; vn�1; �))

We may write X as X = Y +Z and have again the three alternatives ((1)),
((2)) and ((3)) in (26).
Let us assume �rst that ((1)) holds.
Then Z 2 V1 (NH) � � bXE [NH] but Y is neither in V1 (NH) nor V2 (NH) (so

it may not even be in � bXE [NH]). However hY; Zi = 0.
Let us take again

X (t) = (tY ) + Z; 8 t 2 [0; 1] :

14



which in this case takes the form:

X (t) = ((t�; u2 : : : ; un) ; (v1; tv2; : : : ; tvn�1; t�)) ; t 2 [0; 1]

X (1) = X 2 � bXE [NH] and X (0) = Z 2 V1 (NH) � � bXE [NH].
Again, since A1 (NH) (18) is a pro-set, we see that

QH (X (t)) = tQH (X) = 0; 8 t 2 (0; 1] :

Then X (t) 2 � bXE [NH], 8 t 2 [0; 1] and we we have a continuous curve

X (t) 2 � bXE [NH] ; 8 t 2 [0; 1]

which joins the starting point X 2 � bXE [NH] to the point Z 2 V1 (NH) �
� bXE [NH]. Also Z 2 V1 (NH) can be joined to any other point in V1 (NH)
(by a continuous curve contained there). So we have proved that any X 2
� bXE [NH] such that Y 6= 0 6= Z can be joined, by a continuous curve contained
in � bXE [NH], to any point in V1 (NH).
Now we have to study the other alternatives in (26).
Assume ((2)) i.e. Y = 0, Z = X 6= 0.
Then there is nothing to prove since we already have X 2 V1 (NH) and so it

can be joined, by a curve in V1 (NH), to any other point there.
Assume ((3)) i.e. Z = 0.
Then we have: Y = X 2 � bXE [NH]. In this situation the above procedure

(multiplying by t) leads to 0. So we have to use a di¤erent approach.
Let us recall that we are assuming now

Y = X = ((�; 0; : : : ; 0; 0) ; (0; v2 : : : ; vn�1; �)) 2 � bXE [NH] (28)

and

kY k2 = k�k2 + k�k2 +
n�1X
s=2

kvsk2

Under assumption ((3)) we have a new alternative. Namely

(3; 1) k�k2 + k�k2 = 0
(3; 2) k�k2 + k�k2 6= 0

(29)

If we have (3; 1) then clearly Y = X 2 V2 (NH) and since (20) holds, we can
join Y = X to any point in V1 (NH).
We may assume from now on that (3; 2) holds. Then we have a new alter-

native:
(3; 2; 1)

Pn�1
s=2 kvsk

2 6= 0
(3; 2; 2)

Pn�1
s=2 kvsk

2
= 0

(30)

and study, separately, both situations.
Let us assume �rst (3; 2; 1).
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Since Y = X, we have QH (Y ) = QH (X) = 0 and by (28) and (6), for our
Y , we have:

br;s = 0; 2 � r � n and 0 � s � 3:

Then we may eliminate, from the polynomial QH, the terms containing these
variables. By doing this we get:

0 = QH (Y ) = (t1c1;o) (a1c1;1 + a2c1;2 + a3c1;3)+
+ (�t1c1;1) (c1;oa1 � c1;3a2 + c1;2a3)+
+ (�t1c1;2) (c1;3a1 + c1;oa2 � c1;1a3)+
+ (�t1c1;3) (�c1;2a1 + c1;1a2 + c1;oa3)

(31)

Now we take

Y (t) = (((t�) ; 0; : : : ; 0; 0) ; (0; v2 : : : ; vn�1; (t�))) ; 8 t 2 [0; 1]

then considering (31) we see that

QH (Y (t)) = t (QH (Y )) = 0; 8 t 2 [0; 1]

Then, in the same way as before, we can join Y = X 2 � bXE [NH] (by a contin-
uous curve contained in � bXE [NH]) to a point of the form

H = ((0; 0; : : : ; 0; 0) ; (0; v2 : : : ; vn�1; 0)) :

This H is not zero, due to (3; 2; 1) in (30), and H 2 V2 (NH) but it is not
contained in V1 (NH) \ V2 (NH). However (by (20)) we can, in turn, join H to
any point in V1 (NH) by a continuous curve contained in � bXE [NH].
It remains to consider case (3; 2; 2) in (30) (we still have Y = X 2 � bXE [NH]).
If (3; 2; 2) holds then Y is of the form:

Y = X = ((�; 0; : : : ; 0; 0) ; (0; 0 : : : ; 0; �)) 2 � bXE [NH] (32)

We must show that also in this case we can �nd continuous curve in � bXE [NH]
joining Y to one point in V1 (NH).
Let us consider, an extra point C of the form

C = ((0; 0; : : : ; 0; un) ; (v1; 0; : : : ; 0; 0)) 2 V1 (NH) \ V2 (NH)

De�ned as follows: recalling the notation (6), we may take un and v1 real. That
is:

un = bn;o v1 = c1;o
bn;q = 0 = c1;q 2 � q � 3

Furthermore, calling �2 = k�k2 + k�k2 = kY k2, (we may take � > 0 since we
are in (3; 2; 2)) we take furthermore

jv1j2 + junj2 = c21;o + b
2
n;o = �2:
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Then hC; Y i = 0 and by de�nition

1

�
C 2 S (V1 (NH)) \ S (V2 (NH))

Let us consider now in S (TE (NH)) the curve


 (�) = cos (�)
C

�
+ sin (�)

Y

�
; � 2

h
0;
�

2

i
�
 (�) = ((sin (�)�; 0 : : : ; 0; cos (�) bn;o) ; (cos (�) c1;o; 0 : : : ; 0; sin (�) �))

Now, a glance at QH, shows that we have:

QH (�
 (�)) = 0; 8 � 2
h
0;
�

2

i
and so any point of the form (32) can be joined to a point in the intersection
V1 (NH) \ V2 (NH) by a continuous curve in � bX [NH]. This �nally proves that
� bX [NH] is connected by arcs.
6.3 The case N(9;6).

We can compute the shape operatorA
 on TE
�
N(9;6)

�
and obtain the eigenspaces.

There are two of dimension 9 and two of dimension 6. It is now convenient to
set the following notation: we write a quaternion q = q0 + iq1 + jq2 + kq3 as

q = q0 + Iq; Iq = iq1 + jq2 + kq3 (33)

The eigenspaces are:

Q1 =

�
X 2 TE

�
N(9;6)

�
:
�u4;0 = v7;0; �u2;0 = v5;0 u3;0 = v8;0
Ia4 = Ib7 Ia2 = Ib5 others = 0

�

Q2 =

�
X 2 TE

�
N(9;6)

�
:
u4;0 = v7;0; u2;0 = v5;0 �u3;0 = v8;0
�Ia4 = Ib7 �Ia2 = Ib5 others = 0

�
W1 =

�
X 2 TE

�
N(9;6)

�
: �; Ia3; others = 0

	
(34)

W2 =
�
X 2 TE

�
N(9;6)

�
: �; Ib8; others = 0

	
(35)

Clearly we have dimQj = 9 and dimWj = 6 for j = 1; 2:
Our interest in these subspaces comes from the fact that they vanish the

polynomial P(9;6) (X). This is a general fact [9, Proposition 4.1] but can be
checked directly with P(9;6) (X) and is obvious for the subspaces W1 and W2.
We consider their direct sums, which are:

space dimension
Q1 �Q2 18
W1 �W2 12
Qr �Ws 15 1 � r; s � 2

17



because they also vanish the polynomial P(9;6) (X), [9, Corollary 4.2] (again this
can be veri�ed by direct computation). We shall use � (W1 �W2), � (Q1 �Q2)
and � (Qr �Ws) to indicate the set of non-zero vectors in these subspaces.
The subspace Q1 �Q2 consists of the nine 2-dimensional planes (the other

variables zero)
(v5;k; u2;k) 0 � k � 3
(v7;h; u4;h) 0 � h � 3
(v8;0; u3;0)

(36)

As it is indicated in the Appendix the polynomial P(9;6) (X) splits as a sum
(43). Let us note that 
(9;6) (X) = P(9;6) (X)

��
(Q1�Q2)

. Note also that we may

consider 
(9;6) (X) de�ned in the whole space TE
�
N(9;6)

�
since the other 12

variables do not appear in this polynomial. But since P(9;6) (X) vanishes on
X 2 � (Q1 �Q2) we have the following important fact:


(9;6) � 0 on TE
�
N(9;6)

�
(37)

Therefore the polynomial P(9;6) (X) reduces to �(9;6) (X) on the tangent
space TE

�
N(9;6)

�
, that is:

P(9;6) (X) = �(9;6) (X) (38)

Let us consider now the 2-dimensional plane:

(v8;0; u3;0) (39)

and take new orthogonal coordinates in it. We have a line that vanishes the
factor (t1v8;0 � t6u3;0) that is:

(t1v8;0 � t6u3;0) = 0() v8;0 =

�
t6
t1

�
u3;0 () (v8;0; u3;0) = u3;0

��
t6
t1

�
; 1

�
and by taking the orthogonal vector

�
1;�

�
t6
t1

��
we may set new orthogonal

coordinates in the plane (39) as follows

�
v8;0
u3;0

�
=

24 �
t6
t1

�
1

1 �
�
t6
t1

� 35� y
x

�
=:

� 1
t1
t6y + x

y � 1
t1
t6x

�

By replacing the new variables in the factor (t1v8;0 � t6u3;0) (which is the
only place in �(9;6) (X) where the variables (v8;0; u3;0) appear) we obtain:

(t1v8;0 � t6u3;0) =

�
t1

�
1

t1
t6y + x

�
� t6

�
y � 1

t1
t6x

��
=:

1

t1

�
t21 + t

2
6

�
x

=
1

t1
x
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and we may replace this into �(9;6) (X) getting:

�(9;6) (X)
= (t1v5;0 + t6u2;0) �1 + (�t1v5;1 + t6u2;1) �2+
+(�t1v5;2 + t6u2;2)�3 + (�t1v5;3 + t6u2;3) �4+
+
�
1
t1
x
�
[h�; b8i � ha3; �i] +

+ (�t1v7;1 + t6u4;1)�6 + (�t1v7;2 + t6u4;2) �7+
+(�t1v7;3 + t6u4;3)�8 + (�t1v7;0 � t6u4;0) �9:

(40)

It is important to observe that the polynomial �(9;6) does not depend on the
variable y. However this variable must be considered.

6.4 The Proof for N(9;6).

We have in (7) and (8) the variables that we considered in the expression of
P(9;6) (X). Now we may use the new set of variables

fx; y; �; �; a2; Ia3; a4; ; b5; b7; Ib8g (41)

where we use (33), the new variables (x; y) and the old variables retain its
meaning in (8).
We divide the new set of variables into the disjoint sets

(x; y; 0; 0; a2; 0; a4; ; b5; b7; 0) 2 Q1 �Q2
(0; �; �; 0; Ia3; 0; ; 0; 0; Ib8) 2 W1 �W2

Q1 �Q2 �W1 �W2 = TE
�
N(9;6)

�
Let us take now an arbitrary point X0 2 � bX �N(9;6)� (then X0 6= 0) which

we may write, using the new variables, as:

X0 = (x; y; �; �; a2; Ia3; a4; ; b5; b7; Ib8) : �(9;6) (X0) = 0

As before, we may write X0 = Y + Z where

Y = (x; y; 0; 0; a2; 0; a4; ; b5; b7; 0) 2 Q1 �Q2
Z = (0; 0; �; �; 0; Ia3; 0; ; 0; 0; Ib8) 2W1 �W2

and we have again the alternative (26).
We assume �rst ((1)) of (26) that is: Y 6= 0 6= Z,
Now, under this assumption we divide our considerations into two possible

cases. Namely x = 0 and x 6= 0.

First case x = 0. If the point X0 2 � bX �N(9;6)� has the form
X0 = (0; y; �; �; a2; Ia3; a4; ; b5; b7; Ib8) ; �(9;6) (X0) = 0
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then �(9;6) (X0) reduces to

�(9;6) (X0)
= (t1v5;0 + t6u2;0) �1 + (�t1v5;1 + t6u2;1) �2+
+(�t1v5;2 + t6u2;2)�3 + (�t1v5;3 + t6u2;3) �4+
+(�t1v7;1 + t6u4;1)�6 + (�t1v7;2 + t6u4;2) �7+
+(�t1v7;3 + t6u4;3) �8 + (�t1v7;0 � t6u4;0) �9:

and we consider the points

X (s) = (0; y; s�; s�; a2; sIa3; a4; ; b5; b7; sIb8) ; s 2 [0; 1]

Since all the factors �j are linear in the variables f�; �; Ia3; Ib8g we see that,
for every s 2 (0; 1], we have the equality

�(9;6) (X (s)) = s�(9;6) (X0) = 0 (42)

and hence (since Y 2 � (Q1 �Q2) � � bX �N(9;6)�) we have that
X (s) 2 � bX �N(9;6)� ; 8s 2 [0; 1]

Second case x 6= 0. In this case the point X0 2 bX �N(9;6)� has the form
X0 = (x; y; �; �; a2; Ia3; a4; ; b5; b7; Ib8) ; x 6= 0; �(9;6) (X0) = 0

We take now the points

X (s) =
��
s2
�
x; y; �; �; sa2; Ia3; sa4; ; sb5; sb7; Ib8

�
; s 2 [0; 1]

and we see that each one of the nine terms of �(9;6) (X (s)) in (40) has a factor
s2 (because each term that does not contain x has two factors, a parenthesis
and a bracket and each one of these is linear in the variables multiplied by s,
on the other hand the variables in the factor companion of x are not multiplied
by s).
Hence we have:

�(9;6) (X (s)) =
�
s2
�
�(9;6) (X0) = 0; s 2 (0; 1]

which again yields

X (s) 2 � bX �N(9;6)� ; 8s 2 (0; 1]

and in turn (since Z = X (0) 2 � (W1 �W2) � � bX �N(9;6)�) we have again:
X (s) 2 � bX �N(9;6)� ; 8s 2 [0; 1]

Now we have to consider the other two possibilities, namely ((2)) and ((3))
of (26). Then either X0 is a point in � (W1 �W2) or in � (Q1 �Q2). But now
by means of

� (Qr �Ws) ; ; 1 � r; s � 2
we can go between any point in � (Q1 �Q2) and any other in � (W1 �W2) by
a continuous curve in � bX �N(9;6)�.
This completes the proof of Theorem 1.
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7 Consequence for � (M).

Given a point p in the isoparametric submanifold M we have we have the al-
gebraic set bXp [M ] and by considering (as in [9]) this set for each point in M
we obtain a subset of the unit tangent bundle of M which we have denoted by
� (M). The Topology of � (M) is the induced one from the unit tangent bundle
S (T (M)) of M .
The objective of this section is to show that for the submanifoldsM in Table

1 the set � (M) is also connected by arc.

Theorem 6 For all the homogeneous isoparametric hypersurfacesMn � Sn+1 �
Rn+2 (those in Table 1), the set � (M) � S (T (M)) is connected by arcs.

Let M be such a submanifold then the tangent bundle splits as a direct sum

T (M) = D1 � :::�Dg

of the simultaneous eigenspaces of the shape operators (which commute because
the normal bundle is �at). The distributions Dj are autoparallel and hence
integrable with totally geodesic leaves which are round spheres.
To prove that � (M) is connected by arcs we use Theorem D in [4] which says

that any two points, say p and q, inM can be joined by a piecewise di¤erentiable
curve in M whose di¤erentiable pieces are tangent to one of the Dj (We take
I = f1; :::; gg in Theorem D which then yields that the  i (i 2 I) generate fW
which is the hypothesis of Theorem D in [4]. (See [12] for details).
We take two arbitrary points p and q, in M . The piecewise di¤erentiable

curve 
 in M joining points p and q in M given by Theorem D in [4], can be
taken to be


 : [0; b] �!M 
 (0) = p; 
 (b) = q

and the interval [0; b] has a partition

0 < s1 < s2 < ::: < sh�1 < sh = b

such that 
j [sj ; sj+1] is a geodesic in one of the spheres integrating one of
the distributions Dk for each j = 0; :::; h�1 and we may assume that the images
of two consecutive subintervals [sj ; sj+1] belong to di¤erent spheres (otherwise
we may take a single geodesic joining the initial point of the �rst piece and �nal
point of the second one).
At each point 
 (sj) j = 1; :::; h � 1 we have two vectors in T
(sj) (M) the

left and right derivatives of 
 at sj which are orthogonal (since they belong to
di¤erent Dj at 
 (sj)). Let us denote these two derivatives by


0 (sj (�)) and 
0 (sj (+)) j = 1; :::; h� 1

We have also the derivatives at the two extremes of the interval [0; b] that is


0 (0 (+)) and 
0 (b (�))
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Let us take now two arbitrary points vp 2 bXp [M ] and wq 2 bXq [M ] in � (M)
for some p and q, in M . Let 
 be the curve described above (joining p and q)
given by Theorem D.
Since bXp [M ] is arc-wise connected, we can join vp to 
0 (0 (+)) by a con-

tinuous curve in bXp [M ]. Outside the singular set, that is, if a point t is in
([0; b]� fs1; s2; :::; sh�1g) then 
0 (t) 2 bX
(t) [M ]. Now at each fs1; s2; :::; sh�1g
we have the two orthogonal derivatives 
0 (sj (�)) and 
0 (sj (+)) j = 1; :::; h�
1 and they satisfy:


0 (sj (�)) 2 S (Dr (
 (sj))) for some 1 � r � g

0 (sj (+)) 2 S (Du (
 (sj))) for some 1 � u � g
u 6= r

Since, by [9, p. 45, Cor. 4.2.], we have that

S (Dr (
 (sj))�Du (
 (sj))) � bX
(sj) [M ]

we can join 
0 (sj (�)) and 
0 (sj (+)) by a continuous curve in bX
(sj) [M ].

When we reach the �nal point 
 (b) we may join 
0 (b (�)) 2 bXq [M ] to
wq 2 bXq [M ] by a continuous curve in bXq [M ].
Then we can joint vp to wq by a continuous curve in � (M).

8 Appendix.

With the coordinates in (8) the expression of the polynomial P(9;6) (X) is given
under (8). It has nine terms and each of them consists of two factors (one
between parenthesis and the other between brackets). We want to split each
factor between brackets, into two terms placing in the �rst one the terms
containing u3;0 and v8;0 and lumping the rest of them into �j . We write the
bracket from each term (indicated by the order in the polynomial) as follows:
The �rst bracket is:

(1) [h�; b5i+ ha2; �i+ ha3; b7i+ ha4; b8i]
= [u3;0v7;0 + u4;0v8;0] + �1

where, as indicated above,

�1 = h�; b5i+ ha2; �i+ (u3;1v7;1 + u3;2v7;2 + u3;3v7;3) +
+ (u4;1v8;1 + u4;2v8;2 + u4;3v8;3)

We continue similarly with the brackets in the other eight terms:

(2) [h�; ib5i+ ha2; i�i � ha3; ib7i � ha4; ib8i]
= [� (u3;0 (�v7;1))� (u4;1 (v8;0))] + �2

�2 = h�; ib5i+ ha2; i�i � (u3;1v7;0 � u3;2v7;3 + u3;3v7;2)�
� (�u4;0v8;1 + u4;3v8;2 � u4;2v8;3)
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(3) [h�; jb5i+ ha2; j�i � ha3; jb7i � ha4; jb8i]
= [� (u3;0 (�v7;2))� (u4;2 (v8;0))] + �3

�3 = h�; jb5i+ ha2; j�i � (u3;1v7;3 + u3;2v7;0 � u3;3v7;1)�
� (�u4;3v8;1 � u4;0v8;2 + u4;1v8;3)

(4) [h�; kb5i+ ha2; k�i � ha3; kb7i � ha4; kb8i]
= [� (u3;0 (�v7;3))� (u4;3 (v8;0))] + �4

�4 = h�; kb5i+ ha2; k�i � u3;1 (�v7;2) + u3;2 (v7;1) + u3;3 (v7;0)�
� (u4;0 (�v8;3) + u4;1 (�v8;2) + u4;2 (v8;1))

The �fth term

(5)U = (t1v8;0 � t6u3;0) [h�; b8i+ ha2; b7i � ha3; �i � ha4; b5i]

does not contain u3;0 and v8;0 in the bracket so we split this one as

U = (t1v8;0 � t6u3;0) [ha2; b7i � ha4; b5i] +
+ (t1v8;0 � t6u3;0) [h�; b8i � ha3; �i]

We continue the splitting with the previous procedure

(6) [h�; b7ii+ ha2; b8ii+ ha3; b5ii+ ha4; �ii]
= [+ (u2;1v8;0) + (u3;0 (�v5;1))] + �6

�6 = h�; b7ii+ ha4; �ii+ (u3;1 (v5;0) + u3;2 (v5;3) + u3;3 (�v5;2)) +
+ (u2;0 (�v8;1) + u2;2 (v8;3) + u2;3 (�v8;2))

(7) [h�; b7ji+ ha2; b8ji+ ha3; b5ji+ ha4; �ji]
= [+ (u2;2 (v8;0)) + (u3;0 (�v5;2))] + �7

�7 = h�; b7ji+ ha4; �ji+ (u3;1 (�v5;3) + u3;2 (v5;0) + u3;3 (v5;1)) +
+ ((u2;0 (�v8;2) + u2;1 (�v8;3) + u2;3 (v8;1)))

(8) [h�; b7ki+ ha2; b8ki+ ha3; b5ki+ ha4; �ki]
= [+ (u2;3 (v8;0)) + (u3;0 (�v5;3))] + �8

�8 = h�; b7ki+ ha4; �ki+ (u3;1 (v5;2) + u3;2 (�v5;1) + u3;3 (v5;0)) +
+ (u2;0 (�v8;3) + u2;1 (v8;2) + u2;2 (�v8;1))

(9) [�h�; b7i+ ha2; b8i+ ha3; b5i � ha4; �i]
= [+ (u2;0v8;0) + (u3;0 (v5;0))] + �9

�9 = �h�; b7i � ha4; �i+ (u3;1 (v5;1) + u3;2 (v5;2) + u3;3 (v5;3)) +
+ (u2;1 (v8;1) + u2;2 (v8;2) + u2;3 (v8;3))
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With this procedure we may write

P(9;6) (X) = 
(9;6) (X) + �(9;6) (X) (43)

where

(9;6) (X) = (t1v5;0 + t6u2;0) [u3;0v7;0 + u4;0v8;0] +
+ (�t1v5;1 + t6u2;1) [� (u3;0 (�v7;1))� (u4;1 (v8;0))]+
+ (�t1v5;2 + t6u2;2) [� (u3;0 (�v7;2))� (u4;2 (v8;0))]+
+ (�t1v5;3 + t6u2;3) [� (u3;0 (�v7;3))� (u4;3 (v8;0))]+
+ (t1v8;0 � t6u3;0) [ha2; b7i � ha4; b5i] +
+ (�t1v7;1 + t6u4;1) [(u2;1v8;0) + (u3;0 (�v5;1))]+
+ (�t1v7;2 + t6u4;2) [(u2;2 (v8;0)) + (u3;0 (�v5;2))]+
+ (�t1v7;3 + t6u4;3) [(u2;3 (v8;0)) + (u3;0 (�v5;3))+]+
+ (�t1v7;0 � t6u4;0) [(u2;0v8;0) + (u3;0 (v5;0))] :
and
�(9;6) (X)
= (t1v5;0 + t6u2;0) �1 + (�t1v5;1 + t6u2;1)�2+
+(�t1v5;2 + t6u2;2) �3 + (�t1v5;3 + t6u2;3) �4+
+(t1v8;0 � t6u3;0) [h�; b8i � ha3; �i] +
+ (�t1v7;1 + t6u4;1) �6 + (�t1v7;2 + t6u4;2) �7+
+(�t1v7;3 + t6u4;3) �8 + (�t1v7;0 � t6u4;0) �9:
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