
Contextuality Scenarios Arising from Networks of
Stochastic Processes

Rodrigo Iglesias
Instituto de Matemática de Bah́ıa Blanca, CONICET
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Abstract

An empirical model is a generalization of a probability space. It consists of
a simplicial complex of subsets of a class X of random variables such that each
simplex has an associated probability distribution. The ensuing marginaliza-
tions are coherent, in the sense that the distribution on a face of a simplex
coincides with the marginal of the distribution over the entire simplex.

An empirical model is said contextual if its distributions cannot be ob-
tained marginalizing a joint distribution over X . Contextual empirical models
arise naturally in quantum theory, giving rise to some of its counter-intuitive
statistical consequences.

In this paper we present a different and classical source of contextual empir-
ical models: the interaction among many stochastic processes. We attach an
empirical model to the ensuing network in which each node represents an open
stochastic process with input and output random variables. The statistical
behavior of the network in the long run makes the empirical model generically
contextual.
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1 Introduction

Let X = {X1, X2, X3} be a set of random variables. A probability distribution of the
joint random variable (X1, X2, X3) gives rise to a family of marginal distributions of
(X1, X2), (X2, X3), (X3, X1), X1, X2 and X3. This family of distributions is said
consistent in the sense that the distribution of Xi is the marginal of (Xj, Xi) as well
as of (Xi, Xk).

Not all consistent families of distributions on (X1, X2), (X2, X3) and (X3, X1)
arise as marginalizations of a joint distribution over (X1, X2, X3):

Example 1. Let X1, X2, X3 be random variables with values in {0, 1} and let

P (X1 = 0 ∧X2 = 0) = P (X1 = 1 ∧X2 = 1) = 1/2

P (X2 = 0 ∧X3 = 0) = P (X2 = 1 ∧X3 = 1) = 1/2

P (X3 = 0 ∧X1 = 1) = P (X3 = 1 ∧X1 = 0) = 1/2

This is a consistent family of distributions in the above sense but there is no proba-
bility assignment P (X1 = 0 ∧X2 = 0 ∧X3 = 0) of which they are its marginals.

This observation goes back to the seminal work of George Boole [4], who stud-
ied the conditions that a set of probabilities of logically related events must satisfy.
Similar behaviors arise in other cases (most notably in quantum mechanics). An en-
compassing mathematical framework for their analysis is that of empirical models
[2].

An empirical model consists of a set X of random variables X1, ..., Xn, a family of
subsets of X constituting an abstract simplicial complex, and a family of probability
distributions, one for each simplex, satisfying a consistency condition. Namely, that
if U ′ ⊆ U are two simplices of the complex, the distribution attached to U ′ is identical
to the marginal on U ′ of the distribution over U .

Given a particular empirical model a fundamental question is whether there exists
a joint distribution probability of (X1, ..., Xn) such that all the distributions over
subsets of variables are obtained as its marginalization. If such a joint distribution
exists, the family of consistent distributions over the subsets is said extendable [10].
If, on the contrary, the joint distribution does not exist, the empirical model is said
to be contextual.

Vorobev [10] gave a combinatorial characterization of those simplicial complexes
for which any family of consistent distributions is extendable. The failure in satisfying
some of the assumptions that lead to this result allow the emergence of contextuality.
This case, more interesting than the extendable setting, motivates the generalization
of probability spaces to empirical models.
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The main motivation for considering this generalization of the notion of probabil-
ity space comes from quantum theory. Many contextual empirical models have been
shown to agree with the statistical predictions of quantum mechanics concerning cer-
tain experimental designs [1]. According to quantum mechanics there are physically
realizable families of consistent distributions of random variables which cannot be
obtained as the marginals of the joint distribution of all the variables.

The formalism of quantum theory has also been used to describe probabilities
in macroscopic natural phenomena beyond quantum mechanics. For an extensive
developement in this direction see [6].

We analyze here a well motivated mathematical model, other than quantum
theory, leading also to contextual empirical models. This alternative framework is
classical, in the sense that any physical instantiation does not require quantum phe-
nomena. It involves the interactions among many stochastic processes. In particular,
our construction can be seen as a vast generalization of Example 1.

The basic unit in our framework is an open stochastic process. It models a device
that receives the values of a set of input variables and –depending on the values of a
set of internal values– generates the values of a set of output variables according to
a probability distribution encoded in a stochastic matrix. Pictoricallly, we represent
an open stochastic process as in Figure 1.

Figure 1: α represents an open stochastic process. Arrows I1, I2, I3 represent the
input variables, X1, X2 the internal variables and O1, O2 the output variables.

Open stochastic processes can be composed to build more complex stochastic
processes connecting some of the output variables with some of the input variables
of another process , as illustrated in Figure 2.

Under this representation our construction shows close resemblances to tensor
networks and the operation of tensor contraction developed in the community of
quantum computational complexity [8] ,[11]. We can provide a graphical represen-
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Figure 2: A network of stochastic processes. Each arrow represents a variable. An
output variable of one process can become an input variable of another one.

tation of the network of stochastic processes depicting each process as a node and
each variable as an arrow. The resulting network yields a single large process, as
represented in Figure 3.

We focus on the case in which this large process is closed, meaning that the
resulting network has no input or output variables and thus all the variables are
internal. In this sense, the large closed stochastic process can be seen as a large
Markov chain.

We can analyze the statistical behavior of this Markov chain at the local level
–i.e. at each node of the network–, namely the probabilistic features of the relation
between the input and output variables of each individual open stochastic process.
More specifically, we consider the probability P n

t (i, j) –as time goes to infinity– of
the event that at time t the vector of input variables of node n has value i and at
t+1 its vector of output variables gets value j. We obtain, in this way, a distribution
of possible input-output values at each node. Our main result, Theorem 2 indicates
that this family of distributions constitutes an empirical model.

This paper is organized as follows. Section 2 presents the basic elements in
the description of empirical models. Section 3 describes the structure and behavior
of networks of stochastic processes while Section 4 recasts this information in the
framework of empirical models. Section 5 illustrates how a contextual empirical
model can be defined upon a network of stochastic processes. Section 6 shows that
the contextuality arising from our model can be strictly stronger than that obtained
from quantum systems. Section 7 concludes the paper.
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Figure 3: A network composed by stochastic processes α, β, γ that yields a single
open stochastic process σ. Any variable that is simultaneously input of a node and
output of another, becomes an internal variable of the resulting global process σ.

2 Empirical models

The notion of empirical model was defined in [2] as a formal framework in which
the weird predictions of quantum mechanics can be made sense. A previous concept,
useful for the definition of empirical models, is that of measurement scenario con-
sisting of a finite set X , a finite set OX for each X ∈ X , and a family M of subsets
of X that covers X and such that if U ′ ⊆ U and U ∈ M then U ′ ∈M.

The elements of X are called the observables or variables. When an observable X
is measured, an outcome from the set OX is obtained. Each subset U in the family
M is called a context and it represents a subset of observables that can be jointly
measured. We say that U is a maximal context if it is not properly contained in
another context.

Let U be a subset of X . A section s over U is an element of the cartesian product

E(U) =
∏
X∈U

OX

A section over U represents the outcome of the joint measurement of the variables
in U . If U ′ ⊆ U there exists a natural restriction map |U ′ : E(U)→ E(U ′)

s→ s|U ′
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Let us represent a probability distribution over U as a formal linear combination

π =
∑
s∈E(U)

πs s

such that πs is a non-negative real number for each s and
∑

s∈E(U) πs = 1. The
number πs represents the probability of obtaining the outcome s when the variables
in U are measured. Let D(U) be the convex set of all probability distributions over
U .

The restriction map |U ′ : E(U) → E(U ′) induces a map |U ′ : D(U) → D(U ′) by
linear extension. Namely, if π =

∑
s∈E(U) πss then

π|U ′ =
∑
s∈E(U)

πs s|U ′ =
∑

s′∈E(U ′)

 ∑
s|U′=s′

πs

 s′ (1)

In other words, if π is a probability distribution over a set U of random variables
and U ′ is a subset of U , then π|U ′ is the marginal distribution of π when restricted
to the variables in U ′.

Let P be a correspondence that assigns a probability distribution πU ∈ D(U) to
each context U ∈ M. We say that the correspondence P is a no-signalling empirical
model for M if for every U ′ ⊆ U with U ∈ M we have the compatibility condition

πU |U ′ = πU ′

For short, we refer to no-signalling empirical models simply as empirical models.
We say that a given empirical model is non-contextual if there exist a probability
distribution πX over X –the set of all the observables– such that for all U ∈ M

πU = πX |U

If such a global distribution fails to exist we say that the empirical model is contextual.
As shown in Example 1, contextual empirical models can be easily constructed,
by just postulating adequate distributions over subsets of variables. But random
mechanisms generating this kind of behaviors are not pervasive. As noted above,
quantum mechanics is a source of instances, but classical systems supporting them
are much more rare. In the next section we present one, a network of stochastic
processes.
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3 Networks of stochastic processes

The representation of quantum processes by means of non-contextual empirical
models relies on the properties of non-classical correlations among particles. A classi-
cal analogy involves the interaction among different random-generating subsystems.
We will show how the system obtained through those interactions, represented as a
network of stochastic processes, can be seen as an empirical model.

3.1 Stochastic processes

Intuitively, a process is a device or agent that receives as input the values of a set of
variables and –depending on these values and its internal state– generates the values
of another set of output variables. If this process is not deterministic and follow a
probability distribution, we say that it constitutes a stochastic process.

More precisely, a stochastic process consists of a set of input variables I1, ..., In,
a set of internal variables X1, ..., Xm and a set of output variables O1, ..., Or, related
by a stochastic matrix σ. We denote the entries of this matrix by

σ

(
I1 ... In X1 ... Xm

i′1 . . . i′n x′1 . . . x′m

∣∣∣∣ X1 . . . Xm O1 . . . Or

x1 . . . xm o1 . . . or

)
where this number represents the probability that, if at time t we have I1 = i1, ..., In =
in and X1 = x′1, ..., Xm = x′m, then at time t+ 1 we have X1 = x1, ..., Xm = xm and
O1 = o1, ..., Or = or. Note that the rows of the stochastic matrix σ are indexed
by tuples of input and internal variables, (i′1, ..., i

′
n, x

′
1, ..., x

′
m), while the columns by

tuples of internal and output variables, (x1, ..., xm, o1, ..., or).
This notation allows to distinguish easily the internal variables as those which

appear simultaneously at both sides of the vertical line. The input variables, in turn,
appear only at the left side of the vertical line but not at the right. The output
variables, in turn, only appear at the right side of the vertical line but not at the
left.

3.2 Composition of stochastic processes

We say that a stochastic process is closed if all its variables are internal. Otherwise,
we say it is open. The importance of open processes is that they can be combined to
yield new processes by connecting output variables of some process to input variables
of another. Let us see how this composition works in an example, which is illustrated
in Figure 4.
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Figure 4: Processes α and β are composed by connecting the output variable F of
α with the input variable G of β. The resulting process γ has one input variable I,
one output variable O and three internal variables X, Z and H.

Let α and β be two open stochastic processes given by

α

(
I X
i′ x′

∣∣∣∣ X F
x f

)
and β

(
G H
g′ h′

∣∣∣∣ H O
h o

)
respectively. If we connect the output variable F of α to the input variable G of
β we obtain the stochastic process γ whose coefficients are given by the product of
coefficients of the α and β matrices:

γ

(
I X Z H
i′ x′ z′ h′

∣∣∣∣ X Z H O
x z h o

)
= α

(
I X
i′ x′

∣∣∣∣ X Z
x z

)
β

(
Z H
z′ h′

∣∣∣∣ H O
h o

)
A key feature in this composition is that the output variable F of α and the input

variable G of β become jointly a single internal variable, Z, of γ.

3.3 The network of processes

Given two stochastic processes α and β we say that α provides β if there exists a
variable X which is at the same time an output variable of α and an input variable
of β. A reciprocity is a pair (α, β) of stochastic processes such that α provides β and
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β provides α (see Figure 5). In particular, (α, α) is a reciprocity if and only if α has
at least one internal variable.

Figure 5: Left: processes α and β form a reciprocity. Right: a network without
reciprocities.

We define a network N as a family {σi}i=1,...,n of stochastic processes yielding
a stochastic process σ obtained through the composition of members of {σi}i=1,...,n.
The elements of this family are called the nodes of the network and the variables of
σ are called the arrows. σ is called the global process. We say that N is a network
without reciprocities if no pair (σi, σj), for i 6= j, is a reciprocity (see Figure 5). We
say that a network is closed if all the variables of the global process σ are internal
(see Figure 6).

Figure 6: A closed network. All the variables become internal variables of the global
process σ.

It is useful to depict a network as an oriented graph with multiple arrows where
each node represents a process σi and each arrow represents a variable. The input
variables of the process σi are represented by the incoming arrows of the node while
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its output variables are seen as arrows leaving the node. The input variables of the
global process σ are represented by arrows with no initial node. In turn, the output
variables of σ are arrows without terminal node. The internal variables of σ are
represented by those arrows connecting two nodes of N .

3.4 Dynamics of closed stochastic processes

Every closed stochastic process gives rise to a Markov chain. Let σ be a closed
stochastic process with (internal) variables X1, ..., Xn. Let

πt

(
X1 . . . Xn

x1 . . . xn

)
be the probability that at time t we have X1 = x1, ..., Xn = xn. Then the evolution
of this probability distribution is determined by

πt+1

(
X1 . . . Xn

x1 . . . xn

)
=
∑
x′1...x

′
n

σ

(
X1 . . . Xn

x′1 . . . x′n

∣∣∣∣ X1 . . . Xn

x1 . . . xn

)
πt

(
X1 . . . Xn

x′1 . . . x′n

)
For short, we write this equation as

πt+1

(
X
x

)
=
∑
x′

σ

(
X
x′

∣∣∣∣ Xx
)
πt

(
X
x′

)
If we consider the stochastic matrix σ as a linear transformation, we see that

it transforms the convex set of all probability distributions into itself. Then, by
the Brouwer’s fixed point theorem1, there exists at least one probability distribution
fixed by σ. Such a distribution is called a stationary distribution.2

4 The empirical model associated to a network

From now on, let N be a closed network without reciprocities with a global process
σ. Given a node β of the network N , let Iβ = {I1, ..., In} and Oβ = {O1, ..., Om} be

1“For any continuous mapping f : ∆→ ∆, with ∆ a compact and convex set, there exists x̄ ∈ ∆
such that f(x̄) = x̄.” In our case the mapping is given by σ, and ∆ is the compact and convex set
of probability distributions on the internal variables.

2According to the Convergence Theorem of finite Markov chains (Theorem 4.9 of [7]), the irre-
ducibility and aperiodicity of σ are sufficient conditions for the uniqueness of a stationary distribution
ω, which is obtained as the limit

ω = lim
t→∞

πt
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respectively the set of input and output variables of β. Note that β has no internal
variables since N lacks reciprocities. We will define a probability distribution δβ over
Iβ ∪Oβ. If the global process σ has a unique stationary distribution, the coefficient

δβ

(
I1 ... In O1 ... Om

i1 ... in o1 ... om

)
will be interpreted as the limit –when t → ∞– of the probability that at time t we
have I1 = i1, ..., In = in and at time t+ 1 we have O1 = o1, ..., Om = om .

This distribution does not depend on the uniqueness of the stationary distribution
ω of the global process σ. Let ω|Iβ be the marginal of ω over the subset of input
variables Iβ. The distribution δβ is defined by

δβ

(
I1 . . . Om

i1 . . . om

)
= β

(
I1 . . . In
i1 . . . in

∣∣∣∣ O1 . . . Om

o1 . . . om

)
ω|Iβ

(
I1 . . . In
i1 . . . in

)
Theorem 1. Let N be a closed network without reciprocities. Let ω be a stationary
distribution of the entire process of N . Let β be a node of N and let Iβ, Oβ and δβ be
defined as above. Then the marginal distributions of δβ over Iβ and Oβ respectively
are given by

δβ|Iβ = ω|Iβ δβ|Oβ = ω|Oβ

Proof. Let I be the joint of the variables I1, ..., In and let O be the joint of the
variables O1, ..., Om. The first equality is obtained using the fact that node β can be
identified with its stochastic matrix:

δβ|Iβ
(
I
i

)
=
∑
o

δβ

(
I O
i o

)
(2)

=
∑
o

β

(
I
i

∣∣∣∣ Oo
)
ω|Iβ

(
I
i

)
(3)

= ω|Iβ
(
I
i

)
(4)

For the second equality, let R be the joint of the variables of the global process
σ which are not contained in Iβ ∪ Oβ. Let θ be the process obtained by restricting
the network N to the nodes other than β (see Figure 7).

This means that the entire process σ is factorized as

σ

(
I R O
i′ r′ o′

∣∣∣∣ I R O
i r o

)
= β

(
I
i′

∣∣∣∣ Oo
)

θ

(
O R
o′ r′

∣∣∣∣ R I
r i

)
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Figure 7: I is the joint of all the input variables of β, while O is the joint of all its
output variables. R is the joint of the rest of the variables in network N . Process θ
is the restriction of N to the nodes that are not β.

We will use the fact that ω is a stationary distribution of the process σ:

ω

(
I R O
i r o

)
=

∑
i′,r′,o′

σ

(
I R O
i′ r′ o′

∣∣∣∣ I R O
i r o

)
ω

(
I R O
i′ r′ o′

)
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Then

δβ|Oβ
(
O
o

)
=
∑
i′

δβ

(
I O
i′ o

)
(5)

=
∑
i′

β

(
I
i′

∣∣∣∣ Oo
)
ω|I
(
I
i′

)
(6)

=
∑
i′

β

(
I
i′

∣∣∣∣ Oo
) ∑

r′,o′

ω

(
I R O
i′ r′ o′

)
(7)

=
∑
i′

β

(
I
i′

∣∣∣∣ Oo
) ∑

r′,o′

∑
i,r

θ

(
O R
o′ r′

∣∣∣∣ R I
r i

)
ω

(
I R O
i′ r′ o′

)
(8)

=
∑
i,r

∑
i′,r′,o′

β

(
I
i′

∣∣∣∣ Oo
)
θ

(
O R
o′ r′

∣∣∣∣ R I
r i

)
ω

(
I R O
i′ r′ o′

)
(9)

=
∑
i,r

∑
i′,r′,o′

σ

(
I R O
i′ r′ o′

∣∣∣∣ I R O
i r o

)
ω

(
I R O
i′ r′ o′

)
(10)

=
∑
i,r

ω

(
I R O
i r o

)
(11)

= ω|Oβ
(
O
o

)
(12)

Given a network without reciprocities N , we attach to this network a measure-
ment scenario as follows. The set of variables of this measurement scenario is the
set of all the variables of the global process σ. To each node β in the network N
corresponds a maximal context, Iβ ∪Oβ, which we denote by Uβ. They exhaust the
set of maximal contexts of the measurement scenario.

Theorem 2. Let N be a closed network without reciprocities with global process σ.
Let ω be a stationary distribution of σ. Let P be the correspondence that –for each
node β in the network N– assigns the distribution δβ to the maximal context Uβ.
Then P is a no-signalling empirical model.

Proof. It is sufficient to prove that given two nodes α and β of the network we have

δα|Uα∩Uβ = δβ|Uα∩Uβ
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Since the network has no reciprocities, we can assume without loss of generality that
all the arrows in Uα ∩Uβ go from α to β, that is, the variables in Uα ∩Uβ are output
variables of α and at the same time they are input variables of β. This means that

Uα ∩ Uβ = Oα ∩ Iβ

By Theorem 1 we have

δα|Uα∩Uβ = δα|Oα |Uα∩Uβ (13)

= ω|Oα|Uα∩Uβ (14)

= ω|Uα∩Uβ (15)

= ω|Iβ |Uα∩Uβ (16)

= δβ|Iβ |Uα∩Uβ (17)

= δβ|Uα∩Uβ (18)

5 Contextuality in networks of stochastic processes

Theorem 2 establishes that any stationary distribution in a closed network of
stochastic processes without reciprocities gives rise to an empirical model. To deter-
mine whether such model is contextual or not requires further conditions. The main
result in [10] indicates that an empirical model will be non-contextual if the simplicial
complex over its variables is regular.3 This implies, in our setting, that a necessary
condition for the extendability of the model is that the probability distributions over
all the combinations of variables in the empirical model must be consistent. But in
the network N , supporting the empirical model, the requirement of consistency is
imposed only on the internal distributions of the nodes and on those corresponding
to connections among them. Furthermore, since the stochastic processes at the nodes
are independent of each other, the distributions that matter for the definition of the
empirical model have a natural local nature.4 Example 1 illustrates that the focus

3A simplicial complex S is regular iff it belongs to the smallest class of simplicial complexes S
such that: (a) includes the class of all the proper subsets of vertices of cardinality n, for every
possible n; and (b) given T ∈ S, T̂ ∈ T and a set of vertices A that does not belong to T , if we add
all the subsets of T̂ ∪A to T , we obtain another simplicial complex in S [10](def. 2.1).

4A similar argument for the origin of contextuality in a combinatorial representation of quantum
systems is presented in [3].
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on only some joint distributions on the set of variables (instead of over all possible
combinations) can be the source of contextuality.

We will in fact show that distributions like those of Example 1 can be com-
monplace in our framework. This indicates that the empirical models supported by
networks of stochastic processes are not extendable in general. That is, in a very nat-
ural sense we can say that contextuality arises as a generic property of our empirical
models.

Let α, β and γ be three open stochastic processes, each one with just one pair
consisting of an input and an output variable, both assumed to be boolean. That is,
taking values in {T, F}. The corresponding matrices are:

α

(
X ′

x′

∣∣∣∣ Yy
)

=

{
1 if y = ¬x′
0 otherwise

β

(
Y ′

y′

∣∣∣∣ Zz
)

=

{
1 if z = y′

0 otherwise

γ

(
Z ′

z′

∣∣∣∣ Xx
)

=

{
1 if x = z′

0 otherwise

Now we compose these processes by connecting the output variable Y of α with
the input variable Y ′ of β, as well as Z of β with Z ′ of γ and X of γ to X ′ of α. The
result is a closed network as shown in Figure 8.

Figure 8: Graphical representation of the example.

The global process σ attached to this network is given by

σ

(
X Y Z
x′ y′ z′

∣∣∣∣ X Y Z
x y z

)
= α

(
X
x′

∣∣∣∣ Yy
)

β

(
Y
y′

∣∣∣∣ Zz
)

γ

(
Z
z′

∣∣∣∣ Xx
)

that is,

σ

(
X Y Z
x′ y′ z′

∣∣∣∣ X Y Z
x y z

)
=

{
1 if (y = ¬x′) ∧ (z = y′) ∧ (x = z′)
0 otherwise
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The state space of the network is given by the eight possible values of the joint
variable (X, Y, Z). The dynamics determined by σ can follow two cycles, one of
which goes through the states (x, y, z) such that (x = y) ∧ (z = ¬x) and the other
through those such that (x = z) ∧ (y = ¬x).

The process σ yields an infinite family of stationary distributions. Let us focus
on the following one:

ω

(
X Y Z
x y z

)
=

{
0 if (x = y) ∧ (z = ¬x)
1/6 otherwise

We can easily check that ω is indeed stationary.5 Note that the marginals ω|X , ω|Y
and ω|Z are uniform distributions, that is

ω|X
(
X
x

)
= 1/2 for all x

ω|Y
(
Y
y

)
= 1/2 for all y

ω|Z
(
Z
z

)
= 1/2 for all z

Then, according to the construction leading to Theorem 2, the empirical model
attached to the network is given by:6

δα

(
X Y
x y

)
= α

(
X
x

∣∣∣∣ Yy
)

ω|X
(
X
x

)
=

{
1/2 if x = ¬y
0 otherwise

δβ

(
Y Z
y z

)
= β

(
Y
y

∣∣∣∣ Zz
)

ω|Y
(
Y
y

)
=

{
1/2 if y = z
0 otherwise

5That is, ω is a fixed point of the mapping given by∑
x′,y′,z′

σ

(
X Y Z
x′ y′ z′

∣∣∣∣ X Y Z
x y z

)
ω

(
X Y Z
x′ y′ z′

)

6Note that, in general, the distributions δα,δβ and δγ do not coincide with ω|X,Y , ω|Y,Z and
ω|Z,X respectively. In this case we have, for instance that (analogously for (Y,Z) and (Z,X))

ω|X,Y
(
X Y
x y

)
=

{
1/6 if x = y
1/3 otherwise
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δγ

(
Z X
z x

)
= γ

(
Z
z

∣∣∣∣ Xx
)

ω|Z
(
Z
z

)
=

{
1/2 if z = x
0 otherwise

These distributions over (X, Y ), (Y, Z) and (Z,X) are the same as those of Example
1.

6 Comparison to quantum contextuality

The previous example suggests that the networks of processes lead to empirical mod-
els that exhibit a strong form of contextuality. As a way of measure this contextuality,
in this section we consider a familiar quantum scenario –the Clauser-Horne-Shimony-
Holt (CHSH) scenario– and construct a simple network of processes based on this
scenario. We show that the empirical model arising from this network is a Popescu-
Rohrlich (PR) box, which is well known to be a no-signalling model that maximally
violates the Tsirelson’s bound. This shows that the contextuality allowed by our
construction is not restricted to quantum contextuality, but it corresponds to the
contextuality of generalised probabilistic theories (see for example [5]).

The CHSH scenario consists of four observables A1, A2, B1 and B2 toghether
with four contexts (A1, B1), (A2, B1), (A1, B2) and (A2, B2). The set of outcomes of
each variable is {0, 1}. The PR box is defined by

P (A1 = 0 ∧B1 = 1) = P (A1 = 1 ∧B1 = 0) = 1/2

P (A1 = 0 ∧B2 = 0) = P (A1 = 1 ∧B2 = 1) = 1/2

P (A2 = 0 ∧B1 = 0) = P (A2 = 1 ∧B1 = 1) = 1/2

P (A2 = 0 ∧B2 = 0) = P (A2 = 1 ∧B2 = 1) = 1/2

This empirical model can be realized within our framework as follows. We attach
a stochastic process αij to each context (Ai, Bj). The set of outcomes of each variable
is {0, 1}. The matrices defining these stochastic processes are given by

α11

(
A′

1

a′1

∣∣∣∣ B1

b1

)
=

{
1 if a′1 = ¬b1
0 otherwise

α21

(
B′

1

b′1

∣∣∣∣ A2

a2

)
=

{
1 if b1 = a′2
0 otherwise

α22

(
A′

2

a′2

∣∣∣∣ B2

b2

)
=

{
1 if a′2 = b2
0 otherwise
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α12

(
B′

2

b′2

∣∣∣∣ A1

a1

)
=

{
1 if b′2 = ¬a1
0 otherwise

As in the example of the previous section, we compose these processes to build
a closed network. Namely, we connect the variable A′

i with Ai and the variable B′
i

with Bi, for i = 1, 2. The resulting global process σ is given by

σ

(
A1 B1 A2 B2

a′1 b′1 a′2 b′2

∣∣∣∣ A1 B1 A2 B2

a1 b1 a2 b2

)
=

α11

(
A1

a′1

∣∣∣∣ B1

b1

)
α21

(
B1

b′1

∣∣∣∣ A2

a2

)
α22

(
A2

a′2

∣∣∣∣ B2

b2

)
α12

(
B2

b′2

∣∣∣∣ A1

a1

)
=

=

{
1 if (a′1 = ¬b1) ∧ (b′1 = a2) ∧ (a′2 = b2) ∧ (b′2 = a1)
0 otherwise

Since this is a permutation matrix, then the uniform distribution on the state
space of the joint variable (A1, B1, A2, B2) is stationary, so we define

ω

(
A1 B1 A2 B2

a1 b1 a2 b2

)
= 1/16

for all a1, b1, a2, b2. The marginals ω|A1 , ω|B1 , ω|A2 and ω|B2 are uniform distributions.
Then the empirical model attached to the network is given by

δα11

(
A1 B1

a1 b1

)
= α11

(
A1

a1

∣∣∣∣ B1

b1

)
ω|A1

(
A1

a1

)
=

{
1/2 if a1 = ¬b1
0 otherwise

δα21

(
B1 A2

b1 a2

)
= α21

(
B1

b1

∣∣∣∣ A2

a2

)
ω|B1

(
B1

b1

)
=

{
1/2 if b1 = a2
0 otherwise

δα22

(
A2 B2

a2 b2

)
= α22

(
A2

a2

∣∣∣∣ B2

b2

)
ω|A2

(
A2

a2

)
=

{
1/2 if a2 = b2
0 otherwise

δα12

(
B2 A1

b2 a1

)
= α12

(
B2

b2

∣∣∣∣ A1

a1

)
ω|B2

(
B2

b2

)
=

{
1/2 if b2 = a1
0 otherwise

which coincides with the PR box.
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7 Conclusions

While the result presented in the previous sections is just an instance, we can
hint at its generality. Networks are combinations of arbitrary stochastic processes
and the variables of non directly connected nodes can be distributed independently.

The previously known sources of contextuality were of quantum nature. In this
paper we introduced a classical model, namely that of a network of stochastic pro-
cesses. The ensuing structure shares with quantum systems the property of contex-
tuality but without resorting to their physical features.
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