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Abstract.  The site-percolation problem on simple cubic lattices has been 
studied by means of numerical simulation and analytical calculations based on 
exact counting of configurations on finite cells. Motivated by considerations of 
cluster connectivity, two distinct schemes (denoted as S B∩  and S B∪ ) have 
been considered. In S B∩  (S B∪ ), two points are said to be connected if a 
sequence of occupied sites and (or) bonds joins them. Theoretical and numerical 
results, supplemented by analysis using finite-size scaling theory, were used to 
calculate the complete phase diagram of the system in the ( p p,s b) space. Our 
study allowed us also to determine the critical exponents (and universality) 
characterizing the phase transition occurring in the system.
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1.  Introduction

The site-bond percolation problem and its applications have been studied for a very long 
time [1–9]. In this scheme, sites and bonds are randomly and independently occupied 
with occupancy fractions ps and pb, respectively. It is possible then to define site-and-
bond (S B∩ ) and site-or-bond (S B∪ ) percolation: in S B∩  (S B∪ ), two points are said to 
be connected if a sequence of occupied sites and ( or) bonds joins them. Thus, in S B∩ , 
a cluster is considered to be a set of occupied bonds and sites in which the bonds are 
joined by occupied sites, and the sites are joined by occupied bonds. In S B∪ , a bond or 
site contributes to cluster connectivity independently of the occupation of its endpoints3. 
The central idea of the site-bond percolation theory is based on finding the minimum 
concentration of elements (sites and bonds) for which a cluster extends from one side to 
the opposite one of the lattice, and a second order phase transition occurs in the system.

In the case of S B∩  site-bond percolation, the problem has many applications in 
dierent fields and has been widely studied (in particular for a square lattice) [10–17]. 
For instance, it was used to describe the sol-to-gel transition (gelation) of polymers 
[10]. Thus, the critical curve corresponding to the S B∩  problem separates a percolat-
ing regime, in which a gel is formed, from a non-percolating regime, the sol phase.

S B∩  model was mentioned at first by Frisch and Hammersley [11]. Agrawal et al [12] 
and Nakanishi and Reynolds [13] showed, by using a series method and position-space 
renormalization group, respectively, that the critical exponents of pure site percolation 
are also valid for site-bond percolation. Later, Yanuka and Englman [14] proposed a 
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equation for the critical curve separating the sol-to-gel transition for square, triangular, 
simple cubic and face centered cubic (fcc) lattices. Tarasevich and van der Marck [15] 
presented a very complete and systematic study, where site-bond percolation thresholds 
were calculated by means of numerical simulations in many lattices in two to five dimen-
sions. Zi and Gu [16] developed an approximation, which allows the estimation of very 
accurate thresholds for a wide variety of systems. In addition, an accurate expression for 
the criticality condition of site-bond percolation on the honeycomb lattice was obtained  
in [16]. More recently, a correlated bond-site percolation model was introduced by Nduwayo 
et al [17]. In all cases, standard site (bond) percolation is recovered as pb  =  1 (ps  =  1).

On the other hand, the S B∪  model has received considerably less attention in the 
literature [18–20]. In particular, the critical curve corresponding to the S B∪  problem on 
simple cubic lattices has not yet been reported. The main objective of this paper is to pro-
vide a thorough study in this direction. For this purpose, extensive computer simulations 
have been carried out to study the complete site-bond percolation problem on simple 
cubic lattices. The numerical results, supplemented by analysis using finite-size scaling 
theory [4, 21, 22], allowed to determine the critical quantities (percolation thresholds and 
critical exponents) characterizing the phase transition occurring in the system.

Despite the simplicity of its definition, percolation theory (and the evaluation of 
the corresponding percolation thresholds) has resisted exact calculations. In particular, 
analytical calculations of thresholds have proven to be a rather dicult task only over-
come for a given number of simple geometries. Thus, percolation thresholds are known 
exactly only for two-dimensional systems. There are no known exact results in three 
dimensions. Even in two dimensions, there are no exact results for site-bond percolation 
on regular lattices. In this line, a cluster-exact approximation was presented in a recent 
paper from our group [23]. This theoretical approach is based on the exact calculation 
of configurations on finite cells, and its extrapolation to larger system sizes.

Cluster-exact calculations proved to be a very useful tool for the research of perco-
lation on square lattices [23–25]. The results showed, in addition, that the technique 
could be also applied to study percolation on triangular lattices [20]. Here, the scheme 
introduced in Ref. [23] is extended to include three-dimensional (3D) lattices. For this 
purpose, finite L L Lx y z× ×  cells are used to calculate the complete phase diagram in 
the (p p,s b) space for sites and bonds independently and randomly deposited on a simple 
cubic lattice. The study is a natural continuation of our previous work [20, 23–25], and 
complement the numerical analysis.

The paper is organized as follows. The model and the simulation scheme are described 
in section 2. The theoretical approach is introduced in section 3, which includes the main 
results concerning the phase diagrams obtained from the analytical calculations. Details 
of the calculations are given in the appendix. The conclusions are drawn in section 4.

2. Model and simulation scheme

2.1. The model

Let us consider an initially empty simple cubic lattice of M L L Lx y z= × ×  size and open 
boundary conditions. Sites and bonds are independently and randomly deposited with 

http://dx.doi.org/10.1088/1742-5468/2016/09/093210
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concentrations ps and pb, respectively. The filling process is as follows: (1) a given site 
(bond), belonging to the set of empty sites (bonds), is randomly selected and occupied; 
and (2) the set of empty sites (bonds) is updated. The procedure (1) and (2) is repeated 
until Ns sites and Nb bonds are occupied, and the desired concentrations (p N Ms s /= , 
p N M3b b /= ) are reached.

The S B∩  model can be considered as a correlated bond percolation problem, or a 
pure site problem in which one replaces the bond by a site with two neighbors. On the 
other hand, the S B∪  model can also be thought of as a bond problem, but not seem to be 
expressible as a pure site problem. Then, in order to calculate the percolation threshold, we 
can now think of a mapping L L→ ′ from the original site-bond lattice L to an eective bond 
lattice L′ where each bond and its endpoints sites of L transforms into a bond one of L′. The 
rules for the mapping depend on the studied problem. Thus, for site-and-bond percolation:

	 (i)	 each empty bond of L transforms into an empty one of L′;

	 (ii)	 each occupied bond with one or two empty endpoint sites of L transforms into an 
empty bond in ′L ; and

	 (iii)	 each occupied bond with its occupied endpoint sites of L transforms into an 
occupied bond of L′

On the other hand, for site-or-bond percolation:

	 (i)	 each occupied bond of L transforms into an occupied bond one of L′;

	 (ii)	 each empty bond with one or two empty endpoint sites of L transforms into an 
empty bond in L′; and

	 (iii)	 each empty bond with its occupied endpoint sites of L transforms into an occu-
pied bond of L′.

Once the mapping is completed, each percolating/non-percolating configuration in 
the eective lattice corresponds to a percolating/non-percolating configuration in the 
original lattice. Then, the standard Hoshen and Kopelman algorithm [26] was applied 
for studying bond percolation on L′. The positions of the deposited objects were gener-
ated by using the Mersenne twister random number generator [27].

2.2. Simulation results

It is well-known that it is quite a dicult matter to analytically determine the value 
of a percolation threshold for a given lattice [4]. For some special types of lattice, geo-
metrical considerations enable their percolation thresholds to be derived exactly. For 
dierent conditions, i.e. for systems which do not present such a topological advan-
tage, percolation thresholds have to be estimated numerically by means of computer 
simulations.

In the present case, each simulation run consists of the following three steps: (a) the 
construction of the simple cubic lattice (with L L L Lx y z= = = ) for the desired fractions 
ps and pb of sites and bonds, respectively; (b) the mapping from the original site-bond 

http://dx.doi.org/10.1088/1742-5468/2016/09/093210
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lattice to the eective bond lattice; and (c) the cluster analysis by using the Hoshen and 
Kopelman algorithm [26] on the eective bond lattice. In the last step, the existence of 

a percolating island is verified. For this purpose, the probability R p p,L
X

s b( ) that a lattice 
composed of L L L× ×  sites percolates at the concentration (p p,s b) can be defined. Here, 
the following definitions can be given according to the meaning of X [21]:

	•	 R p p,L
R

s b( ): the probability of finding a rightward percolating cluster, along the 
x-direction,

	•	 R p p,L
F

s b( ): the probability of finding a frontward percolating cluster, along the 
y-direction,

	•	 R p p,L
D

s b( ): the probability of finding a downward percolating cluster, along the 
z-direction.

Other useful definitions for the finite-size analysis are:

	•	 R p p,L
U

s b( ): the probability of finding a cluster which percolates on any direction,

	•	 R p p,L
I

s b( ): the probability of finding a cluster which percolates in the three (mutu-
ally perpendicular) directions,

	•	 R p p,L
A

s b( )  =   R p p R p p R p p, , ,L
R

s b L
F

s b L
D

s b
1

3
[ ( ) ( ) ( )]+ + .

Figure 1.  Fraction of percolating lattices RL
X (X  =  I, U, A as indicated) as a 

function of the bond concentration pb for two typical cases: (a) S B∪  model and 
ps  =  0.15; and (b) S B∩  model and ps  =  0.53. For each criterion, dierent lattice 
sizes were considered (L  =  96,144, 192, 240, 288). Horizontal dashed lines show the 
RX ∗

 universal points. Vertical dashed lines denote the percolation thresholds pb,c in 
the thermodynamic limit L → ∞.

http://dx.doi.org/10.1088/1742-5468/2016/09/093210
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A total of mL independent runs of such three steps are carried out for obtaining the 

number mL
X of them for which a percolating cluster of the desired criterion X is found. 

Then, R p p m m,L
X

s b L
X

L( ) /=  is defined. In the present study, a set of m 5 10L
5= ×  inde-

pendent samples are numerically prepared for each model (S B∪  and S B∩ ), for each 
pair p p,s b( ) and lattice size L (L  =  96, 144, 192, 240, 288). From the point of view of 
calculations, we set ps  =  constant and vary pb.

In figure 1, the probabilities RL
I  (triangles), RL

U (squares) and RL
A (circles) are pre-

sented for two typical cases: (a) S B∪  percolation and ps  =  0.15; and (b) S B∩  percola-
tion and ps  =  0.53. As already explained, pb is varied during the simulation process.

From a simple inspection of figure 1 (and from data not shown here for a sake of 

clarity), it is observed that RL
X curves cross each other in a unique point RX ∗

. The value 
of RX ∗

 depends on the criterion X used: R 0.2730A ≈
∗

; R 0.0664I ≈
∗

 and R 0.5319U ≈
∗

. 
In addition, the crossing points do not modify their numerical value for the dierent 
studied cases, as a first indication that the problem belongs to the same universality 
class no matter the model (S B∪  or S B∩ ) and the value of ps used in the experiment.

In order to express R p p,L
X

s b( ) as a function of continuous values of pb, it is con-
venient to fit R p p,L

X
s b( ) with some approximating function through the least-squares 

method. The fitting curve is the error function because R pd dL
X

b/  is expected to behave 

like the Gaussian distribution4

R

p

p p Ld

d

1

2
exp

1

2
,L

X

b L
X

b b c
X

L
X

,

2
( )⎧

⎨
⎪

⎩⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪π
=

∆
−

−

∆
� (1)

where p Lb c
X
, ( ) is the concentration at which the slope of R p p,L

X
s b( ) is the largest and L

X∆  

is the standard deviation from p Lb c
X
, ( ).

The standard theory of finite-size scaling [4] allows for various ecient routes to 
estimate the critical exponent ν from simulation data. One of these methods is from the 
maximum of the function in equation (A.1),

R

p
L

d

d
.L

X

b max

1/
⎛

⎝
⎜

⎞

⎠
⎟ ∝ ν

� (2)

In figure 2, R pln d dL
A

b max[( / ) ] has been plotted as a function of Lln [ ] (note the log–log 

functional dependence) for the same cases in figure 1. According to equation (A.2) the 
slope of each line corresponds to 1/ν. As it can be observed, the slopes of the curves 
remain constant. Thus, 0.8756 7( )ν =  for part (a) and 0.8767 7( )ν =  for part (b).

Another alternative way for evaluating ν is from the divergence of the root mean 

square deviation of the threshold observed from their average values, L
X∆ ,

L .L
X 1/∆ ∝ ν−� (3)

4 Even though the behavior of /R pd dL
X

b is not a Gaussian function in all of the range of pb, this quantity is  

approximately Gaussian near the peak, and equation (A.1) is a good approximation for the purpose of locating  

its maximum [28].

http://dx.doi.org/10.1088/1742-5468/2016/09/093210
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As an example of the validity of the last equation, the insets in figure 2 shows L
A∆  as a 

function of L (note the log–log scale) for the same cases in the main figure. According 
to equation (A.3), the slope of the line corresponds to 1/ν− . In this case, 0.8761 9( )ν = , 
part (a) and 0.8757 8( )ν =  part (b).

The study in figure 2 was repeated for dierent values of ps and the I, U and A 
criteria. In all cases, the results obtained for ν coincide, within numerical errors, with 
the previously reported values for the ordinary 3D percolation [29–33] (see Wikipedia 
webpage: https://en.wikipedia.org/wiki/Percolation_critical_exponents).

Figure 2.  (a) Ln–ln plot of R pd dL
A

b max( / )  as a function of L for the S B∪  model and 

ps  =  0.15. According to equation (A.2) the slope of the curve corresponds to 1/ν. 
Inset: ln L

A∆  as a function of L for the same case in the main figure. According to 

equation (A.3), the slope of the curve corresponds to 1/ν− . (b) As part (a) for the 

S B∩  model and ps  =  0.53.

http://dx.doi.org/10.1088/1742-5468/2016/09/093210
https://en.wikipedia.org/wiki/Percolation_critical_exponents
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Once ν is known, the percolation threshold pb,c can be obtained from the extrapola-

tion of the positions p Lb c
X
, ( ) of the maxima of the slopes of R p p,L

X
s b( ). For each criterion 

(I, U and A), for each percolation model (S B∪  and S B∩ ) and for each value of ps, one 
expects that [4],

p L p A L ,b c
X

b c
X

, ,
1( ) /= + ν−

� (4)

where AX is a non-universal constant and ν will taken as 0.8760.

Figure 3 shows the plots towards the thermodynamic limit of p Lb c
X
, ( ) according to 

equation  (A.4) for the data in figures 1 and 2. From extrapolations it is possible to 
obtain the percolation thresholds for the criteria I, A and U. Combining the three 
estimates for each case, the final values of pb,c can be obtained. Additionally, the maxi-

mum of the dierences between p pb c
U

b c
A

, ,∣ ∣−  and p pb c
I

b c
A

, ,∣ ∣−  gives the error bar for each 

determination of pb,c. In this case, the values obtained were: p 0.226 81 5b c, ( )=  (a), and 
p 0.519 15 4b c, ( )=  (b).

The scaling behavior can be further tested by plotting RL
X versus p p Lb b c,

1( )− ν and 

looking for data collapsing. Using the values of pb,c and ν previously calculated, an 

excellent scaling collapse was obtained for RL
A (see figure 4). This leads to independent 

control and consistency check of numerical value of the critical exponent ν.

Figure 3.  Extrapolation of p Lc b
X
, ( ), towards the thermodynamic limit according to 

the theoretical prediction given by equation (A.4). Triangles, circles and squares 

denote the values of p Lc b
X
, ( ), obtained by using the criteria I, A and U, respectively. 

(a) S B∪  model and ps  =  0.15. (b) S B∩  model and ps  =  0.53.

http://dx.doi.org/10.1088/1742-5468/2016/09/093210
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The procedure in figure 3 was is repeated for dierent values of ps. The results, 
which are collected in tables 1 and 2, represent the complete phase diagram of the 
system in the (p p,s b) space. In section 3.2, the simulation data obtained in the present 
section will be discussed in comparison with cluster-exact calculations and previous 
studies in the literature [15].

Figure 4.  Data collapsing of the fraction of percolating samples RL
A as a function 

of the argument p p Lb b c,
1( )− ν for the curves in figure 1. The plots were made using 

p 0.226 81b c, =  (part (a)), p 0.519 15b c, =  (part (b)), and the percolation exponent 

0.8760ν = .

Table 1.  Numerical values of p p,s b( ) for the critical line corresponding to the S B∪  
percolation model.

ps pb

0 0.248 811 85(10) [33]
0.075 0.243 72(4)
0.15 0.226 81(5)
0.23 0.184 58(5)
0.27 0.144 69(6)
0.29 0.109 38(4)
0.30 0.084 42(5)
0.31 0.033 34(5)
0.311 607 68(15) [33] 0

Note: Error estimates concerning the last digit are indicated between brackets.

http://dx.doi.org/10.1088/1742-5468/2016/09/093210
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3. Analytical approximation and comparison between simulation 
and theoretical results

3.1. The theoretical approach: exact calculations of configurations on finite cells

The theoretical approach is based on exact calculations of configurations [20, 23–25] 
with the following assumptions: (i) the original system is divided into separate site and 
bond problems that are independently analyzed (see figure 5); (ii) the percolation is 
measured along the x-axis; and (iii) symmetric L L L Lx y z= = =  cells are used in the 
calculations. The percolation trajectory � is defined as the number of objects belonging 
to the percolating cluster. Thus, the minimum percolation trajectory, represented by 

min� , corresponds to the direct percolation path from left to right (or vice versa), being 
Lxmin =�  for sites and bonds. On the other hand, the maximum percolation trajectory, 

represented by max� , corresponds to the number of objects in the saturated cell, being 
L L Lx y zmax =�  and L L L L L L L L L1 1 1 1x y z x y z y x z( )( ) ( )( )+ − − + − −  for sites and bonds, 

Figure 5.  (a) Snapshot corresponding to a 2 2 2× ×  cell with three occupied sites 
(Ns  =  3) and four occupied bonds (Nb  =  4). Black circles, gray circles, solid lines 
and dotted lines represent occupied sites, empty sites, occupied bonds and empty 
bonds, respectively. (b) Site lattice corresponding to the configuration shown in 
part (a). (c) Bond lattice corresponding to the configuration shown in part (a).

Table 2.  Numerical values of p p,s b( ) for the critical line corresponding to the S B∩  
percolation model.

ps pb

0.311 607 68(15) [33] 1
0.33 0.922 82(6)
0.37 0.796 27(5)
0.41 0.699 24(6)
0.47 0.599 85(4)
0.53 0.519 15(4)
0.65 0.407 38(5)
0.75 0.344 72(6)
0.85 0.299 76(5)
0.95 0.263 45(5)
1 0.248 811 85(10) [33]

Note: Error estimates concerning the last digit are indicated between brackets.
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respectively (see figure  5). In general, the length of a percolation trajectory varies 
between min�  and max� .

In the case of sites, the percolation probability of for any given cell includes the 
addition of the individual probabilities of all percolating trajectories leading to a poly-
nomial function f(ps), where Lxmin =�  determines the minimum degree of the polyno-
mial function, and L L Lx y zmax =�  corresponds to the maximum degree associated to it. 
Then,

f p C p p1 ,s
s

s s

min

max

max( )   ( )∑= −
=

−

� �

�

�
� � �

� (5)

where the coecients Cs
�’s correspond to the totality of the site trajectories of length � 

leading to percolation. For a 2 2 2× ×  cell, equation (A.5) results

f p p p p p4 6 4 .s s s s s
2 4 6 8( ) = − + −� (6)

In the case of bonds, the corresponding polynomial function g (pb) can be written as

( )   ( )∑= −
=

−

� �

�

�
� � �g p C p p1 ,b

b
b b

min

max

max� (7)

where Lxmin =� , L L L L L L L L L1 1 1 1x y z x y z y x zmax ( )( ) ( )( )= + − − + − −�  and Cb
�’s corre-

spond to the totality of the bond trajectories of length � leading to percolation. For a 
2 2 2× ×  cell, equation (A.7) results

g p p p p p p p p p p p p4 8 14 40 16 228 665 672 376 112 14 .b b b b b b b b b b b b
2 3 4 5 6 7 8 9 10 11 12( ) = + − − + + − + − + −

�
(8)

Once f (ps) and g (pb) are obtained, the percolation functions corresponding to S B∩  
and S B∪  site-bond percolation are calculated by following the Tsallis scheme [34],

h p p f p g p,S B s b s b( ) ( ) ( )=∩� (9)
and

h p p f p g p f p g p, .S B s b s b s b( ) ( ) ( ) ( ) ( )= + −∪� (10)
Equations (9) and (10) allow us to obtain the exact percolation functions corre

sponding to S B∩  and S B∪  problems from the exact percolation functions corre
sponding to pure site percolation (f (ps)) and pure bond percolation (g(pb)). Interested 
readers are referred to [34] (p 720) for a more complete description of the Tsallis 
scheme. Then, for a 2 2 2× ×  cell,

( ) ( )(
)

= − + − + − − + + − +

− + −
∩h p p p p p p p p p p p p p

p p p p

, 4 6 4 4 8 14 40 16 228 665

672 376 112 14 .

S B s b s s s s b b b b b b b

b b b b

2 4 6 8 2 3 4 5 6 7 8

9 10 11 12

�
(11)

and

h p p p p p p p p p p p p

p p p p p

p p p p p p p p p p

p p p p p

, 4 6 4 4 8 14 40 16 228

665 672 376 112 14

4 6 4 4 8 14 40 16 228

665 672 376 112 14 .

S B s b s s s s b b b b b b

b b b b b

s s s s b b b b b b

b b b b b

2 4 6 8 2 3 4 5 6 7

8 9 10 11 12

2 4 6 8 2 3 4 5 6 7

8 9 10 11 12

( ) ( ) (
)

( )(
)

= − + − + + − − + +

− + − + −

− − + − + − − + +

− + − + −

∪

�
(12)
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h p p,S B s b( )∩  (equation (11)) and h p p,S B s b( )∪  (equation (12)) are plotted in figures 6(a) 
and (b), respectively. These functions are necessary in order to obtain the critical 
curves separating the percolating and non-percolating regions (p ps b−  phase diagram). 
For this purpose, the string method [35, 36] was used. The procedure is described in 
the Appendix, and the results are shown in figure 7 (solid lines) in comparison with 
simulation results (tables 1 and 2) and previous work in the literature [15]. A complete 
analysis of figure 7 will be performed in the next section.

3.2. Comparison between simulation and theoretical results

Figure 7 shows the comparison between simulation results (solid circles), cluster-exact 
calculations (solid lines) and data obtained in [15] (crosses) for the complete site-bond 
percolation phase diagram corresponding to simple cubic lattices.

In the case of S B∩  model, the critical curve separating the percolating and non-
percolating regions varies between the point [p p1.0, 0.248 811 85 10s b ( )= = ] at left, 
and the point [p p0.311 607 68 15 , 1.0s b( )= = ] at right. p 0.248 811 85 10b ( )=  [33] 

Figure 6.  (a) Percolation function h p p,S B s b( )∩  (equation (11)) as a function of ps 
and pb. (b) Same as part (a) for h p p,S B s b( )∪  (equation (12)).
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[site] percolation on a simple cubic lattice. An extensive list of percolation thresholds 
for d 2, 13[ ]∈  (d is the dimension of the space) can be found on the Wikipedia webpage: 
https://en.wikipedia.org/wiki/Percolation_threshold.

As it can be observed from the upper right part of figure 7, the simulation results 
obtained in the present work (solid circles joined by lines) coincide, within numerical 
errors, with the results reported by Tarasevich and van der Marck [15] (crosses). The 
excellent agreement between our data and previous studies supports the applicability 
of the methodology used in the present paper.

On the other hand, the line of threshold values corresponding to the S B∪  perco-
lation model varies between the point [p p0.311 607 68 15 , 0.0s b( )= = ] at left, and the 
point [p p0.0, 0.248 811 85 10s b ( )= = ] at right. In this case, the S B∪  critical curve is 
reported for the first time in the present study.

Figure 7.  Phase diagrams of site-bond percolation for a simple cubic lattice. Solid 
circles joined by lines represent simulation results (tables 1 and 2), solid lines correspond 
to cluster-exact calculations and crosses denote previous data in the literature [15].

Table 3.  Cluster-exact calculations for dierent cell sizes as indicated.

S B S B[ ]∪ ∩

Cell size ps pb ps pb

2 2 2× × 0 [0.3780(1)] 0.3122(1) [1] 0.3780(1) [1] 0 [0.3122(1)]

2 2 3× × 0 [0.3683(1)] 0.3023(1) [1] 0.3683(1) [1] 0 [0.3023(1)]

2 3 3× × 0 [0.3643(1)] 0.2964(1) [1] 0.3643(1) [1] 0 [0.2964(1)]

3 3 3× × 0 [0.3630(1)] 1[ ]… … 0.3630(1) [1] 0[ ]… …

3 3 4× × 0 [0.3594(1)] 1[ ]… … 0.3594(1) [1] 0[ ]… …

∞ × ∞ × ∞ 0 [0.311 607 68(15)] 0.248 811 85(10) [1] 0.311 607 68(15) [1] 0 [0.248 811 85(10)]

http://dx.doi.org/10.1088/1742-5468/2016/09/093210
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As mentioned above, standard site (bond) percolation is recovered as the pb  =  1.0 
(ps  =  1.0) case of the S B∩  problem, as well as pb  =  0 (ps  =  0) case of the S B∪  problem. 
As a consequence of this, the S B∪  critical curve is essentially a continuation of the 
S B∩  curve (if it is wrapped around the diagram).

With respect to the cluster-exact calculations, the curves shown in the figure were 
obtained for a 2 2 2× ×  cell. Despite the small size of the cluster, a good qualitative 
agreement is obtained between simulation and analytical data. A more accurate deter-
mination of the critical curves should require extensive numerical calculations with sys-
tems of larger sizes. As a proof of this hypothesis, the endpoints of the S B∪  and S B∩  
critical lines were calculated for dierent values of L L L, ,x y z. The results, compiled in 
table 3, (1) clearly indicate that the accuracy of the cluster calculations improves with 
increase in the cell size; and (2) support the usefulness of this theoretical approach to 
be used in the context of lattice percolation problems.

4. Conclusions

Numerical simulation and a cluster-exact approximation have been used to study the 
site-bond percolation problem on 3D simple cubic lattices. The theoretical formalism 
is based on exact calculations of configurations on a finite cell. Two distinct schemes, 
site-and-bond (S B∩ ) and site-or-bond (S B∪ ), have been considered. In S B∩ , a cluster 
is considered to be a set of occupied bonds and sites in which the bonds are joined by 
occupied sites, and the sites are joined by occupied bonds. In S B∪ , a bond or site con-
tributes to cluster connectivity independently of the occupation of its endpoints.

The numerical data, supplemented by analysis using finite-size scaling theory, were 
used to calculate the complete phase diagram of the system in the (p p,s b) space. In the 
S B∩  case, the results coincide with previous reports [15]. In the S B∪  case, the criti-
cal line separating the percolating and non-percolating regions is presented for the first 
time in the literature. In addition, the accurate determination of the critical exponent ν 
indicates that, in all cases, the problem belongs to the universality class of 3D random 
percolation.

The simulation results were compared with analytical calculations based on exact 
counting of configurations on finite L L Lx y z× ×  cells. The theoretical scheme is simple, 
mathematically handleable, and provides results in a good qualitative agreement with 
the simulation data.
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Appendix

As indicated in section 3.1, h p p,S B s b( )∩  and h p p,S B s b( )∪  are obtained using the Tsallis 
scheme [34] and the explicit forms of f (ps) and g (pb). See equations (A.5)–(12).

Once the functions h p p,S B s b( )∩  and h p p,S B s b( )∪  are determined, the projections of 
these surfaces on the planes (pb  =  constant) and (ps  =  constant) behave in a similar way 
to the curves of the percolation order parameter obtained with respect to one variable 
while keeping the second constant. Accordingly, the mentioned projections show a 
change in the concavity (inflection points), which can be associated to the existence of 
a transition from a non-percolating to a percolating state.

A way to study the local curvature of h p p,S B s b( )∩  and h p p,S B s b( )∪  is by using the 
concept of gradient. Thus,
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Now, the modulus of the gradients h p pS B s b,∥ ( )∥
→
∇ ∩  and h p pS B s b,∥ ( )∥

→
∇ ∪  can be calcu-

lated as:
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SS B∩  and SS B∪  are shown in figures A1(a) and (b), respectively. As it can be observed, 
the curves for a fixed value of pb present a maximum for a given value of ps, and in the 
same manner, the curves for a fixed value of ps present a maximum for a given value of 
pb. The set of such maxima can be calculated by the string method [35, 36]. The basic 
idea of the string method is to find a path of critical points that connect the minimum 
of the function V p p S p p, ,s b S B S B s b( ) ( )( )= − ∩ ∪  by evolution of a string of initial points. 
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The string x y i n: , 0, 1 , 0, 1, 2, ..., 1i i{ ( ) [ ] }ϕ = ∈ = −  is discretized into n  =  30 initial 

points and it evolves until it meets the condition V x y, 0.i i( )
→
∇ =⊥  Where V x y,i i( )

→
∇ ⊥ is 

the component of V x y,i i( )
→
∇  normal to ϕ, defined the following way

V x y V x y V x y t t, , , .i i i i i i( ) ( ) ( ( ) )
→ → →
∇ = ∇ − ∇ ⋅⊥ � �� (A.5)

Here t� denotes the unit tangent of the curve ϕ and ⋅ denotes the Euclidean inner prod-
uct. Each point of the curve in evolution moves in the direction of the normal comp

onent V x y,i i( )
→
∇  and the tangential component only moves the points along the string 

maintaining the spacing between them. Then, the points are redistributed in every 
movement. The iteration of the method consists in two steps defined as:

	 (1)	Each point of the string initial evolves according to the recurrence equation:

x x t
V x y

p

,
.i i

i i

s
1

( )
= − ∆

∂
∂

+� (A.6)

Figure A1.  (a) SS B∩  and (b) SS B∪  which are given by equations (A.3) and (A.4) as 
a function of ps and pb.
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	 (2)	The points along the string are redistributed using a cubic interpolation of the 
points of the part of the string calculated in each time step t.∆

Finally, when the two endpoints of the initial string fall in the two minimum points 
of the function V p p,s b( ), these points are identified. Then, the critical line is obtained 
from the path of minimum critical points joining the two minimum endpoints. The 
resulting critical curves are shown as solid lines in figure 7.

References

	 [1]	 Broadbent S R and Hammersley J M 1957 Proc. Camb. Phil. Soc. 53 629
		  Hammersley J M 1957 Proc. Camb. Phil. Soc. 53 642
	 [2]	 Kesten H 1982 Percolation Theory for Mathematicians (Boston: Birkhäuser)
	 [3]	 Zallen R 1983 The Physics of Amorphous Solids (New York: Wiley)
	 [4]	 Stauer D and Aharony A 1985 Introduction to Percolation Theory 2nd edn (London: Taylor & Francis)
	 [5]	 Sahimi M 1994 Applications of Percolation Theory (London: Taylor & Francis)
		  Sahimi M 1995 Flow and Transport in Porous Media and Fractured Rock (New York: VCH)
	 [6]	 Grimmett G 1999 Percolation (Berlin: Springer)
	 [7]	 Bollobás B and Riordan O 2006 Percolation (New York: Cambridge University Press)
	 [8]	 Tarasevich Y Y, Lebovka N I and Laptev V V 2012 Phys. Rev. E 86 061116
	 [9]	 Tarasevich Y Y, Laptev V V, Vygornitskii N V and Lebovka N I 2015 Phys. Rev. E 91 012109
	[10]	 Coniglio A, Stanley H E and Klein W 1979 Phys. Rev. Lett. 42 518
	[11]	 Frisch H L and Hammersley J M 1963 J. Soc. Ind. Appl. Math. 11 894
	[12]	 Agrawal P, Render S, Reynolds P J and Stanley H E 1979 J. Phys. A: Math. Gen. 12 2073
	[13]	 Nakanishi H and Reynolds P J 1979 Phys. Lett. 71A 252
	[14]	 Yanuka M and Englman R 1990 J. Phys. A: Math. Gen. 23 L339
	[15]	 Tarasevich Y Y and van der Marck S C 1999 Int. J. Mod. Phys. C 10 1193
	[16]	 Zi R M and Gu H 2009 Phys. Rev. E 79 020102
	[17]	 Nduwayo L, Lindebaum R and Chetty N 2009 Comput. Phys. Commun. 180 503
	[18]	 Tsallis C and de Magalhães A C N 1996 Phys. Rep. 268 305
	[19]	 Dolz M, Nieto F and Ramirez-Pastor A J 2005 Phys. Rev. E 72 066129
	[20]	 González M I, Centres P M, Lebrecht W, Ramirez-Pastor A J and Nieto F 2013 Physica A 392 6330
	[21]	 Yonezawa F, Sakamoto S and Hori M 1989 Phys. Rev. B 40 636
		  Yonezawa F, Sakamoto S and Hori M 1989 Phys. Rev. B 40 650
	[22]	 Binder K 1997 Rep. Prog. Phys. 60 488
	[23]	 Lebrecht W, Valdés J F, Vogel E E, Nieto F and Ramirez-Pastor A J 2013 Physica A 392 149
	[24]	 Lebrecht W, Valdés J F, Vogel E E, Nieto F and Ramirez-Pastor A J 2014 Physica A 398 234
	[25]	 Lebrecht W, Vogel E E, Valdés J F, Ramirez-Pastor A J, Centres P M, González M I and Nieto F 2015 

Phys. Rev. E 92 012129
	[26]	 Hoshen J and Kopelman R 1976 Phys. Rev. B 14 3438
		  Hoshen J, Kopelman R and Monberg E M 1978 J. Stat. Phys. 19 219
	[27]	 Makoto M and Takuji N 1998 ACM Trans. Model. Comput. Simul. 8 3
	[28]	 Newman M E J and Zi R M 2001 Phys. Rev. E 64 016706
	[29]	 Lorenz C D and Zi R M 1998 Phys. Rev. E 57 230
	[30]	 Ballesteros P N, Fernández L A, Martín-Mayor V, Muñoz Sudepe A, Parisi G and Ruiz-Lorenzo J J 1999 

J. Phys. A: Math. Gen. 32 1
	[31]	 Wang J, Zhou Z, Zhang W, Garoni T M and Deng Y 2013 Phys. Rev. E 87 052107
	[32]	 Hu H, Blöte H W, Zi R M and Deng Y 2014 Phys. Rev. E 90 042106
	[33]	 Xu X, Wang J, Lv J-P and Deng Y 2014 Front. Phys. 9 113
	[34]	 Tsallis C 2004 Physica A 344 718
	[35]	 Weinan E, Ren W and Vanden-Eijnden E 2002 Phys. Rev. B 66 052301
	[36]	 Weinan E, Ren W and Vanden-Eijnden E 2007 J. Chem. Phys. 126 164103

http://dx.doi.org/10.1088/1742-5468/2016/09/093210
http://dx.doi.org/10.1017/S0305004100032680
http://dx.doi.org/10.1017/S0305004100032680
http://dx.doi.org/10.1017/S0305004100032692
http://dx.doi.org/10.1017/S0305004100032692
http://dx.doi.org/10.1103/PhysRevE.86.061116
http://dx.doi.org/10.1103/PhysRevE.86.061116
http://dx.doi.org/10.1103/PhysRevE.91.012109
http://dx.doi.org/10.1103/PhysRevE.91.012109
http://dx.doi.org/10.1103/PhysRevLett.42.518
http://dx.doi.org/10.1103/PhysRevLett.42.518
http://dx.doi.org/10.1137/0111066
http://dx.doi.org/10.1137/0111066
http://dx.doi.org/10.1088/0305-4470/12/11/018
http://dx.doi.org/10.1088/0305-4470/12/11/018
http://dx.doi.org/10.1016/0375-9601(79)90178-6
http://dx.doi.org/10.1016/0375-9601(79)90178-6
http://dx.doi.org/10.1088/0305-4470/23/7/010
http://dx.doi.org/10.1088/0305-4470/23/7/010
http://dx.doi.org/10.1142/S0129183199000978
http://dx.doi.org/10.1142/S0129183199000978
http://dx.doi.org/10.1103/PhysRevE.79.020102
http://dx.doi.org/10.1103/PhysRevE.79.020102
http://dx.doi.org/10.1016/j.cpc.2009.01.027
http://dx.doi.org/10.1016/j.cpc.2009.01.027
http://dx.doi.org/10.1016/0370-1573(95)00064-X
http://dx.doi.org/10.1016/0370-1573(95)00064-X
http://dx.doi.org/10.1103/PhysRevE.72.066129
http://dx.doi.org/10.1103/PhysRevE.72.066129
http://dx.doi.org/10.1016/j.physa.2013.09.001
http://dx.doi.org/10.1016/j.physa.2013.09.001
http://dx.doi.org/10.1103/PhysRevB.40.636
http://dx.doi.org/10.1103/PhysRevB.40.636
http://dx.doi.org/10.1103/PhysRevB.40.650
http://dx.doi.org/10.1103/PhysRevB.40.650
http://dx.doi.org/10.1088/0034-4885/60/5/001
http://dx.doi.org/10.1088/0034-4885/60/5/001
http://dx.doi.org/10.1016/j.physa.2012.08.014
http://dx.doi.org/10.1016/j.physa.2012.08.014
http://dx.doi.org/10.1016/j.physa.2013.12.038
http://dx.doi.org/10.1016/j.physa.2013.12.038
http://dx.doi.org/10.1103/PhysRevE.92.012129
http://dx.doi.org/10.1103/PhysRevE.92.012129
http://dx.doi.org/10.1103/PhysRevB.14.3438
http://dx.doi.org/10.1103/PhysRevB.14.3438
http://dx.doi.org/10.1007/BF01011724
http://dx.doi.org/10.1007/BF01011724
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1103/PhysRevE.64.016706
http://dx.doi.org/10.1103/PhysRevE.64.016706
http://dx.doi.org/10.1103/PhysRevE.57.230
http://dx.doi.org/10.1103/PhysRevE.57.230
http://dx.doi.org/10.1088/0305-4470/32/1/004
http://dx.doi.org/10.1088/0305-4470/32/1/004
http://dx.doi.org/10.1103/PhysRevE.87.052107
http://dx.doi.org/10.1103/PhysRevE.87.052107
http://dx.doi.org/10.1103/PhysRevE.90.042106
http://dx.doi.org/10.1103/PhysRevE.90.042106
http://dx.doi.org/10.1007/s11467-013-0403-z
http://dx.doi.org/10.1007/s11467-013-0403-z
http://dx.doi.org/10.1016/j.physa.2004.06.054
http://dx.doi.org/10.1016/j.physa.2004.06.054
http://dx.doi.org/10.1103/PhysRevB.66.052301
http://dx.doi.org/10.1103/PhysRevB.66.052301
http://dx.doi.org/10.1063/1.2720838
http://dx.doi.org/10.1063/1.2720838

