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Abstract The approximate core and the aspiration core are two non-empty solutions1

for cooperative games that have emerged in order to give an answer to cooperative2

games with an empty core. Although the approximate core and the aspiration core3

come from two different ideas, we show that both solutions are related in a very4

interesting way in partitioning games (or superadditive games). In fact, we prove5

that the approximate core converges to the aspiration core in partitioning games (or6

superadditive games).7

Keywords Core · Aspiration core · Approximate core · Convergence ·8

Partitioning games9

Mathematics Subject Classification 91A12 · 91A40 · 91A4410

1 Introduction11

The partitioning games have been introduced by Kaneko and Wooders (1982), and12

recently studied by Solymosi (2008), and Auriol and Marchi (2009), among others.13

These games are useful in modeling situations with restricted cooperative possibilities14

between the players, and therefore, only some coalitions may be formed. Certainly,15

the number of coalitions is exponentially large, and it may not be feasible in practice to16

consider all of them. It may be the case that some of the players in a coalition may not17

get to meet or communicate with each other, so that actually only some coalitions may18

be formed. In other contexts, it could be very hard to form a large coalition and then,19

R. P. Arribillaga (B)
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only small coalitions may play essential roles. But even if all coalitions are allowed, it20

may still happen that only small coalitions play essential roles, because the game has21

some special structure, as in the bridge game of Shubik (1971), and the assignment22

games of Shapley and Shubik (1972).23

Partitioning games are represented by a finite set N of players, an a priori set π of24

coalitions of N (subsets of N ) and a payoff function v̄ on π. Only coalitions in π play25

an essential role and players have to be organized through partitions taken from π .126

The fundamental concept of a cooperative equilibrium is the core, which always27

assumes that the grand coalition forms. However, the power of the core concept is28

limited by the fact that the non-emptiness of the core may be assured only in certain29

ideal environments. Kaneko and Wooders (1982) give necessary and sufficient con-30

ditions on π which guarantee that every partitioning game, associated to (N , π), has31

non-empty core. These conditions are considered by the authors “extremely restric-32

tive and, without some very special structure on the collection of basic coalitions, we33

would not expect these conditions to be met”. A large and current literature has studied34

these conditions to provide a graph-theoretical characterization of these families; see,35

for instance, Aguilera and Escalante (2010).36

In this paper, we study and compare two non-empty extensions of the core that give37

alternative solutions to the restrictive condition established by Kaneko and Wooders38

(1982). One of the solutions is the approximate core which proposes the replication of39

games to obtain non-empty ǫ-cores if the number of replications is sufficiently large.40

This idea has been introduced by Wooders (1983) 2 and studied in Kaneko and Wooders41

(1982), Kovalenkov and Wooders (2003) and Wooders (2008), among others. In this42

approach, the existence results are based on the fact that, with a finite number of types43

of players and bounded basic group sizes, large games have non-empty approximate44

cores.45

The other solution concept is the aspiration core which proposes that the coop-46

eration (or negotiation) of the players can be supported by overlapping structures47

of coalitions (not just the grand coalition) called balanced families. The aspiration48

core has been introduced by Bennett (1983); (see also, Cross 1967; Albers 1979) and49

recently, studied by Bejan and Gomez (2012), Cesco (2012) and Arribillaga (2013),50

among others.51

Although the approximate core and the aspiration core are two solutions that have52

the same motivation—to give an answer to (partitioning) games with an empty core—53

they have not yet been compared and linked in the literature. The main contribution54

of this paper is to show different relations between the approximate core and the55

aspiration core in partitioning games. First, we show that the cores of the replicated56

games, in a subsequence of the replica games, are equal to the aspiration core of the57

(original) game. Second, we prove that the collection of ǫ-approximate cores converges58

to the aspiration core when ǫ tends to zero. All the obtained results are completely59

independent of the set π of feasible coalitions and the payoff functions.60

1 (N , π, v̄) is called a game with restricted cooperation in Pulido and Sánchez (2006). In that paper the

grand coalition is always feasible (N ∈ π ) and the players are not reorganized in partitions taken from π.

2 The 1981 version of the paper is the Cowles Foundation Discussion Paper No. 612 that was published in

1983.
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Aspiration core in partitioning games

The paper is organized as follows. In the next section, preliminary definitions and61

notation are introduced. In sect. 3, approximate core and aspiration core definitions62

are presented. In sect. 4, we present the main results. 163

2 Definitions and notation64

A game with sidepayments is a pair (N , v), where N = {1, . . . , n} is a finite set of65

players and v : 2N → R is a characteristic function (with v(∅) = 0).3 The number66

v(S) is interpreted as the value of the coalition S. In a game with sidepayments, all67

the coalitions are feasible.68

A game with sidepayments (N , v) satisfies the superadditivity property if69

v(S ∪ S′) ≥ v(S) + v(S′) for all S, S′ ⊂ N such that S ∩ S′ = ∅.70

A problem with partial cooperation is a pair (N , π), where N = {1, . . . , n} is71

a finite set of players and π ⊂ 2N is a set of coalitions. In a problem with partial72

cooperation, only coalitions in π, called basic coalitions, are feasible. For any non-73

empty S ⊂ N , we call pS = {T1, . . . , Tk} a π -partition of S iff74

pS ⊂π and S =
⋃

T ∈pS

T with T ∩ T ′ =∅ for all T, T ′ ∈ pS such that T 
= T ′.75

The set of π -partitions of S is denoted by Pπ (S).76

A game in characteristic function form, (N , v), is called a partitioning game asso-77

ciated to (N , π) (Kaneko and Wooders 1982) iff for some real-valued function v̄ on78

π,79

v(S) = max
pS∈Pπ (S)

∑

T ∈pS

v̄(T ), for all non-empty S ⊂ N . (1)80

Example 1 If N1 is the set of buyers and N2 is the set of sellers, (with N1 ∩ N2 = ∅),81

N = N1 ∪ N2 is the set of players and the basic coalitions are the singles or the82

buyer–seller pairs, i.e., π∗ = {T ⊂ N : either |T | = 1 or |T | = 2 and |T ∩ Ni | = 183

for i = 1, 2}. The partitioning games (N , v) associated to (N , π∗) coincide with84

the assignment games in Shapley and Shubik (1972). There, they prove that every85

assignment game has a non-empty core. Note that this proposition is independent of86

the choice of v̄.87

For any given N and π, GS(N , π) denotes the set of all partitioning games asso-88

ciated to (N , π). Let GS(N ) denote the set of all the partitioning games with players89

in N , i.e., GS(N ) = ∪π⊂2N GS(N , π). From now on, we will restrict our attention to90

games in GS(N ), and (N , v) will be always a game in GS(N ).91

Remark 1 It is easy to check that every game in GS(N ) is superadditive. On the other92

hand, if (N , v) is a superadditive game, it can be checked that (N , v) is a partitioning93

3 As usual, 2N denotes the set of all the coalitions (subsets) of N .
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game associated to (N , π, v), i.e., (N , v) is in GS(N ).4 Therefore, GS(N ) is the class94

of superadditive games.95

Possible payoffs of a game (N , v) are described by vectors x ∈ Rn that assign a96

payoff xi to every i ∈ N . For every S ⊂ N and x ∈ Rn , define x(S) =
∑

i∈S

xi .97

One of the most studied and compelling solutions in cooperative games is the core98

introduced by Gillies (1959) and defined by99

C(N , v) = {x ∈ Rn : x(N ) ≤ v(N ) and x(S) ≥ v(S) ∀ S ⊂ N }.100

Remark 2 The core always assumes the formation of the grand coalition. Then, the101

set of feasible payoffs for the core is given by {x ∈ Rn : x(N ) ≤ v(N )}.102

3 Non-empty solutions103

The power of the core concept is limited by the fact that the non-emptiness of the104

core cannot be always assured. Kaneko and Wooders (1982) determine necessary and105

sufficient conditions on π, for every game in GS(N , π) to have a non-empty core.106

Those conditions are extremely restrictive. We will study two (different) non-empty107

solutions that have emerged in order to give an answer to games with an empty core.108

One of these solutions is the approximate core which proposes the replication of games109

to obtain non-empty approximate cores if the number of replications is sufficiently110

large. The other solution is the aspiration core, proposing that the cooperation (or111

negotiation) of the players can be supported by overlapping structures of coalitions112

(not just the grand coalition) called balanced families.113

3.1 The approximate core114

Given the set of players N = {1, . . . , i, . . . , n}, for each positive integer number r115

we define Nr = {(i, q) : i = 1, . . . , n and q = 1, . . . , r}. The set Nr is called the set116

of players of the r-th replication of N .5 On the subsets of Nr , we define a function ̺117

which associates to each S ⊂ Nr a vector in Rn whose i-th entry indicates the number118

of replications of the player i in S. A subset S ⊂ Nr is called a basic coalition (of Nr )119

if and only if ̺(S) = ̺(S′) for some basic coalition S′ ∈ π of the set N . Let πr be120

the set of all non-empty basic coalitions of Nr . The idea is that basic coalitions in Nr121

are copies of the basic coalitions in N .122

4 There could be other pairs (N , π) such that (N , v) is associated to (N , π) for some π ⊂ 2N .

5 N is identified with N1. If S ⊂ N , we have that S is identified with {(i, 1) : i ∈ S}. Then, we can consider

that S is a subset of Nr .
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Aspiration core in partitioning games

For a given game (N , v) ∈ GS(N , π), the r-th replica game (Nr , vr ) generated123

by (N , v) is defined as the (partitioning) game associated to (Nr , πr , v̄r ) where v̄r is124

defined on πr by:6125

v̄r (T ) = v(T ′) for all T ∈ πr where T ′ ∈ π with ̺(T ) = ̺(T ′). (2)126

The next example illustrate the concepts presented previously.127

Example 2 Let N = {1, 2, 3}, and let π∗ = {T ⊂ N : either |T | ≤ 2}, and let128

v̄ : π∗ → R defined by129

v̄(T ) = 2 |T | − 1 for all T ∈ π∗.130

The partitioning game (N , v) associated to (N , π∗, v̄) is defined by131

v(N ) = 4

v({1, 2}) = v({1, 3}) = v({2, 3}) = 3

v({i}) = 1 for all i ∈ N .

132

If N2 is the set of players of the 2-th replication of N ,133

N2 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}.134

In the 2-th replica π∗ is identified with set135

{(1, 1)}, {(2, 1)}, {(3, 1)}, {(1, 1), (3, 1)}, {(2, 1), (3, 1)}, {(1, 1), (2, 1)}}136

and137

̺({(i, 1)}) is a vector in R4 whose i − th entry is 1 and the others are 0, for all i ∈ N .

̺({(1, 1), (3, 1)}) = (1, 0, 1)

̺({(2, 1), (3, 1)}) = (0, 1, 1)

̺({(1, 1), (2, 1)}) = (1, 1, 0).

138

If T = {(1, 1), (1, 2), (2, 1), (3, 1)} ⊂ N2, then T /∈ π∗
2 because ̺(T ) = (2, 1, 1).139

If T̂ = {(1, 1), (1, 2)} ⊂ N2, then T̂ /∈ π∗
2 because ̺(T̂ ) = (2, 0, 0).140

If T̄ = {(2, 1), (3, 1)} ⊂ N2, then T̄ ∈ π∗
2 because ̺(T̄ ) = (0, 1, 1).141

In this case,142

π∗
2 = {T ⊂ N2 : either |T |=1 or |T | = 2 and |{ j : (i, j) ∈ T }| ≤ 1 for i =1, 2, 3}143

and144

v̄2(T ) = 2 |T | − 1 for all T ∈ π∗
2 .145

The 2-th replica game (N2, v2) generated by (N , v) is now the partitioning game146

associated to (N2, π2, v̄2).147

6 This replication is due to Kaneko and Wooders (1982).
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A payoff x for the game (Nr , vr ) is said to have the equal-treatment property, if148

x iq′ = x iq ′′
for each i ∈ N and for each q ′, q ′′ ∈ {1, . . . , r}; i.e., players of the same149

type are allocated the same amount. If we want to propose as solution for (N , v) some150

payoffs that emerge from (Nr , vr ), it is necessary that such payoffs satisfy the equal-151

treatment property. The next lemma ensures that payoffs in the core of a replicated152

game have the equal-treatment property.153

Lemma 1 Let (Nr , vr ) be the r−th replication of the game (N , v). If y is in the core154

of (Nr , vr ), then y has the equal-treatment property.155

Proof Suppose, by contradiction, that there exists y ∈ C(Nr , vr ), i∗ ∈ N , and j,156

j ′ ∈ {1, 2, . . . , r} such that y(i∗, j) < y(i∗, j ′). Let p be a πr -partition of Nr such that157

y(Nr ) ≤
∑

T ∈p

vr (T ). As y(T ) ≥ vr (T ) for all T ∈ p, y(T ) = vr (T ) for all T ∈ p.158

Let T j , T j ′ ∈ p such that (i∗, j) ∈ T j and (i∗, j ′) ∈ T j ′ . As p is a πr -partition,159

(i∗, j) /∈ T j ′ . Let S = T j ′ ∪ {(i∗, j)}\(i∗, j ′), then S ∈ πr and vr (S) = vr (T j ′). As160

y(i∗, j) < y(i∗, j ′), we have that y(S) < y(T j ′) = vr (T j ′) = vr (S) which contradicts161

that y ∈ C(Nr , vr ). ⊓⊔162

Because of the previous lemma, we can see C(Nr , vr ) as a subset of Rn .163

Given ǫ > 0, the ǫ-core (Shapley and Shubik 1966) of a game (N , v) is the set164

Cǫ(N , v) = {x ∈ Rn : x(N ) ≤ v(N ) and x(S) ≥ v(S)−ǫ |S| for all S ⊂ N }.165

The set of payoffs in Cǫ(Nr , vr ) that has the equal-treatment property is denoted166

by ECǫ(Nr , vr ).
7

167

Given ǫ > 0, the ǫ-approximate core of a game (N , v), denoted by ApCǫ(N , v),168

is the set of payoffs, with the equal-treatment property, in the ǫ-core of some replica169

of (N , v) , i.e.,170

ApCǫ(N , v) = {x ∈ Rn : x ∈ ECǫ(Nr , vr ) for some integer r}.171

The next proposition follows from Theorem 3.4 in Kaneko and Wooders (1982)172

and Lemma 1.173

Proposition 1 For all ǫ > 0. The ǫ-approximate core is non-empty for all games174

(N , v).175

Proof Given ǫ > 0, Theorem 3.4 in Kaneko and Wooders (1982) ensures176

Cǫ(Nr , vr ) 
= ∅ if r is large enough.8 The proof of such theorem considers a game177

(N , ṽ) associated to (N , v), and shows that there exists x ∈ C(Nr , ṽr ) such that178

(x − ǫ) ∈ Cǫ(Nr , vr ) if r is large enough.9 Since x ∈ C(Nr , ṽr ), by Lemma 1, x has179

7 The payoffs in the ǫ-core may not have the equal-treatment property.

8 On the class of normalized games in GS(N , π), (games (N , v) such that v(i) ≥ 0 for all i ∈ N and

v(N ) ≤ |N |) how large r is only depends on π, and it is independent of the function v. In the class of all

games GS(N , π), how large r is depends on π and v.

9 As usual, (x − ǫ) = (x iq − ǫ)(i,q)∈N×{1,...,r}.
The game (N , ṽ) is called the balanced cover of (N , v).
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Aspiration core in partitioning games

the equal-treatment property. Therefore, (x − ǫ) ∈ EC(Nr , vr ) if r is large enough.180

Then, ApCǫ(N , v) 
= ∅. ⊓⊔181

3.2 The aspiration core182

In order to introduce the aspiration core notion, we need some preliminary definitions.183

A family of coalitions σ ⊂ 2N generates the vector x if x(S) ≤ v(S) for all S ∈ σ184

and
⋃

S∈σ S = N . The aspiration core assumes that feasibility is defined by taking185

into account payoffs generated by overlapping structures of coalitions called balanced186

families. These are families of coalitions satisfying the following two requirements:187

a) Each player has all of his “ time” distribuited in the coalitions in which he partic-188

ipates.189

b) The amount of “ time” that a player contributes to a given coalition is the same for190

all members of that coalition.191

Formally, a family of coalitions β ⊆ 2N is called a balanced family if there exists192

a set of positive real numbers (λS)S∈β satisfying193

∑

S∈β:
i∈S

λS = 1, for all i ∈ N .194

The numbers (λS)S∈β are the balancing weights for β. A balanced family suggests195

what coalitions should be formed, and its balancing weights are interpreted as the196

fraction of “ time” in which each coalition is active. If S ∈ β, then each i ∈ S devotes197

λS of his “ time” to S. Since
∑

S∈β:
i∈S

λS = 1, each player distributes all his “ time”198

among the coalitions which he belongs to.199

Let B(N ) denote the set of all balanced families of N , and let β denote an arbitrary200

element in B(N ).201

Given a game (N , v), define202

v∗(N ) = max
β∈B(N )

∑

S∈β

λSv(S),203

where (λS)S∈β is the balancing weight vector of β.204

Therefore, v∗(N ) is the maximum value that N can obtain if the cooperation (or205

negotiation) of the players is organized by means of balanced families. Then, the set206

of feasible payoffs for the aspiration core is given by207

{x ∈ Rn : x(N ) ≤ v∗(N )}.208

Remark 3 If we have a partitioning game (N , v) associated to (N , π, v̄), it will be209

natural to work with210

vπ (N ) = max
β∈B(N ):

β⊂π

∑

S∈β

λT v̄(T )211
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instead of v∗(N ). Nevertheless, the two values are equal. Clearly, vπ (N ) ≤ v∗(N ).212

Conversely, let us assume that v∗(N ) =
∑

S∈β∗ λSv(S). For each S ∈ β∗, let pS ∈213

Pπ (S) such that v(S) =
∑

T ∈pS

v̄(T ). Let us define β̄ = {T ⊂ N : T ∈ pS for some214

S ∈ β} and λ̄T =
∑

S∈β∗:
T ∈pS

λS, for each T ∈ β̄. Given i ∈ N ,215

∑

T ∈β̄:
i∈T

λ̄T =
∑

T ∈β̄:
i∈T

⎛

⎜

⎜

⎝

∑

S∈β∗:
T ∈pS

λS

⎞

⎟

⎟

⎠

=
∑

S∈β∗:
i∈S

⎛

⎜

⎜

⎝

∑

T ∈pS :
i∈T

λS

⎞

⎟

⎟

⎠

=
∑

S∈β∗:
i∈S

λS = 1.216

Then, β̄ is a balanced family with balancing weight vector
(

λ̄T

)

T ∈β̄
and β̄ ⊂ π.217

Therefore,218

v∗(N ) =
∑

S∈β∗

λSv(S) =
∑

S∈β∗

λS

∑

T ∈pS

v̄(T ) =
∑

T ∈β̄

⎛

⎜

⎜

⎝

∑

S∈β∗:
T ∈pS

λS

⎞

⎟

⎟

⎠

219

v̄(T )) =
∑

T ∈β̄

λ̄T v̄(T ) ≤ vπ (N )220

as desired.221

Once we have presented the new feasibility notion, we can introduce the aspiration222

core definition.223

The aspiration core or balanced aspiration set (Bennett 1983; see also Cross 1967;224

Albers 1979) is defined as,225

AC(N , v) = {x ∈ Rn : x(N ) ≤ v∗(N ) and x(S) ≥ v(S) ∀ S ⊂ N }.226

Bennett (1983) shows that AC(N , v) 
= ∅ for every game (N , v). Furthermore,227

the aspiration core can be seen as a natural non-empty extension of the core because228

when the latter is non-empty, both solutions coincide. For example, in the assignment229

game both solutions coincide.230

The following lemma ensures that the aspiration core definition is consistent with231

the fact that only the basic coalitions play essential roles. The proof of this lemma232

uses standard techniques, and it is omitted.233

Lemma 2 If (N , v) is a game associated to (N , π, v̄), then234

AC(N , v) = {x ∈ Rn : x(N ) ≤ v∗(N ) and x(T ) ≥ v̄(T ) for all T ∈ π}.235

4 Main results236

The following is one of the main results about replications of partitioning games.237
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Aspiration core in partitioning games

Theorem (Kaneko and Wooders 1982) Given (N , π), there exists an integer number238

m0 such that for any positive integer number k and any (N , v) ∈ GS(N , π), the239

replica games (Nr , vr ) have non-empty core, where r = km0.240

This theorem states that there exists a subsequence of the generated sequence241

of replica games such that every game in the subsequence has a non-empty core.242

Theorem 1 below provides more information about the subsequence of non-empty243

cores and the relation of such subsequence with the aspiration core of the original244

game. We prove that over the subsequence of replica games where the non-emptiness245

of the core is guaranteed, cores of the replica games remain constant and they are246

equal to the aspiration core of the original game.247

Theorem 1 Given (N , π), there exists an integer number m0 such that for any positive248

integer number k and any (N , v) ∈ GS(N , π), C(Nr , vr ) = AC(N , v) for all r =249

km0.250

Proof First, we will prove that for all r, C(Nr , vr ) ⊂ AC(N , v).251

Let (N , v) be a game associated to (N , π, v̄). Let x be in C(Nr , vr ). Since v̄(T ) =252

v̄r (T ) for all T ∈ π, x(T ) ≥ v(T ) ≥ v̄(T ) for all T ∈ π . Now, by Lemma 2, we only253

need to prove that x(N ) ≤ v∗(N ).254

Let x̄ = �r
i=1x . As x ∈ C(Nr , vr ), x̄(Nr ) ≤ vr (N ). So there exists a πr−partition255

of Nr , pNr , such that256

x̄(T ) ≤ vr (T ) for all T ∈ pNr . (3)257

Let β∗ = {T ∗ ∈ π : ̺(T ∗) = ̺(T ) for some T ∈ pNr }. We will prove258

that β∗ is a balanced family. Given T ∗ ∈ β∗, let hT ∗ be defined by hT ∗ =259

∣

∣{T ∈ pNr : ̺(T ) = ̺(T ∗)}
∣

∣ . Let us define λT ∗ =
hT ∗

r
. As pNr is a πr−partition,260

each T ∈ pNr has at most one member of each type (since ̺(T j ) = ̺(T ∗) with261

T ∗ ∈ π ) and each pair (i, q) is in one and only one element of pNr . Then,262

∑

T ∈pNr :
(i,q)∈T

f or some q

1 = r for all i ∈ N .263

Now, given i ∈ N , we have that,264

∑

T ∗∈β∗:
i∈T ∗

λT ∗ =
∑

T ∗∈β∗:
i∈T ∗

hT ∗

r
=

1

r

∑

T ∗∈β∗:
i∈T ∗

hT ∗ =
1

r

∑

T ∗∈β∗:
i∈T ∗

⎛

⎜

⎜

⎝

∑

T ∈pNr :
̺(T )=̺(T ∗)

1

⎞

⎟

⎟

⎠

265

=
1

r

∑

T ∈pNr :
(i,q)∈T

f or some q

1 =
1

r
r = 1.266

123

Journal: 11750 Article No.: 0351 TYPESET DISK LE CP Disp.:2014/11/10 Pages: 14 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

R. P. Arribillaga

Therefore, β∗ is a balanced family of N with balancing weights (λT ∗
j
)T ∗

j ∈β .267

By definition of vr and (3), we have that x(T ∗) ≤ v(T ∗) for all T ∗ ∈ β∗. Then,268

x(N ) =
∑

T ∗∈β∗:
i∈T ∗

λT ∗ x(T ∗) ≤
∑

T ∗∈β∗:
i∈T ∗

λT ∗v(T ∗) ≤ v∗(N ). (4)269

So, we have proven that C(Nr , vr ) ⊂ AC(N , v) for all r.270

The other inclusion follows from the proof of Theorem 3.2 in Kaneko and Wooders271

(1982) and therefore it is omitted. ⊓⊔272

The following limit theorem is the main result of this paper. It states that the collec-273

tion of ǫ-approximate cores converges to the aspiration core when ǫ tends to zero.10
274

Theorem 2 For every game (N , v) in GS(N ),275

lim
ǫ→0

ApCǫ(N , v) = AC(N , v).276

Before proving Theorem 2, we need to establish some lemmas.277

Remark 4 Note that Theorem 2 applies to every pair (N , π) and is independent of278

the original payoff function v̄. Assume that we have a superadditive game (N , v). By279

Remark 1, we know that (N , v) is a partitioning game, and that there exists a pair280

(N , π) that generates (N , v). We can replicate (N , v) from (N , π), the numbers m0
281

and r∗ that appear in Theorem 1, and Kaneko and Wooders (1982) theorems will be282

depending on the choice of π. However, it is important to highlight that Theorem 2283

is independent of the choice of π, and this is true for every π that we consider to gen-284

erate (N , v). Therefore, Theorem 2 can be presented on superadditive games without285

reference to the original problem of partial cooperation.286

Lemma 3 Let (Nr , vr ) be the r−th replication of the game (N , v), then
vr (N )

r
≤287

v∗(N ) for all r.288

Proof Let pNr be a πr−partition of Nr such that vr (N ) =
∑

T ∈pNr
vr (T ). Let289

β∗ = {T ∗ ∈ π : ̺(T ∗) = ̺(T ) for some T ∈ pNr }. By the proof of The-290

orem 1, β∗ is a balanced family of N with balancing weights λT ∗ =
hT ∗

r
where291

hT ∗ =
∣

∣{T ∈ pNr : ̺(T ) = ̺(T ∗)}
∣

∣ , for all T ∗ ∈ β∗. Therefore,292

vr (N )

r
=

∑

T ∈pNr

vr (T )

r
=

∑

T ∗∈β∗

hT ∗
v(T ∗)

r
=

∑

T ∗∈β∗

λT ∗v(T ∗) ≤ v∗(N ).293

⊓⊔294

10 The limit notion is the classical one used in set theory. Given a set X and an indexed collection of subsets

(Aǫ)ǫ∈(0,∞) of X such that Aǫ ⊂ Aǫ′ if ǫ < ǫ′,the limit of Aǫ when ǫtends to zero is,

lim
ǫ→0

Aǫ =
⋂

ǫ>0

Aǫ .
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Aspiration core in partitioning games

In a similar way to the ǫ-core definition, we define the ǫ-aspiration core of a game295

(N , v) as the set,296

ACǫ(N , v) = {x ∈ Rn : x(N ) ≤ v∗(N ) and x(S) ≥ v(S) − ǫ |S| for all S ⊂ N }.297

The next lemma presents the relation between the ǫ-core of a replicated game and298

the ǫ-aspiration core of the original game.299

Lemma 4 For all game (N , v) in GS(N ), all ǫ > 0 and all integer r,300

ECǫ(Nr , vr ) = ACǫ(N , v) ∩ {x ∈ Rn : r x(N ) ≤ vr (Nr )}.301

Proof Since (N , v) is in GS(N ), there exists (N , π, v̄) such that (N , v) is associated302

to (N , π, v̄). Suppose x is in ECǫ(Nr , vr ). Then,303

r x(N ) ≤ vr (Nr ). (5)304

We will prove that x ∈ ACǫ(N , v). By Lemma 3 and (5),305

x(N ) ≤ v∗(N ). (6)306

As x ∈ ECǫ(Nr , vr ), then307

x(T ) ≥ v(T ) − ǫ |T | for all T ∈ π.308

Given S ⊂ N , let pS ∈ Pπ (S) such that, v(S) =
∑

T ∈pS

v̄(T ). Then,309

v(S) =
∑

T ∈pS

v̄(T ) ≤
∑

T ∈pS

v(T ) ≤
∑

T ∈pS

x(T ) + ǫ |T | =
∑

T ∈pS

x(T ) +
∑

T ∈pS

ǫ |T |310

= x(S) + ǫ |S| . (7)311

Therefore, by (6) and (7), x ∈ ACǫ(N , v).312

To see the other inclusion, let x be such that r x(N ) ≤ vr (Nr ). If x̄ = �r
i=1x, then313

x̄(Nr ) ≤ vr (Nr ). (8)314

Now, let us suppose x is in ACǫ(N , v). If x̄ = �r
i=1x, then x̄(T ) = x(T ) ≥315

v(T ) − ǫ |T | for all T ∈ π. By definition of (Nr , vr ),316

x̄(T ) ≥ vr (T ) − ǫ |T | for all T ∈ πr . (9)317

Therefore, by (8), (9) and Lemma 2.1 of Kaneko and Wooders (1982), x ∈318

ECǫ(Nr , vr ). ⊓⊔319
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Remark 5 From the previous lemma, the following three statements hold:320

(i) ECǫ(Nr , vr ) is always included in ACǫ(N , v).321

(ii) ACǫ(N , v) is always non-empty but in cases in which vr (Nr )
r

< v∗(N ), we have322

that ECǫ(Nr , vr ) is empty.323

(iii) By Theorem 1, there is an integer number m0 such that for any positive integer324

number k,
vr (Nr )

r
= v∗(N )−ǫ |N | for all r = km0. Then, ECǫ(Nr , vr ) remains325

constant satisfying ECǫ(Nr , vr ) = ACǫ(N , v) for all r = km0, i.e., over a326

subsequence of replica games, the payoffs with the equal-treatment property327

in the ǫ-cores of the replica games remain constant, and they are equal to the328

ǫ-aspiration core of the original game.329

Now, we are ready to prove Theorem 2.330

Proof of Theorem 2. By Lemma 4, ECǫ(Nr , vr ) ⊂ ACǫ(N , v) for all integer r, for331

all ǫ > 0. Then, ApCǫ(N , v) ⊂ ACǫ(N , v) for all ǫ > 0. By Remark 5 (i i i), there332

exists an integer number m0 such that for all positive integer number k, ECǫ(Nr , vr ) =333

ACǫ(N , v) for all r = km0. Therefore,334

ApCǫ(N , v) = ACǫ(N , v) for all ǫ > 0.335

As ApCǫ1(N , v) ⊂ ApCǫ2(N , v) if ǫ1 ≤ ǫ2, we have336

lim
ǫ→0

ApCǫ(N , v) =
⋂

ǫ>0

ApCǫ(N , v) =
⋂

ǫ>0

ACǫ(N , v) = AC(N , v).337

⊓⊔338

Remark 6 We have proven that339

ApCǫ(N , v) = ACǫ(N , v) for all ǫ > 0.340

So that, the ǫ-approximate core and the ǫ -aspiration core coincide for all ǫ > 0 .341

The next last theorem shows the “closedness” between ǫ-cores of replicated games342

and the ǫ-aspiration core of the original games if the number of replications is large343

enough.344

Theorem 3 For any (N , v) ∈ GS(N , π) and any ǫ > 0, there is an integer r∗ such345

that for all r ≥ r∗,346

ECǫ(Nr , vr ) ⊂ ACǫ(N , v) and

ACǫ(N , v)\ECǫ(Nr , vr ) ⊂ {x ∈ Rn : v∗(N ) − ǫ < x(N ) ≤ v∗(N )}.
(10)347

Proof The first inclusion follows from Lemma 4. Let us see the second inclusion.348

Given ǫ > 0, by the proof of Theorem 3.4 in Kaneko and Wooders (1982), there349
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Aspiration core in partitioning games

exists r∗ such that 11
350

rv∗(N ) − vr (Nr ) < rǫ for all r ≥ r∗. (11)351

Now, if r ≥ r∗ and x ∈ ACǫ(N , v)\ECǫ(Nr , vr ), thenvr (Nr ) < r x(N ) ≤ rv∗(N )352

(see Lemma 4). Then, by (11), v∗(N ) − ǫ < x(N ) ≤ v∗(N ). ⊓⊔353

Let us see some implications of Theorem 3. First, for small ǫ > 0, the ǫ-aspiration354

core of a (original) game is very “closed” to the set of payoffs, with the equal-treatment355

property, in the ǫ-core of (Nr , vr ) when r is large enough.356

Second, it is clear that,12
357

AC(N , v) − {(ǫ, ǫ, . . . , ǫ)} ⊂ACǫ(N , v) ∩ {x ∈ Rn : x(N ) ≤ v∗(N ) − ǫ}.358

So, by (10), the payoffs in the aspiration core of the (original) game “minus” ǫ are359

in the ǫ-core of the r -th replicate game if r is large enough.360

Because of previous results, we could say that the ideas of approximate core and361

aspiration core are in complete accordance. Nevertheless, the aspiration core notion362

has the advantage that it does not need to introduce the notions of replicated games363

and ǫ-cores; it only needs to calculate the set of feasible payoffs that is obtained when364

the players are organized by balanced families, as well as to select those payoffs that365

are not blocked by the basic coalitions.366
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