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The goal of this work is to research the state-of-the-art in process optimization techniques and tools
based on LCA, focused in the process engineering field. A collection of methods, approaches, applications,
specific software packages, and insights regarding experiences and progress made in applying the LCA
methodology coupled to optimization frameworks is provided, and general trends are identified. The
“cradle-to-gate” concept to define the system boundaries is the most used approach in practice, instead
of the “cradle-to-grave” approach. Normally, the relationship between inventory data and impact cate-
gory indicators is linearly expressed by the characterization factors; then, synergic effects of the
contaminants are neglected. Among the LCIA methods, the eco-indicator 99, which is based on the
endpoint category and the panel method, is the most used in practice. A single environmental impact
function, resulting from the aggregation of environmental impacts, is formulated as the environmental
objective in most analyzed cases. SimaPro is the most used software for LCA applications in literature
analyzed. The multi-objective optimization is the most used approach for dealing with this kind of
problems, where the ε-constraint method for generating the Pareto set is the most applied technique.
However, a renewed interest in formulating a single economic objective function in optimization
frameworks can be observed, favored by the development of life cycle cost software and progress made
in assessing costs of environmental externalities. Finally, a trend to deal with multi-period scenarios into
integrated LCA-optimization frameworks can be distinguished providing more accurate results upon data
availability.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The development of industrial technology has caused the
transformation of the environment in different ways, changing the
nature and extent of the environmental impacts of industrial
activities. Some activities may not have an immediate effect on
environment and others may have a more global impact on it. In
addition, some of the environment impacts lead to accumulative
and synergistic effects over space and time (Azapagic, 1999).

Since last three decades, chemical and process industries are
pushed by pressure groups demanding more environmental
friendly processes, products and practices through ideas such as
waste minimization, zero emission, and producer responsibility
(Azapagic, 1999).

Nowadays, the Life Cycle Assessment (LCA) is an accepted envi-
ronmental management tool to holistically, systematically and
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et.gov.ar (C. Pieragostini),
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multidisciplinary quantify environmental burdens and their
potential impacts over the whole life cycle of a product, process or
activity. Although it has been used in some industrial sectors for
about 20 years, only since the beginning of the 1990s, when its
relevance as an environmental management aid in both private and
public decision making became more evident, LCA has received
methodological development. Some examples on that direction are
the incorporation of LCA within the ISO 14000 Environmental
Management Systems EMS (ISO 14001, 1996), EU Eco-
Management and Audit Schemes EMAS (Council Regulation (EEC)
No. 1836, 1993), and EC Directive on Integrated Pollution, Preven-
tionandControl IPPC (CouncilDirective91/61/EC,1996;Department
of the Environment, Transport and the Regions, U.K., 1998), which
require companies to have a full knowledge of the environmental
consequences of their actions, bothon- andoff-site (Azapagic,1999).

In spite of that the LCA methodology has a subjective compo-
nent in several aspects, such as the system boundaries, goal defi-
nition and scoping, and that the LCA results are often determined
by limited data with unknown reliability (Georgakellos, 2005;
Goedkoop and Oele, 2008), LCA is widely used as a decision-making
tool in process selection, design, and optimization in order to
identify clean technologies (Del Borghi et al., 2007). On the other
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hand, simulation and optimization methods, which are valuable
tools mainly in process systems engineering, have been successfully
applying for several decades (Francesconi et al., 2007; Oliva et al.,
2008). The incorporation into an optimization framework of envi-
ronmental criteria, together with the economic and technical ones,
results in a powerful computer-aided decision-making tool.

In this context, integration of mathematical optimization tech-
niques with LCA methodology for conceiving environmentally
friendly processes, products and/or activities from “cradle-to-
grave”, in an efficient and flexible way, with less subjectivity as
possible, is an ambitious challenge.

The goal of the present work is to investigate the state-of-
the-art in process optimization techniques and tools, LCA meth-
odologies, and the integration of both of them through process
engineering case studies. The method and evaluation framework
applied was based in an exhaustive, systematic search in the main
scientific databases using specific, topic-sensitive keywords for
each particular point addressed or criterion considered. The focus
was on the retrieved results of applications and experiences
comingmainly from the chemical engineering, process engineering
and process systems engineering fields concerned about environ-
mental issues. The purpose is to provide a collection of pioneering
papers with distinctive features for gathering the general trends in
integrating LCA methodologies with optimization strategies. In
doing so, the characteristics or features reviewed regarding
modeling and optimization aspects were, among others: (a) the
type of the resulting model derived, i.e. linear or non-linear models
with continuous or mixed continuous and integer decision vari-
ables; (b) the nature of the resulting optimization problem, i.e.
single-objective or multi-objective optimization problems; (c) the
solution methods and/or strategies used (e.g. Pareto set, solu-
tion procedure based on local or global optimization approaches,
mathematical programming techniques, neural network-based
approaches, genetic algorithm methods); (d) the nature of the
considered scenarios (e.g. single-period or multi-period analyses).
The characteristics or features reviewed regarding LCA methodol-
ogies were among others: (a) impact modeling depth categories in
the characterization step (midpoints or endpoints), (b) weighting
basis in the valuation step (monetization, distance to target, and
panel methods); (c) system boundaries considered (e.g. cradle-to-
grave approach, cradle-to-gate approach, supply chain analysis,
product manufacturing stage only). The screening, selection and
inclusion of the referenced papers were performed by analyzing
the quality and completeness of the information they provide in
order to delineate such general trends.

2. Mathematical optimization techniques suitable for process
synthesis and design

Traditionally, system optimization in chemical and process
engineering applications has focused on maximizing/minimizing
economic objective functions. Grossmann et al. (2000) presented
an overview of the major advances in mathematical programming
techniques and strategies for modeling and solving design and
synthesis problems. These problem types can be formulated as
follows:

min Z ¼ f ðx; yÞ
s:t: hiðx; yÞ ¼ 0 i ¼ 1;.;m
giðx; yÞ � 0 i ¼ 1;.; l

x˛X; y˛f0;1g

(1)

where f(x, y) is the objective function to be optimized (e.g. cost);
hi(x, y) ¼ 0 are the equations that describe the performance of the
system such asmass and energy balances and design equations; and
gi(x, y) � 0 are inequalities that define the specifications or
constraints for feasible choices, such asmaterial availabilities, energy
requirements, and capacities. A mixed-integer programming model
corresponds to a mixed-integer linear (MILP) or mixed-integer non-
linear (MINLP) programming model depending on whether the
functions are linear or not. The variables x are continuous, and
generally correspond to the state or design variables (material and
energy flows, pressures, compositions, sizes of process units, etc.),
while y are integer or discrete variables, which are generally
restricted to0e1values todefine theselectionof an itemoranaction;
for example, alternativematerials or processing routes in the system.
If there are no integer variables, the mixed-integer programming
problem reduces to a linear program (LP) or non-linear program
(NLP) depending onwhether the functions are linear or not.

Then, an alternative formulation and solution procedure for
problems with discrete/continuous variables was described: the
generalized disjunctive programming (GDP) approach (Raman and
Grossmann, 1994). The basic idea in these models is to use
boolean and continuous variables, and a maximization/minimiza-
tion problem is formulated with an objective function subject to
three types of constraints: (a) global inequalities that are indepen-
dent of discrete decisions; (b) disjunctions that are conditional
constraints involving an OR operator; and (c) pure logic constraints
that involve only the boolean variables. The GDP optimization
problem looks as follows:

min Z ¼ P
k˛K

ck þ f
�
x
�

s:t: giðxÞ � 0 i ¼ 1;.; l

V
j˛Ik

2
4 yjk
hjk

�
x
� ¼ 0

ck ¼ gjk

3
5 k˛K

UðyÞ ¼ True
x˛X; yjk˛fTrue; Falseg

(2)

In this form, apart from the term f(x) for the continuous variables,
the objective function has the charges ck that depend on discrete
choices. The inequalities gi(x) � 0 must hold regardless of the
discrete conditions and hjk(x) ¼ 0 are conditional equations that
mustbe satisfiedwhen thecorrespondingbooleanvariableyjk is True
for the jth term of the kth disjunction. The set Ik represents the
number of choices for each disjunction defined in the set K. Also, the
fixedcharge ck is assigned thevaluegjk for that samevariable. Finally,
the constraints UðyÞ involve logic propositions in terms of boolean
variables. A GDP problem can be reformulated as a mixed-integer
programming problem using the convex hull transformation
(Turkay and Grossmann, 1996) or with “big-M” constraints for the
disjunctions. The propositional logic statements are reformulated as
linear inequalities (Raman and Grossmann, 1991, 1994). The GDP
technique reduces combinatorial search effort because reduces the
number of equations. Grossmann et al. (2000) mentionmethods for
solving those types of problems for both linear and non-linear cases.

Since optimal problem solutions based on an economic objec-
tive function usually conflict with those based on an environmental
one, multi-objective optimization was proposed to solve this
trades-off. In general, a multi-objective (MO) optimization problem
can be formulated as follows (Guillén-Gosálbez et al., 2008):

min f
�
x; y

�
¼

h
f1; f2.fp

i
s:t: hiðx; yÞ ¼ 0 i ¼ 1;.;m

giðx; yÞ � 0 i ¼ 1;.; l

x˛X4Rn

y˛f0;1g

(3)
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where constraints are analogous to those described in (1). Here, the
system is optimized simultaneously on a number of objective
functions f1, f2.fp to locate the multidimensional noninferior or
Pareto frontier. The points that lie in the Pareto curve are the Pareto
optimal solutions of the problem and represent the points where
no objective can be improved without worsening the value of other
objective (Azapagic, 1999; Guillén-Gosálbez et al., 2008; Ngatchou
et al., 2005).

One method to solve MO optimization problems is the
ε-constraint method, which is based on the optimization of one
objective functionwhile treating the other objectives as constraints
bounded by some allowable range for εi (Azapagic and Clift, 1999a;
Guillén-Gosálbez et al., 2008; Ngatchou et al., 2005):

minffkðx; yÞg
s:t: fiðxÞ � εi i ¼ 1;.;n; isk
hiðx; yÞ ¼ 0 i ¼ 1;.;m
giðx; yÞ � 0 i ¼ 1;.; l
x˛X4Rn

y˛f0;1g

(4)

The problem is repeatedly solved for different values of εi to
generate the entire Pareto set.

Mussati (2003) and Mussati et al. (2003a, 2003b) proposed an
alternative approach for optimal synthesis and design of dual-
purpose desalination systems. They determined useful relation-
ships between thermodynamic and economic solutions. Briefly, by
applying duality and the KarusheKuhneTucker (KKT) conditions to
a thermodynamic problem (maximization of the system efficiency)
and to an economic problem (minimization of the total cost), the
authors determined the so-called “thermodynamic costs”, which
relate the main process variables with their corresponding costs.
Indeed, for the analyzed system, those thermodynamic costs
determine the optimal values range of process variables (lower and
upper bounds), which can then be used for initializing the
economic optimization problem. Thus, following an analogous
approach, it is possible to formulate objective functions for the
optimization problem considering environmental indexes (instead
of process efficiency), and thus obtaining “environmental costs”
(instead of “thermodynamic” ones). The resulting information can
be useful not only for having good initial values and bounds, but
also for comparing the environmental performance among alter-
native processes/products/activities.

All mathematical formulations mentioned above are determin-
istic. However, some system parameter values can be uncertain.
A number of inexact programming methods were developed for
dealing with uncertainties in planning problems, which were
generally based on interval mathematical programming (IMP),
fuzzy mathematical programming (FMP) and stochastic mathe-
matical programming (SMP) (Cai et al., 2009). Computationally
efficient alternatives to stochastic programming are offered by
Fuzzy linear programming (FLP) techniques (Lai and Hwang, 1992;
Rommelfanger, 1996; Sadiq and Husain, 2005). Zimmermann
(1992) developed a symmetric FLP (SFLP) formulation where con-
straints are made flexible by introducing the concept of degree of
feasibility. In the SFLP model, multiple objective functions can thus
be treated as fuzzy constraints, reducing the optimization problem
to the maximization of the degree of feasibility of all the fuzzy
constraints simultaneously.

The SFLP methodology can be generalized for optimization
problems with several objectives, where objective functions are
modeled as fuzzy sets and the crisp constraints added to the
formulation (Pinto-Varela et al., 2010; Tan, 2005).

Other alternative for solving optimization problems is the
approach based on artificial neural networks (ANNs), which mimic
the human brain to learn the relationships between certain inputs
and outputs from experience. Particularly, back-propagation-type
(BP) neural networks have an input, an output and the interac-
tions between both layers, i.e. hidden layers. Each neuron of
a layer is connected to the neurons in the preceding layer, and
then, forward-propagating and backward-propagating steps are
repeated to perform the learning required. For each inputeoutput
pair (i, y), the back-propagation algorithm first calculates the
output “y” by propagating “i” forward from input layer to output
layer. Then, the network’s output is compared with the target
vector, and the back propagated from the output layer to the input
layer to update the connection weights is started. The training
procedure finishes when the network output reaches close enough
to the desired output (Yang et al., 2003; Zhou et al., 2009).

Genetic algorithms (GA) search the optimal solutions by using
the biological evolution principles, including natural selection and
survival of the fittest. GA can be adopted to select the input variable
of the BP neural network, which greatly affects the output variable
and can simplify the BP network structure reducing the learning
time. Certain numbers of binary digits are assigned to the param-
eters to be optimized. The binary string creates a chromosome and
the algorithm tries to find the best 0 and 1 combination of the
string. Penalty functions drastically change the value of the objec-
tive function if the parameters get out of the selected range. By
combining the BP neural network and GA, a multi-objective opti-
mization model can be built considering the following steps: (1)
sample data capturing and processing; (2) applying GA to select
and simplify the input variable of themodel; (3) building a network
model to forecast different objectives, training the BP network,
and ensuring that it has forecasting ability; (4) optimizing and
analyzing each objective (Yang et al., 2003; Zhou et al., 2009).

3. Life cycle assessment (LCA)

The life cycle assessment has two main objectives. The first one
is to quantify and evaluate the environmental performance of
a product or a process from “cradle-to-grave”, i.e. considering the
entire life cycle of the product: extracting and processing raw
materials; manufacturing, transportation and distribution; use, re-
use, maintenance; recycling and final disposal (Guinée et al., 1993),
and thus help decision-makers to choose among alternative prod-
ucts and processes. In addition, LCA provides a basis for assessing
potential improvements in the environmental performance of
a product system (Azapagic and Clift, 1999a).

Regarding to the LCA framework, in 1990, the Society for Envi-
ronmental Toxicology and Chemistry (SETAC) initiated activities to
define LCA and developed a general methodology for conducting
the LCA studies (Udo de Haes et al., 1999). Soon afterward, the
International Organization for Standardization (ISO) started similar
work on developing principles and guidelines on the LCA meth-
odology (ISO 14040, 1997). Although SETAC and ISO worked inde-
pendently of each other, a general consensus on themethodological
framework has started to emerge, differing in details only
(Azapagic, 1999).

The methodological framework for conducting LCA, as defined
by both SETAC (Udo de Haes et al., 1999) and ISO (ISO 14040, 1997),
comprises four main phases: (1) Goal definition and Scoping, (2)
Inventory Analysis, (3) Impact Assessment, and (4) Improvement
Assessment in the SETAC or Interpretation in the ISO methodolo-
gies, respectively. In the first phase, the system boundaries must be
expanded to include the upstream and downstream activities
related to themain process itself (Guillén-Gosálbez et al., 2008). The
functional unit is also specified within this phase; it enables alter-
native goods, or services, to be compared and analyzed, and it is not
usually just a quantity of material (Rebitzer et al., 2004). In practice,
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a functional unit is an equivalent amount of a product, service or
process function; its definition should take account the market
context of a product and some technological options to perform the
same or similar product function (Krozer and Vis, 1991).

The Inventory Analysis involves data collection and calculation
procedures to quantify relevant inputs and outputs of a product
system (Goedkoop and Oele, 2008; Guinée et al., 1993). In this
phase, mass and energy balances are performed to quantify all the
material and energy inputs, wastes, and emissions caused by
a functional unit of the product studied (Azapagic, 1999; Guinée
and Heijungs, 1993; Udo de Haes et al., 1999). Since the data
documentation is crucial, there are public standard databases, such
as SPINE, from Sweden, developed by the Center for Environmental
Assessment of Product and Material Systems CPM (Carlson et al.,
1995), and ECOINVENT of the Swiss Center for Life Cycle Invento-
ries (Frischknecht, 2001) that were included in several LCA soft-
ware in order to increase acceptance and data format compatibility.
The format consists of a long list of data fields, which accommodate
information about the valid geography, time span, and a description
of the technology, among others (Rebitzer et al., 2004).

The Impact Assessment aggregates the inputs and outputs
quantified in the Inventory Analysis to approach their potential
environmental impacts, which can be done by three classes of
indicators: (a) first generation indicators that weight inventory data
using policy-based measures or intrinsic properties, i.e. in terms of
“policy-based hazard equivalents” (Pennington et al., 2004); (b)
marginal approaches that provide estimates of marginal changes
(small changes) to the existing risks and (potential) impacts that
would be attributable to a change in, or the provision of, different
goods and services (Udo de Haes et al., 1999); and (c) average
approaches that yield estimates of the contributions of a product to
the overall status quo of risks and (potential) impacts (Udo de Haes
et al., 1999).

A number of different Life Cycle Impact Assessment (LCIA)
methods are available, several of which are implemented in
commercial software (Dreyer et al., 2003). Most methods are based
on impact categories and characterization factors, which consists of
the following steps: classification, characterization, normalization
(optional) and valuation (Guinée et al., 1993; Huijbregts et al., 2000;
Miettinen and Hämäläinen, 1997) In the first step, the environ-
mental burdens, quantified previously in the Inventory Analysis, are
aggregated into a limited set of recognized environmental impact
categories taking into account the available scientific knowledge
about the processes. The selection of the appropriate impact cate-
gories is guided by the goal of the study, and its number has to be
limited by practicality. In the ISO methodology, they are aggregated
into three areas of protection: human health, natural resources and
natural environment; while in the SETAC methodology, one more
area is considered: man-made environment (Udo de Haes et al.,
1999). Pennington et al. (2004) lists the available methods for
common impact categories in LCAs. The relative contribution of
each environmental impact is assessed in the Characterization step
of the LCIA methods (Azapagic and Clift, 1999a). The characteriza-
tion is performed multiplying the amount of each substance by its
characterization factor and all the figures are summed together.
Characterization factors, also called “potentials”, are substance-
specific, quantitative representations of potential impacts per unit
emission of a substance. They are calculated for each impact cate-
gory to which a substance may potentially contribute (Huijbregts
et al., 2000). These factors can be generic (eq. (5)) and nongeneric
(eq. (6)); the former are typically the outputs of the characterization
models, and are available in the literature in the form of databases:

Sj ¼
X
i

Qj;imi (5)
where Sj is the indicator for impact category j; mi is the size of the
intervention of type i (for instance, the mass of a substance emitted
to air), and Qj,i is the characterization factor that links intervention i
to impact category j (Pennington et al., 2004). Equation (6) illus-
trates some of the potential variables of nongeneric characterization
factors in the context of impacts on human health and the natural
environment (analogous equations are available for natural
resources) (Pennington et al., 2004):

Qi;s;t ¼
X
l

Effectði; l; tÞ
Emissionði; sÞ

¼
X
l

�
Fateði; l; tÞ

Emissionði; sÞ
�
$

�
Exposureði; l; tÞ

Fateði; l; tÞ
�
$

�
Effectði; l; tÞ

Exposureði; l; tÞ
�

(6)

Subscript i denotes the substance, s is the location of the emis-
sion, l is the related location of exposure of the receptor, and t is the
time period during which the potential contribution to the impact
is taken into account (Pennington et al., 2004).

Another key issue in the characterization step is the impact
modeling depth, i.e. the extent to which environmental mecha-
nisms (cause-effect chains) are modeled (Bare et al., 2002a;
Finnveden et al., 1992; Potting and Hauschild, 1997; Udo de Haes
et al., 2002). There are two impact modeling depth categories:
midpoints and endpoints. The former are considered to be links in
the cause-effect chain of an impact category, prior to the endpoints,
at which characterization factors or indicators can be derived to
reflect the relative importance of emissions or extractions. Com-
mon examples of midpoint characterization factors include ozone
depletion potentials, global warming potentials, and photochem-
ical ozone (smog) creation potentials. On the other hand, some
methodologies have adopted characterization factors at an end-
point level in the cause-effect chain for all categories of impact, i.e.
that are of direct societal concern, like incidence of illnesses (e.g.
human health impacts in terms of Disability Adjusted Life Years
(DALY) due to carcinogenicity, climate change, ozone depletion,
photochemical ozone creation; or impacts in terms of changes in
biodiversity, etc.) (Bare et al., 2000).

Normalization is a procedure needed to compare across impact
categories, or even areas of protection, to prioritize or to resolve
trade-offs between product alternatives (Pennington et al., 2004).
In addition, this step identifies an impact category that has not
a significant contribution to the overall environmental problem,
thus reducing the number of issues that need to be evaluated.
This is done by dividing the impact category indicators by a
“normal” value, adjusting the results to have common dimensions
(Goedkoop and Oele, 2008). The most common way to determine
the “normal” value is to estimate the impact category indicators
for spatial and temporal scale, to clearly define the system (e.g.
a region or an economic sector), and to consider a per capita basis
(Pennington et al., 2004).

In the Valuation, the final step of the LCIA methods, the impacts
can be further aggregated into a single environmental impact
function by attaching weights to the impacts to indicate their rela-
tive importance (Miettinen and Hämäläinen, 1997). The resulting
weighted expressions are often linear relationships, as follows:

EI ¼
X

VkNk or EI ¼
X

VkSk (7)

where EI is the overall environmental impact indicator, Vk is the
weighting factor for impact categoryk,N is thenormalized indicator,
and S is the category indicator obtained in the Characterization
phase (Pennington et al., 2004). Different authors (Georgakellos,
2005; Goedkoop and Oele, 2008) agree that weighting is a contro-
versial element of LCA because a user might manipulate the
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outcome by choosing amethod that gives a desired result. However,
all weighting methods include scientific aspects, not only from
natural sciences, but also from social and behavioral sciences aswell
as from economics (Pennington et al., 2004). Although ISO does not
recommend the application of the Valuation step for public analysis,
due its subjectivity, very often it becomes a necessity in LCA to gain
manageability (Georgakellos, 2005; Goedkoop and Oele, 2008; Udo
de Haes et al., 1999).

Methods for weighting can be classified in three major groups:
(a) Monetization, which includes all methods that have a monetary
measure involved in the weighting factors. The different types of
costs (present cost, willingness to pay and future extraction costs)
are added, and all damages are expressed in the same monetary
unit; (b) Panel, which involves a group of methods where the
relative importance of damages, impact categories or interventions
is derived from a group of people through surveys; and (c) Distance
to target, where weighting derives from target for each impact
category (Finnveden et al., 1992; Goedkoop and Oele, 2008). Table 1
includes some impact assessment methodologies reported in
literature and their main characteristics. Specifically, the LCIA
methods listed are: CML 92 and 01 developed by the Institute of
Environmental Sciences of Leiden University (Guinée, 2001); Eco-
indicator 95 and 99 of PRé Consultants (Goedkoop et al., 2000);
Environmental Design of Industrial Products (EDIP), EDIP 1997
(Wenzel et al., 1997) and EDIP 2003 (Hauschild and Potting, 2003),
of the Danish UMIP; IMPact Assessment of Chemical Toxics
(IMPACT 2002þ) proposed by the Swiss Federal Institute of Tech-
nology (Humbert et al., 2005); the method of the International
Panel on Climate Change (IPCC) (Solomon et al., 2007); Tool for the
Reduction and Assessment of Chemical and other environmental
Impacts (TRACI) developed by the Environmental Protection
Agency (EPA) (Bare et al., 2002b); Critical Volume Aggregation and
Polygon-based Interpretation developed by the University of
Piraeus (Georgakellos, 2005); Custos Ambientais Associados à
Geração Elétrica: Hidrelétricas x Termelétricas à Gás Natural of the
Instituto Alberto Luiz Coimbra de Pós-graduacao e pesquisa e
engenheria (COPPE/UFRJ) (Reis, 2001); Environmental Priority
Strategies in product design (EPS 2000) proposed by the Center for
Environmental Assessment of Products and Material Systems,
Chalmers University of Technology (Steen,1999); Externalidades na
geração hidrelétrica e termelétrica (ELETROBRÁS e Centrais
Elétricas S.A., 2000); External costs of Energy (ExternE project)
Table 1
Some impact assessment methodologies and their main characteristics.

LCA method Origin Indicator basis (impact modeling
depth)

To midpoint To endpoint

CML 92 and 01 Netherlands X
CVAPBIa Greece X
CAAGEb Brazil X
Eco-indicator 95, 99 Netherlands X
EDIP 1997, 2003 Denmark X
EPS 2000 Sweden X
EGHTc Brazil X
ExternE project Europe X
IMPACT 2002þd Switzerland X X
IPCC Europe X
LCA-net scheme Japan X
TRACI USA X
WAR algorithme USA X

a Critical Volume Aggregation and Polygon-Based Interpretation method.
b “Custos Ambientais Associados à Geração Elétrica: Hidrelétricas x Termelétricas à Gá
c “Externalidades na Geração Hidrelétrica e Termelétrica” method.
d It implements a combined midpoint/damage approach for indicator basis. For we

suggested, unless other social weighting values are available.
e Default weighting factor of 1 is suggested.
developed by the European Commission (EC e European
Commission, 2003); LCA-net scheme of Mie University (Kato and
Widiyanto, 2005); and the Waste Reduction Algorithm (WAR)
algorithm of National Risk Management Research Laboratory
(Cabezas et al., 1999).

The final phase of the LCAmethodology, called Interpretation (in
the ISO methodology) or Improvement Assessment (in the SETAC
methodology), is aimed at identifying the possibilities for im-
proving the performance of the system. In the ISO methodology,
in addition to improvements and innovations, this phase covers
the identification of major stages in the life cycle contributing to the
impacts, a sensitivity analysis, and final recommendations
(Azapagic, 1999; Saur, 1997).

3.1. Computation tools and software

There are different computational tools related to the life cycle
assessment methodology, such as SimaPro (PRé Consultants),
Umberto (IFU Hamburg and IFEU Heidelberg), TEAM (Ecobalance),
GaBi (Department of Life Cycle Engineering of the Chair of Building
Physics at the University of Stuttgart and PE International GmbH),
POLCAGE (De La Salle University, Philippines, and University of
Portsmouth, UK) and GEMIS (Öko-Institut). These software pack-
ages are based on the ISO 14040 methodology and, with the
exception of GEMIS and POLCAGE, they are based on general
databases. Certainly, ECOINVENT database (Swiss Center for Life
Cycle Inventories) is integrated into these software tools providing
access to a variety of unit processes as well as to other inventories
to cover multiple industrial areas.

The SimaPro software (Goedkoop and Oele, 2008) is nowadays
probably the most used software for LCA, in which many published
works are based on (Calderón et al., 2010; Chambouleyron et al.,
2007; Chen et al., 2010; Fantozzi and Buratti, 2010; Gamberini
et al., 2010; Guillén-Gosálbez et al., 2008; Iribarren et al., 2010;
LobendahnWood et al., 2010; Lunghi et al., 2004; Pizzol et al., 2010;
Prudêncio da Silva et al., 2010; Saner et al., 2010; Scacchi et al.,
2010; Sebastián et al., 2010; Silva Lora et al., 2010). SimaPro
includes several LCIA methods such as Eco-indicator 99, EDIP 1997
and 2003, EPS 2000, among others. It allows viewing parts of the
life cycle at different scales, and displaying their contributions to
the total score. Currently, SimaPro can be integrated with TCAce
(Total Cost Assessment) software developed by Sylvatica and
Normalization Weighting basis

Monetization Distance to target Panel

X e e e

X X
e X
X X
X X
X X
e X
e X
X e e e

e

X X
e e e e

X e e e

s Natural” method.

ighting, self-determined weighting factors or a default weighting factor of 1 are
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member companies of the American Institute of Chemical Engi-
neers (AIChE) Center for Waste Reduction Technologies (CWRT),
which provides insights of all potential costs associated with
a process or product, by integrating life cycle assessment and
scenario-based risk analysis to complement LCA methodology
(www.pre.nl/simapro, 2011).

The Umberto software (www.umberto.de/en, 2011) can be used
tomodel, calculate, and visualizematerial and energy flow systems.
It provides a module library that contains several data sets on
generic upstream and downstream processes, and it can be used to
analyze various scenarios and identify the most ecologically
sensible production process. Output results can be assessed using
economic and environmental performance indicators addressing
companies with cost intensive production that wish to optimize
their processes and improve their competitiveness.

The Tools for Environmental Analysis and Management (TEAM)
software (Ecobalance-UK, 1998) allows applying similar LCIA
methods as SimaPro software. Regards the life cycle cost, it uses
POEMS (Product Oriented Environmental Management Systems)
for the comparison of different waste management scenarios and
their related costs (www.ecobilan.com/uk_team.php, 2011).

The GaBi software (www.gabi-software.com, 2011) provides
solutions for the assessment of costs, environmental, social and
technical criteria, as well as for the processes optimization. Its
available databases include more than 100 agricultural processes.

The Possibilistic LCA using GREET e Greenhouse Gases, Regu-
lated Emissions and Energy use in Transportation e and EDIP e

Environmental Design of Industrial Products e method (POLCAGE)
software (Tan et al., 2004) focuses on the life cycle of alternative
fuels and energy carriers. It uses a simple Multiple-Attribute
Decision-Making (MADM) procedure for multiple evaluation
criteria and a probabilistic approach based on fuzziness for data
uncertainty. The GREET model was developed by the Argonne
National Laboratory of U.S. Department of ENERGY, and is used as
the inventory sub-model of POLCAGE. It is coded in Microsoft Excel
and Visual Basic, and its modular structure allows users to create
new fuel pathways or modify existing ones. Possibilistic uncer-
tainty propagation (PUP) is accomplished using a Visual Basic
module, which performs iterative calculations through the
spreadsheet and subsequently stores output values in a worksheet
with its mechanics based on fuzzy arithmetic.

The Global Emission Model for Integrated Systems database
(GEMIS) (www.oeko.de/service/gemis/en, 2011) is a computerized
life-cycle analysis model, LCA database, and cost-emission analysis
system for energy, material, and transport systems. The environ-
mental data cover air emissions, greenhouse gases, liquid effluents,
solid wastes, and land-use. The cost data consider investment, fixed
annual and variable costs, as well as externality factors for air
emissions, and greenhouse gas (GHG).

In addition, there are multimedia fate and exposure models for
calculating nongeneric characterization factors such as Uniform
System for the Evaluation of Substances (USES) developed by the
National Institute of Public Health and the Environment (RIVM
et al., 1994), USEtox (Rosenbaum et al., 2008) and CalTOX model
(McKone, 1993).

Different commercial specific software packages were used
along the stages of the LCA methodology applied in the consulted
papers. Indeed, chemical process simulators such as CHEMCAD II
and III (Chemstations, 1997); Aspen (Aspen Technology, 1997); the
Transient Energy System Simulation Tool e TRNSYS e of the
University of Wisconsin, Madison, as well as partial equilibrium
models generators such as the MARKet ALlocation energy-systems
computer model e MARKAL e (Fishbone and Abilock, 1981) and
The Integrated MARKALeEFOM System e TIMES e (Van der Voort
et al., 1984) were used in some LCA studies. TIMES is an evolved
version of MARKAL with new functions and flexibilities; its builds
on the best features of MARKAL and the Energy Flow Optimization
Model EFOM. Both MARKAL and TIMES are linear programming
optimization models with multi-period structure. Their source
codes are written in General Algebraic Modeling System e GAMS e

(Brooke et al., 1998), which process a set of data files and generate
a matrix with all the coefficients that specify the economic equi-
librium model of the energy system as a mathematical program-
ming problem, and post-process the optimization results. As
mentioned, there are general purpose optimization software such
as Xpress-MP (Dash Associates, 1993) for LP and MILP problems,
Microsoft Excel Solver for LP and NLP, and GAMS and LINGO (LINDO
Systems) that allow solving from LP to MINLP optimization
problems.

3.2. Applications of LCA methodology

The application type influences the phases’ sequence of the LCA
methodology and the choices to be made within their different
components (Guinée et al., 1993). The application areas of LCA are
numerous. The main distinction can be made between applications
in the public or private sector. Public sector’s LCA studies are used
to support the development of environmental legislation and
regulation, development of criteria for environmental taxes, stan-
dards, or eco-labeling programs, or to provide consumer informa-
tion. In public studies, the assumptions made, methods and data
used, and preferences given, should be clearly presented to make
them reproducible as much as possible. In the private sector,
companies can use the LCA results to support product development
or marketing, to enhance the credibility or the company’s envi-
ronmental policy, or to guide the suppliers to act in an environ-
mentally friendlier way (Miettinen and Hämäläinen, 1997).

Briefly, the LCA methodology has been applied for (Azapagic,
1999):

- Strategic planning or environmental strategy development for
choosing the Best Practicable Environmental Option BPEO (U.K.
Environment Agency); e.g. comparison of the environmental
impacts of different products with the same function, and
comparison of the environmental impacts of alternative
manufacturing processes for the same product;

- Comparison of regional, economical or cultural scenarios for
a given product, process and/or activity;

- Identification of environmental improvement opportunities
such as identifying “hot spots” i.e. life cycle points critical to the
total environmental impact;

- Product and process optimization, design, and innovation;
- Creating a framework for environmental audits, i.e. served as
a tool for environmental system management and environ-
mental reporting, e.g. ISO 14001 certificate.

Some different applications of LCA methodology have been
described in literature. Kadam (2002) used LCA for quantify and
compare two different scenarios for using the excess bagasse (by-
product) in the sugarcane production. One optionwas to burnmass
and extra gasoline, and the other one was to produce ethanol and
use E10 fuel (10% ethanol and 90% leaded gasoline). In that work, 1
dry ton of bagasse was the functional unit considered; some impact
categories of CML and IPCC LCIA methods were selected, and TEAM
3.0 was the software used to carry out the LCA study. Lunghi et al.
(2004) used LCA to probe that complete molten carbonate fuel cell
(MCFC) power plant fed by LFG (gas generated during wastes
digestion in landfills) renders more environmental benefits than an
MCFC fed by steam reformed. In this work, they used the SimaPro
software, adopted the Eco-Indicator 99 method for impact
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assessment, and considered 1 kWhe produced as functional unit.
Chambouleyron et al. (2007) used the SimaPro software aiming at
identifying the environmental improvement opportunities for
producing three different office desks types based on the EDIP LCIA
method, assuming 1 desk as the functional unit. Weisser (2007)
analyzed a life cycle GHG emission (only one impact category) of
electricity generation chains with the IPCC method, based on LCA
studies related to fossil, nuclear and renewable technologies pub-
lished between 2000 and 2006. The key parameters, assessment
methodology, conversion efficiency, practices in fuel preparation
and transport, technology and fuel choice, the fuel mix assumed for
electricity requirement related to plant construction and equip-
ment manufacture, and the system boundaries are compared for
each energy technology, taking account the improvements that are
likely to occur in the future.

Varun et al. (2009) presented a review of LCAs to compare CO2
life cycle emissions for generating electricity by different renewable
energy sources: wind, solar photovoltaic, solar thermal, biomass,
and hydroelectric; and by conventional sources: coal, oil, gas, and
nuclear.

4. Frameworks for integration of LCA methodologies and
optimization techniques

In this section, a description of proposed frameworks and
progress made toward integration of LCA methodologies and
optimization techniques is performed. Traditionally, system opti-
mization in chemical and process engineering applications has only
focused on maximizing economic objectives. Preliminary works on
such integration included various waste minimization approaches,
from the concept of mass pinch as a tool to derive cost-optimal
Mass Exchange Networks with minimum waste (El-Halwagi and
Manousiouthakis, 1990), through minimum waste water genera-
tion in process plants (Wang and Smith, 1994) and waste treatment
costs (Ciric and Huchette, 1993), to the concept of Zero Avoidable
Pollution (Linninger et al., 1994). Although these approaches may
have both environmental and economical benefits through reduced
wastes and treatment costs, their disadvantage is that they
concentrate on emissions from the plant only, without considering
other stages in the life cycle (Azapagic, 1999). Most recent works
(Bojarski et al., 2009; Gebreslassie et al., 2010; Guillén-Gosálbez
et al., 2008; Liu et al., 2010; Pinto-Varela et al., 2010; Zhou et al.,
2009) incorporate LCA into the process design and optimization
procedures, thus establishing a link between the environmental
impacts, operation and economics of the process. In general, the
approach for incorporating LCA methodology into system optimi-
zation schemes comprises three main steps: (i) carrying out a life
cycle assessment study, as discussed in Section 3; (ii) formulating
and solving a multi-objective optimization problem in the LCA
context, as explained in Section 2; and (iii) selecting the best
compromise solution (Azapagic, 1999).

Following, themain approaches for simulation and optimization
of chemical and biotechnological processes considering LCA
methodology are described.

Hilaly and Sikdar (1994) and Cabezas et al. (1999) presented two
preliminary works based on the waste minimization approach. In
the former, detergent production is considered as a case study; in
the latter, production of methyl ethyl ketone from secondary butyl
alcohol and production of ammonia from synthesis gas were
chosen as two case studies. In those works, the objective was aimed
at minimizing the overall environmental impact of the main pro-
cess by evaluating and comparing alternative process flow sheets or
configurations. To accomplish this, they used a single environ-
mental impact function, a “pollution index”, calculated by the
waste reduction (WAR) algorithm, which is based on a generic
pollution balance equation of a process flow diagram. Cabezas et al.
(1999) presented a generalization of the WAR algorithm consid-
ering nine impact categories based on Heijungs et al. (1992), sub-
divided into four environmental physical potential effects
(acidification, greenhouse enhancement, ozone depletion, and
photochemical oxidant formation); three human toxicity effects
(air, water, and soil); and two ecotoxicity effects (aquatic and ter-
restrial). Regarding to the weighting factors, although the authors
suggested initially setting all factors to one, the users can vary
individually each one from 0 to 10 according to local needs and
policies. Commercial process simulators CHEMCAD II and III were
used for performing all material and energy balances in those
works, respectively.

Azapagic and Clift (1999a, 1999b) proposed a MO optimization
problem in the LCA methodology context. Specifically, the
production of several boron products from two mineral ores,
formulated as a LP problem, was the case study considered. In both
works, all activities from rawmaterials extraction to the production
of the boron products and materials used are included in the
system; however, the use and disposal phases of the products are
not considered (i.e. they applied the “cradle-to-gate” approach).
Here, the environmental objective function was based on impact
categories and characterization factors considering seven impact
categories (Heijungs et al., 1992): resource and ozone depletion,
global warming potential, acidification, eutrophication, photo-
chemical oxidant creation potential (i.e. photochemical smog), and
human ecotoxicity. In this case, the authors did not optimize
a single environmental impact function as Cabezas et al. (1999).
Prior to the MO optimization, each impact category was optimized
as a single-objective optimization problem using LP software
Xpress-MP. In some particular cases, the optimization of one or
a few critical objectivesmay lead concomitantly to the optimization
of some other associated ones. Azapagic and Clift (1999b) pointed
out that the minimization of the global warming potential (GWP)
also minimized acidification, nitrification and human toxicity;
while the minimization of photochemical oxidant creation poten-
tial (POCP) resulted in the optimum value of ozone depletion (OD).
In order to include the operating cost and total production, the
system was then optimized on three objectives only, i.e. GWP,
production (P) and costs (C), as in Azapagic and Clift (1999a). The
MO problem was solved by the ε-constraint method to generate
a range of noninferior solutions as a three-dimensional Pareto
surface. Afterward, the authors also simultaneously optimized the
system on OD to generate a four-dimensional Pareto set.

Tan (2005) applied the symmetric fuzzy linear programming
SFLP approach to solve a MO-MILP problem taking into account the
fuel cycle assessment, i.e. life cycle analysis of the energy carrier
used for vehicle propulsion, for a fuel mix as case study. Six impact
categories were considered as environmental objective functions:
acid rain, smog, global warming, eutrophication, toxicity, and
resource depletion. The software POLCAGE and Microsoft Excel
Solver were used to solve the multiple environmental objectives.
First, weighting factors equal to one were used to give the same
importance to the different environmental objectives, and then,
different relative relevance was considered by adjusting these
factors. The author compared this approach with the ε-constraint
method described by Azapagic and Clift (1999a). The SFLP approach
provided a single solution that embodies a compromise among the
multiple conflicting objectives.

Eliceche et al. (2007) formulated a MINLP problem into the LCA
methodology context, dealing with an environmentally friendly
ethylene process utility plant as case study, where the limits of the
plant are extended to include the relevant environmental impacts
corresponding to the imported electricity generated in ther-
moelectric, hydroelectric and nuclear plants. The optimization
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objective function was the “pollution index” suggested by Cabezas
et al. (1999) using weighting factors equal to one. Seven environ-
mental impact categories (global warming potential, acidification,
ozone depletion, human toxicity in air and water, ecotoxicity and
eutrophication) were considered (Heijungs et al., 1992). However,
the authors observed that evaluating only global warming potential
and acidification potential would be sufficient to estimate the
overall environmental impact for utility plants as they represented
approximately 99.68% of it.

The resulting MINLP problem was implemented in GAMS, and
the NLP and MILP sub-problems were solved using CONOPT (Drud,
1994) and OSL (IBM Corp., 1992), respectively. The MINLP model
contains 24 binary variables and about 10,500 equations. The
solution was found in four major iterations.

Guillén-Gosálbez et al. (2008) applied the MO methodology
based on MINLP problem formulations for hydrodealkylation of
Table 2
Integrated LCA-optimization frameworks reported in the consulted literature.

Reference System boundaries Objective

Azapagic and
Clift (1999a, 1999b)

Cradle-to-gate approach i Min. env. impact
ii Min. life cycle o
iii Max. annual pro

Hugo and
Pistikopoulos (2005)

Manufac. stage (SC)b i Max NPV of inve
ii Min. env. impac

Tan (2005) Cradle-to-grave approach Min.:
i acid rain,
ii smog,
iii global warming
iv eutroph.,
v tox.,
vi res. depl.

Eliceche et al. (2007) Cradle-to-gate approach i Min. overall env.
impact

Guillén-Gosálbez et al. (2008) Manufac. stage Min.:
i life cycle op. cost
ii environ. impacts

Vince et al. (2008) Cradle-to-grave approach
(RO desalination plants)

i Max. TRRc

Min.:
ii electricity consu
iii invest. and op.

Pietrapertosa et al. (2009) Cradle-to-grave approach Min. total system

Grossmann and
Guillén-Gosálbez (2009)

Manufac. stage (Process
synthesis and
SC manag.)

Min.:
i total cost
ii env. impacts

Zhou et al. (2009) Cradle-to-grave approach
(suitable material selection)

Min.:
i container weight
ii costs
iii env. Pollution

Bojarski et al. (2009) Manufac. stage (SC) i Min. norm. endp
damage cat.
ii Min. total env. i
iii Max. NPV

Luz Santos and
Legey (2010)

Cradle-to-gate approach (const.
and op. of hydro/thermal plants)

Min.:
i investment
ii operation
iii env. costs

Pinto-Varela et al. (2010) Manufac. stage (Elec. and diesel
consump. over SC)

i Max. profit
ii Min. environ. im

Carvalho et al. (2010) Cradle-to-gate approach
(energy supply)

Min.:
i tot. annual CO2 e
ii env. impacts
iii total annual cos

Gebreslassie et al. (2010) Cradle-to-gate approach (solar
assisted absorption
cooling systems)

Min.:
i total cost
ii env. impacts

Liu et al. (2010) Cradle-to-gate approach
(energy system)

Min.:
i op. and maint. co
ii GHG emissions

a
ε-c M: ε-constraint method.

b SC: supply chain.
c TRR: Total recovery rate.
toluene, focused on decreasing the environmental impact at the
manufacturing stage only. The economic objective function to be
optimized was the life cycle operating cost, while the environ-
mental one was the Eco-indicator 99. This LCIA method includes
eleven impact categories: (i) carcinogenic effects on humans;
respiratory effects on humans caused (ii) by organic substances
and (iii) by inorganic substances; (iv) damage to human health
caused by climate change; human health effects caused (v) by
ionizing radiations and (vi) by ozone layer depletion; damage to
the ecosystem quality caused (vii) by toxic emissions, (viii) by
the combined effect of acidification and eutrophication, and (ix)
by land occupation and land conversion; damage to resources
caused (x) by extraction of minerals, and (xi) by extraction of
fossil fuels. The integration of the LCA software SimaPro with an
optimization approach was performed by using the Eco-indicator
99. Each single-objective optimization problem was implemented
Method Math. form. Comp. tools

s
p. cost
d.

Heijungs et al. (1992) MO LP/Pareto/ε-c Ma Xpress-MP

st
ts

Eco-indicator 99 MO MILP
multi-period/
param. opt.

n.d.

,

EDIP MO LP SFLP MS Excel
Solver
POLCAGE

Heijungs et al. (1992)
WAR algorithm

MINLP CONOPT and
OSL/GAMS

Eco-indicator 99 MO MINLP/
Pareto/ε-c M

SimaPro
DICOPT, CONOPT,
CPLEX/GAMS

mp.
costs

IMPACT 2002þ MO MINLP Pareto

cost ExternE project
IPCC method

Multi-period LP GEMIS
MARKAL

Eco-indicator 99 MO MILP and MINLP/
Pareto/ε-c M

SimaPro
GAMS

Eco-Indicator’99 MO LP BP NNW/GA SimaPro

oint

mpact

IMPACT 2002þ MO MILP/Pareto/
weighted sum
method

CPLEX/GAMS
SimaPro

ExternE project, CAAGE
EGHT

Multi-period MILP Xpress-MP

pacts
Eco-indicator 99 (only
damage to human health)

MO MILP SFLP n.d.

mission

t

Eco-indicator 99 MILP SimaPro LINGO

Eco-indicator 99 MO MINLP/
Pareto/ε-c M

TRNSYS DICOPT,
SNOPT CPLEX/
GAMS

st
Life cycle GHG emission MO Multi-period

MILP/Pareto/ε-c M
CPLEX/GAMS
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in GAMS and solved with DICOPT (Viswanathan and Grossmann,
1990); the NLP sub-problems were solved with the code
CONOPT and the MILP master problems with CPLEX (ILOG Inc.,
2005).

The problemwas first solved byminimizing costs neglecting the
environmental concerns. The Eco-indicator 99 value was then
reduced by imposing more restrictive limits on the ε-value of the
ε-constraint method. The resulting MO-MINLP problem contains
724 constraints, 710 continuous variables, and 13 binary variables.
The authors pointed out that the low CPU time required to generate
each trade-off solution (about 1e10 s on a 1.4 GHz Pentium III
processor) avoided resorting to specific sampling techniques to
reduce the number of single-objective problems required for
generating the Pareto set.

Pietrapertosa et al. (2009) presented a multi-period LP model
for different fossil, nuclear and renewable fuel cycles for power
generation. Energy and material flows from extraction to end-use
demands/waste management (i.e. “cradle-to-grave” approach),
and a 27-year time horizon divided into nine equal-length periods
were considered. A linear partial equilibrium model generated by
MARKAL was set up to represent the relationships among the
system’s components and boundaries over the planning time
horizon stipulated. MARKAL’s main inputs were the demand for
energy services together with resources availability and environ-
mental constraints, while the total system cost was the objective
function minimized. For examining and comparing the effects on
the energy system’s configuration, costs of constraints on envi-
ronmental impacts, and eco-taxes on the main pollutants, three
scenarios were defined: (i) the Reference scenario (Business As
Usual-BAU case), (ii) the Impacts scenario, and (iii) the Eco-taxes
scenario, respectively. The first scenario describes the contribution
of renewable energy sources (photovoltaic, wind, biomass and
mini-hydroelectric) modeling the evolution of the reference energy
system without exogenous environmental constraints, providing
the baseline for scenarios analysis. The second scenario includes
the software GEMIS as the modeling tool for LCA analysis to eval-
uate the effects of exogenous constraints on three impact cate-
gories: acidification, global warming and smog, and a combination
of them, using a single environmental impact function. This anal-
ysis included the typical primary pollutants (NOx, CO, CO2, SO2, TSP)
and used the IPCC method. Finally, in the Eco-taxes scenario, the
damage costs of pollutants (ExternE values) were inserted by
a damage function attribute that represents the estimated external
cost per unit of emitted pollutant using the ExternE project
method. In this scenario, cases for six taxes were presented; five
taxes on each air pollutant and one on the sum of them to evaluate
their influence on the system configuration and to assess their
synergies. Regarding external costs, two kinds of evaluation were
considered: ex post, in which the environmental damage is com-
puted without feedback into the optimization process, and ex ante,
inwhich the internalization of external costs is done by introducing
eco-taxes to consider the external costs in the optimization of the
energy system costs. In the former, the overall external costs are
simply added to the cost function with no effect on the determi-
nation of the optimal solution, estimating in monetary terms
the environmental impacts of atmospheric emissions in different
scenario hypotheses. Instead, in the latter, the introduction of
environmental taxes emphasizes the role of environmental damage
in the definition of resources prices and in the comparison of
technologies’ performances in terms of both direct and indirect
effects.

Zhou et al. (2009) formulated a MO LP problem applying BP
neural networks and GA for suitable materials selection for
sustainable drink containers considering the “cradle-to-grave”
approach. The materials considered were: aluminum, HDPE, PVC,
polypropylene, soda glass, steel, and zinc. Three objective functions
were formulated: minimization of (i) the weight of the container;
(ii) life cycle costs; and (iii) the environmental pollution, evaluated
by the Eco-indicator’99 method using the software SimaPro.

The main characteristics of the consulted literature such as
system boundaries, optimization objectives, LCIA methods used,
nature of the optimization problems solved, and computational
tools used, are summarized and compared in Table 2.

5. Conclusions

Life Cycle Assessment is an accepted environmental manage-
ment tool to compare goods and services (products), as well as for
process selection, design and optimization in order to identify
opportunities for reducing the impacts attributable to associated
wastes, emissions and resource consumption. On the other hand,
optimization strategies and techniques are valuable tools in many
engineering and scientific areas. A trend toward developing general
theoretical LCA frameworks including optimization approaches
could be clearly noted.

Due to the several points addressed, this article is not aiming at
being a “formal” paper review, but it is intended to provide
a collection of methods, approaches, applications, specific software
packages, and general insights regarding experiences and progress
in applying the LCA methodology coupled to optimization frame-
works or schemes, through some case studies.

So far, most LCA methods have been developed in a few coun-
tries or territorial areas (mainly in Western Europe and USA), in
which companies, organizations, and research centers are associ-
ated to develop their specific, large databases, and eventually
software tools based on local/regional considerations and stan-
dards. However, efforts and attempts for applying the LCA meth-
odology in practice can be observed in many countries. In this
regard, it should be noted that most data cannot be reliably used in
regional/economic/environmental scenarios different from those
they were estimated for, as the obtained LCA results hardly depend
upon them.

The systemboundaries, goal and scope definitions provide to the
LCA concept with an inevitable subjectivism, which should be
reduced as much as possible. In fact, it can be concluded that the
“cradle-to-gate” concept todefine the systemboundaries is themost
usedapproach inpractice, insteadof the “cradle-to-grave” approach.

Normally, the relationship between inventory data and impact
category indicators is linearly expressed by the characterization
factors. In this way, synergic effects of the contaminants are
neglected, which may underestimate the impact assessment.

For both impact modeling depth and weighting basis no prev-
alence among their categories or groups, respectively, was ob-
served in the LCIA methods described. However, the eco-indicator
99, which is based on the endpoint category and the panel method,
is the most used in practice.

In most analyzed cases, a single environmental impact function,
resulting from the aggregation of environmental impacts, was
formulated as the environmental objective function. It should be
noted that the ISO methodology does not recommend its use for
LCA analysis in the public sector because its subjectivity.

Regarding the software packages for LCA applications, SimaPro
resulted to be the most used or referenced one in the papers
analyzed.

With respect to optimization aspects, the multi-objective opti-
mization is the most used approach for dealing with this kind of
problems, where the ε-constraint method for generating the Pareto
set was found to be the most applied technique. However,
a renewed interest in formulating a single economic objective
function in optimization frameworks could be observed. This fact is
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favored with the development of life cycle cost software that can be
coupled to LCA software, and the progress made in assessing costs
of environmental externalities. This seems to be an alternative
scheme to the multi-objective optimization approach.

A trend to deal with multi-period scenarios into integrated LCA-
optimization frameworks is a welcome one, as it should provide
more accurate results upon data availability along the time horizon
considered.
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