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Abstract 

Objective 

We here aimed at characterizing heart-brain interactions in patients with disorders of 

consciousness. We tested how this information impacts data-driven classification between 

unresponsive and minimally conscious patients. 

Methods 

A cohort of 127 patients in vegetative state/unresponsive wakefulness syndrome (VS/UWS, 

n=70) and minimally conscious state (MCS, n=57) were presented with the ‘Local-Global’ 

auditory oddball paradigm, which distinguishes two levels of processing: short-term 

deviation of local auditory regularities and global long-term rule violations. In addition to 

previously validated markers of consciousness extracted from electroencephalograms (EEG), 

we computed autonomic cardiac markers, such as heart rate and variability (HR, HRV), and 

cardiac cycle phase-shifts triggered by the processing of the auditory stimuli.  

Results 

HR and HRV were similar in patients across groups. The cardiac cycle was not sensitive to the 

processing of local regularities in either the VS/UWS or MCS patients. In contrast, global 

regularities induced a phase-shift of the cardiac cycle exclusively in the MCS group. The 

interval between the auditory stimulation and the following R-peak was significantly 

shortened in MCS when the auditory rule was violated. When the information of the cardiac 

cycle modulations and other consciousness-related EEG markers were combined, single-

patient classification performance was enhanced compared to classification with solely EEG 

markers. 

Interpretation 

Our work shows a link between residual cognitive processing and the modulation of 

autonomic somatic markers. These results open a new window to evaluate patients with 

disorders of consciousness via the embodied paradigm, according to which body-brain 

functions contribute to a holistic approach to conscious processing. 
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Introduction 

Patients with disorders of consciousness (DOC) are characterized by preserved 

wakefulness in the absence of clear evidence of awareness such that they remain unable to 

communicate with their surroundings 1. For example, patients in a vegetative 

state/unresponsive wakefulness syndrome (VS/UWS) open their eyes but they do not show 

conscious responses to sensory stimulation 2. When patients exhibit signs of fluctuating yet 

reproducible remnants of non-reflex behavior, such as visual pursuit, they are considered to 

be in a minimally conscious state (MCS)3. The diagnostic assessment of patients with DOC is 

mainly based on the observation of motor and oculomotor behaviors at the bedside 4. The 

evaluation of non-reflex behavior, however, is not straightforward as patients can fluctuate 

in terms of vigilance, may suffer from cognitive and/or sensory impairments, from small or 

easily exhausted motor activity and pain, which may lead in the underestimation of the level 

of consciousness 5,6. Previous work employing data-driven analyses with neuroimaging and 

neurophysiological tools suggest relatively accurate patient diagnosis 7–10 and prediction of 

clinical outcome 11.  

Aside this neuro-centric approach, classic12,13 and more recent studies in 

interoception14–18 in healthy subjects demonstrate that brain-modulation of peripheral body 

functions can be affected by concomitant cognitive processes. Therefore, such ‘brain-body’ 

interaction might be relevant to evaluate consciousness states in DOC patients. Cardiac 

activity is a peripheral body signal that has been linked to cognitive processes. For example, 

‘bradycardia of attention’ refers to the effect of heartbeat frequency deceleration when the 

subject is engaged in an active cognitive task (such as target detection or auditory odd-ball 

counting)19. As regards patients with DOC, previous work has shown that cardiac autonomic 

markers, such as Heart Rate (HR) and Heart Rate Variability (HRV), were markers of 

autonomic system malfunction (dysautonomia) after traumatic brain injury 20,21. However, 

the link between these autonomic markers and conscious cognitive processing in DOC 

patients remains unknown.  

Here, we aimed at (1) characterizing consciousness state of DOC patients by means of 

heart-brain interactions and (2) determining if the electrocardiogram (EKG)-extracted 

information may complement the single-patient EEG diagnosis of consciousness state. For 

the first objective, we quantified the modulation of cardiac cycle during an auditory 
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stimulation protocol, known as the ‘Local-Global’ paradigm, which is designed to test two 

hierarchical levels of processing of auditory regularities 22. For the second objective, we 

contrasted the performance of multivariate patient classification of the state-of-

consciousness at the single-patient level using solely EEG markers, and combining EEG and 

cardiac cycle modulation markers. We hypothesized a cardiac cycle modulation in the group 

of MCS patients and that this modulation will carry partially independent information about 

the state of consciousness, reflected in the form of an enhanced classification performance.   

 

Methods 

Subject and Patients 

Patients admitted for consciousness evaluation at the Neurological Department of the 

Pitié-Salpêtrière hospital, Paris between February 2008 and April 2015 were included. 

Informed consent was signed by the patients’ legal representatives. The protocol conformed 

to French regulation and the Declaration of Helsinki and was approved by the ethics 

committee CPP Ile de France 1 (Paris, France). The neurological evaluation of the patients’ 

disorders of consciousness was performed by trained clinicians, including the Coma 

Recovery Scale-Revised (CRS-R). The CRS-R scoring varies from 0-23 and is based on the 

presence or absence of response on a set of hierarchically ordered items testing auditory, 

visual, motor, oro-motor, communication and arousal functions 4. Behavioral evaluations 

were performed systematically before each EEG recording. 

In the present study, we aimed at characterizing the cardiac cycle in relation to the 

state of consciousness as a post-hoc analysis. No EKG was available during the EEG 

evaluations. As a consequence, EKG timeseries were obtained using independent 

component analysis (ICA) on the EEG recordings for each patient. The current analysis only 

used the temporal location of the R wave peaks. 

From the 259 patients originally assessed with EEG (130 VS/UWS, 129 MCS), 132 

patients (51%; 60 VS/UWS, 72 MCS) were rejected due to the lack of a clear EEG recording or 

EKG reconstructed source that produced at least 40 samples for each stimulation block type. 

There was no differences between the included and excluded patients in terms of diagnostic 

state (χ2(1,N=259)=2.07, p=0.15) and sex (χ2(1,N=259)=0.21, p=0.64). Included patients were 

older than excluded patients (48±18 vs 44±17 years; W=6701, p=0.04) and more patients 
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were of anoxic as compared to traumatic injuries in the included group compared to the 

excluded group (χ2(4,N=259)=12.84, p=0.01). 

A final cohort of 127 (49%) patients remained: 70 in VS/UWS (20 females, mean age 

45±19, range 17-80, 12 traumatic, 21 assessed in a chronic setting, i.e., > 1 month post-

insult), and 57 in MCS (17 females, mean age 52±16, range 21-79, 13 traumatic, 17 assessed 

in a chronic setting). Patient groups did not differ in terms of gender (χ2(1,N=127) =6.2e-31, 

p=1), etiologies (χ2(4,N=127)=9.4, p=0.051) and chronicity (χ2(1,N=127)=2e-30, p=1). MCS 

patients were older than VS/UWS (52±16 vs 45±19; W=2435, p=0.03). No patient had any 

history of cervical spinal cord injury or symptoms of autonomic dysfunction (e.g. 

hemodynamic instability, HR abnormal variability) at the time of EEG recording. 

 

Auditory Stimulation and EEG 

Cognitive processing was prompted by means of the EEG-based auditory Local-Global 

paradigm 22. The Local-Global paradigm is characterized by two embedded levels of auditory 

regularities (Figure 1A). Each trial is formed by 5 consecutive sounds lasting 50ms, with a 

150ms gap between the sounds’ onsets and an inter-trial interval ranging from 1350 to 

1650ms. The fifth sound can be either equal or different to the first four, this defines 

whether the trial is standard or deviant at a local (or within-trial) level. The second level of 

regularities is defined across trials (or at a global level), frequent trials (80%) define the 

regularity, and rare ones (20%) violate this regularity. Two types of stimulation blocks are 

played to the subjects: in the XX blocks, the frequent stimulus corresponds to five equal 

sounds (LSGS: Local Standard and Global Standard). In contrast, the infrequent stimulus 

corresponds to four equal sounds followed by a fifth different sound (LDGD: Local Deviant 

and Global Deviant).  In the XY blocks, the frequent stimulus corresponds to four equal 

sounds and a fifth different sound (LDGS: Local Deviant and Global Standard). The infrequent 

stimulus corresponds to five equal sounds (LSGD: Local Standard and Global Deviant) (Figure 

1A). The Local effect is quantified by contrasting all local deviant trials (LD: LDGS+LDGD) 

versus all local standard trials (LS: LSGS+LSGD). The Global effect is quantified by contrasting 

all global deviant trials (GD: LSGD+LDGD) versus all global standard trials (GS: LSGS+LDGS). 

Patients were stimulated vocally between each stimulation block (~/3.5min, task instruction) 

and with tactile stimulations if patients appeared asleep (pressure as recommended in the 

“arousal facilitation protocol” in the CRS-R). A mask was applied on the eyes to normalize 
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the eyes open/closed across patients. EEG recordings were performed using a NetAmps 300 

amplifier (EGI) at a sampling rate of 250Hz with a 256 electrodes HydroCel Geodesic Sensor 

Net (HCGSN) referenced to the vertex. 

 

EKG extraction from EEG 

In the absence of direct recordings of cardiac activity, EKG was extracted from the 

EEG using ICA. The independent components (IC) corresponding to the EKG were selected by 

visual inspection based on the spatial and temporal representation of the QRS complex. Raw 

EEG data was first filtered using an 8th order low-pass butterworth filter at 45Hz and a 4th 

order high-pass filter at 0.5Hz (Figure 2A). Secondly, we computed three different ICA 

decompositions: (1) FastICA23 parametrized to obtain the components that explain 99% of 

the variance and computed from raw filtered data,  (2) INFOMAX24,25 parametrized to obtain 

256 components from raw filtered data and (3) INFOMAX in combination to artifact channels 

rejection. Individual channels were removed when the temporal variance was more than 3 

standard deviations away from the mean of the variance of the rest of the channels. The IC 

with the EKG information was selected based on the timeseries and the weights’ 

topographies by visual inspection (Figure 2B). The selected timeseries had to clearly contain 

the R-peak corresponding to the QRS complex. The R-peak had to be easily detected by using 

a simple threshold. The corresponding topography had to concentrate the mixing weights on 

the frontal right and posterior left electrodes. These electrodes are located in the right 

cheek, left maxillary junction and underneath the left mastoid, as depicted by previous 

studies on cardiac electrical fields26
. We then picked the algorithm that presented the 

clearest decomposition, usually the one with the highest rank in descending order of 

explained variance. Finally, R-peaks onsets were obtained automatically by the algorithm 

described in Elgendi et al27. Subjects for which the EKG component was unclear were 

excluded from the analysis. Exclusion criteria was set to any of: EKG reconstructed signal 

with no clear R-peaks, detection failure by the automatic algorithm, or a topography of 

corresponding weights with a mix of peripheral and central electrodes. 

 

 Baseline cardiac activity 

The overall heart rate (HR) was computed by averaging the differences between 

consecutive R-peaks (RR Intervals, Figure 1B) during the whole recording. Following the 
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method described in Deboer et al.28, heart rate variability (HRV) spectral variables were 

obtained by computing the power spectrum decomposition on the point events timeseries 

from the detected R-peaks. Power Spectral Density was estimated in whole recording using 

Welch’s method with 32768 samples (131.072s) per segment and 28672 samples (114.688s) 

overlap using a Hanning window. HRV variables were extracted from the sum of the spectral 

power in three frequency bands: 1) very low frequencies (VLF, range 0–0.04Hz), 2) low 

frequencies (LF, range 0.04–0.15Hz) and 3) high frequencies (HF, range 0.15–0.4Hz).  

 

R-peak locked EEG evoked responses 

EEG recordings were filtered as previously described, segmented from -200ms to 

600ms relative to the onset of the R-peak and baseline corrected using the 200ms long 

window before R-peak. Bad channels and trials were rejected based on peak-to-peak 

amplitude exceeding 100μV. Bad channels were interpolated. The remaining trials were 

averaged. We performed a group analysis and obtained the mean evoked response for each 

group, and contrasted the VS/UWS mean evoked activity to the MCS one. Statistics on EEG 

responses were done using non-parametric cluster corrected permutation test29.  

 

Markers of cardiac cycle modulation induced by the auditory stimulation protocol  

To evaluate potential phase shifts in the cardiac cycle associated to the processing of 

different types of auditory stimuli, two intervals temporally locked to the onset of the fifth 

sound were defined (Figure 1B): (1) the PRE interval: the interval between the heartbeat 

(defined by the location of the R-peak) preceding the stimulus and the onset of the auditory 

stimulation, and (2) the POST interval: the interval between the stimulus onset and the 

following heartbeat. All time intervals were then labelled according to the contained 

auditory stimulation following the Local-Global paradigm (XX block: LSGS or LDGD; XY block: 

LDGS or LSGD). Finally, In order to avoid using peaks without a clearly defined temporal 

association to a given heartbeat (and not the previous or following one), we restricted the 

analysis to the trials in which both the PRE and POST intervals were between 20 and 600 

milliseconds. A mean of 520±150 trials per subject were included while 135±100 trials were 

rejected (20±13%). A repeated measures Bayesian ANOVA was computed for each interval 

using the ratio of rejected trials as the study variable and the trial label and clinical state as 

factors. All the models including the clinical state factor presented evidence for no 
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difference (PRE BF01>=2.35; POST BF01>=2.61). When the models included the trial type 

factor, the test showed strong evidence for no difference (PRE BF01>=39.19; POST 

BF01>=45.17). 

To test if conscious processing of auditory regularities affects the ongoing cardiac 

activity, we analyzed the PRE and POST stimulus intervals for each group of subjects in 

relation with the type of trials. For the Local effect, each subject mean of the PRE and POST 

intervals corresponding to LD trials were subtracted from the mean of the LS ones. Similarly, 

for the Global effect, the mean of the PRE and POST intervals corresponding to GD trials 

were subtracted from the mean of GS ones. 

 

 

Multivariate Pattern Analysis (MVPA) 

In order to analyze the relevance and independence of the markers to the diagnosis 

of DOC, we used Multivariate Pattern Analysis in combination with wrappers algorithms for 

feature selection30. This method consists on training classifiers with different set of features 

and comparing the obtained performance. Based on the performance comparisons, a set of 

features can be defined as (1) strongly or weakly relevant when they are partially 

independent and contribute to an optimal classification or (2) irrelevant, when they do not 

contribute to the classification. 

Multivariate pattern analyses were done using 120 EEG-extracted markers 

(corresponding to quantification of power spectrum and complexity in individual EEG 

sensors and information sharing between EEG sensors) as described in Sitt et al., 2014 (see 

supplementary material in the same paper) and 8 EKG extracted markers. We trained a 

Support Vector Classifier (SVC) to distinguish between the VS/UWS and the MCS patients 

with a penalization parameter (C) equal to 1.  The SVC was repeatedly cross-validated with 

randomized stratified k-folding (k=8). Previously to the training of the classifier, relevant 

features were automatically selected keeping the highest 20% of the ANOVA F-value scores. 

Performance of the classifier was measured using AUC scores. We defined 3 sets of features: 

(1) EKG markers of cognitive processes, corresponding to the PRE and POST intervals for the 

Local and Global contrasts (termed EKGcog), (2) EKG markers of baseline vegetative function 

(termed EKGveg) corresponding to the HR and HRV in the three frequencies previously 

defined and (3) EEG markers. We estimated the accuracy of the classification algorithm with 
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6 different combinations of these sets of markers: (1) EEG+EKGcog+EKGveg, (2) EEG+EKGcog , 

(3) EEG+EKGveg, (4) EEG markers only, (5) EEG with both EKGcog and EKGvegmarkers shuffled 

and (6) EKGcog+EKGveg markers only. To minimize the effect of the random selection of folds, 

the AUC scores were averaged across 250 repetitions. 

 

Statistical Analysis 

Statistical analysis encompassed correlations using Pearson product-moment 

correlation coefficient (r) and Spearman’s rank correlation coefficient (rho) with 

corresponding p-values (p). Pearson's chi-squared and Wilcoxon rank-sum test were used to 

test for independence between the diagnosis and the demographics information of the 

patients. Bayesian ANOVA were performed to test the differences between groups using the 

BayesFactor R package (JZS Bayes factor with “medium” default prior setting r = 0.5; Morey, 

Rouder, & Jamil, 2014; R Development Core Team, 2016; Rouder, Morey, Speckman, & 

Province, 2012). Bayes Factors interpretation were done according to the Raftery scale 34. 

Differences across stimulation blocks were tested using two-sided paired samples signed 

tests. MVPA models were tested using nonparametric Kruskal-Wallis test adjusted for 

multiple comparisons. 

All these steps were performed with custom-made software made in Python 3.4 in 

combination with Scikit-Learn 35 and MNE-Python 36,37. Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE) guidelines 38 were followed throughout. 

 

 

Results 

EKG extraction method validation 

To test the homogeneity of the EKG-related ICA decompositions between groups, we 

computed the mean IC weights across subjects for the selected components. A sensor-wise 

Bayesian t-test showed evidence for no difference in the weights between the MCS and 

VS/UWS groups (Figure 2C). We then averaged the cardiac cycle locked to the QRS complex 

at the group level and the contrasted the obtained timeseries between clinical groups 

(Figure 2D). A single channel cluster permutation test found only one significant difference 

(p=0.017) between 184 and 344 ms after the R-peak, consistent with the location of the T 

wave. No difference was found in the QRS complex. 
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Finally, we aimed at ensuring that the results obtained in terms of phase shifts of the 

cardiac cycle induced by the processing of the auditory stimulation paradigm were not a 

side-effect of the EKG extraction methodology. In other words, we focused on testing that 

EEG-ICA extraction methodology was not injecting relevant EEG related activity to the EKG 

extracted signal. For this objective, we compared pure EKG to EEG extracted EKG. We 

performed simultaneous EEG-EKG recordings in an independent group of 24 healthy subjects 

and 32 patients (14 VS/UWS, 18 MCS). We applied the same EKG extraction method 

previously described and obtained 12 (50%) healthy subjects and 12 (37.5%; 3 VS/UWS; 9 

MCS) patients with both direct EKG and indirect EEG-extracted EKG.  We contrasted the two 

corresponding EKG timeseries in each trial, by subtracting the timing of the R-peaks in the 

direct EKG signal from EEG-extracted signal (Figure 2E). A repeated measures Bayesian 

ANOVA was computed using the REKG-REEG time differences as the study variable; trial types 

(LSGS, LDGD, LDGS and LSGD) and clinical state as factors. All the models including the trial 

type as a factor presented positive evidence in favor of no difference (BF01>=4.27). 

Furthermore, the model that tested the interaction between clinical state and trial type 

presented even stronger evidence of no difference (BF01>=15). Given that the only 

information used in this study was the timing of the R-peaks (automatically extracted and 

analyzed within subjects), the here presented validation results strongly suggest that no 

effect was induced by the adopted EKG extraction methodology. 

 
Baseline cardiac activity 

Overall Heart Rate (HR) was similar in patients across the two diagnostic groups 

(BF10=0.73; Figure 3A). When patients with overlapping behavioral CRS-R scores (CRS-R=6 or 

7; 10 MCS; 20 VS/UWS) were excluded from the analysis there was evidence for faster heart 

frequencies in the VS/UWS group (BF10=8.80). Ιn the VS/UWS group a positive correlation 

was identified between the HR and the CRS-R scores (rho=0.27, p=0.02). No such correlation 

was found for the MCS patients. Similarly, HRV markers were comparable in both diagnostic 

groups (Figures 3B-D, HRV high frequencies BF10=0.62; HRV low frequencies BF10=0.36, HRV 

very low frequencies BF10=0.21). In the VS/UWS group a positive correlation was identified 

between the CRS-R and the HRV markers in high frequencies (rho=0.40, p=0.0007) and in 

low frequencies (rho=0.27, p=0.02). No such correlations were identified for the MCS group 

in either frequency. 
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R-peak locked EEG evoked responses 

In terms of evoked responses to the cardiac activity as measured by EEG, a sharp 

peripheral bipolar topography was observed at the R-peak for both clinical groups (Figure 4A 

and B). Between 0 and 250ms after the R-peak, both groups presented topographies 

following the pattern of the cardiac field artifact (CFA)26. A cluster-level permutation test 

revealed a single significant cluster (p=0.034; Figure 4C) located between 144 and 540ms 

after the R-peak, with two spatial patterns, one similar to the CFA associated to the T-wave 

between 144 and 340ms, and second central spatial pattern after 340ms.  

 

 Cardiac cycle modulation induced by the auditory stimulation protocol  

There was no evidence for difference in cardiac cycle modulation between groups due 

to the processing of the Local regularities in either the PRE (BF10=0.19) or the POST 

(BF10=0.19) intervals (Figure 5). Within the groups, neither the VS/UWS nor the MCS patients 

presented significant differences between LS and LD trials (sign-test LD-LS trials, VS/UWS 

p>0.7, MCS p>0.2). In the case of the Global effect, there was no evidence of modulation 

difference between groups due to the global auditory processing in the PRE interval 

(BF10=0.21). On the contrary, in the POST interval, there was a strong evidence for a 

difference between the MCS and VS/UWS groups (BF10=43.07) (Figure 5). This result is 

explained by a shortening of the POST intervals in the GD trials compared to the GS trials in 

the MCS patients (sign-test GD-GS trials, p=0.007) and no difference between GD and GS in 

the VS/UWS patients (sign-test GD-GS trials, p=0.55). The small sample of healthy controls 

(n=12) included in this study presented a pattern of results similar to the MCS subjects 

(although not statistically significant). 

 

Correlation between EEG and EKG markers of consciousness 

We tested the relationship between cardiac cycle modulation markers and EEG 

markers that previously were reported to distinguishing VS/UWS and MCS patients 7. These 

markers include quantifications of the spectral distribution of the EEG (such as power in the 

different frequency bands), the complexity of the EEG (such as Kolmogorov complexity and 

spectral entropy) and the information sharing between EEG electrodes (such as wSMI). The 

modulation of the POST interval due to the Global Effect significantly correlated with EEG 

Kolmogorov Complexity (K; r=-2.31, p=0.02), Permutation Entropy (PE; r=-2.63, p=0.01), 
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Spectral Entropy (SE; r=-2.3, p=0.02), Weighted Symbolic Mutual Information (wSMI; r=-0.19, 

p=0.02) and normalized Delta Power (r=0.2, p=0.02). No correlation was found between EEG 

evoked responses to the Global Effect and the phase shifts computed in the EKG (See table 1 

for all markers). Nevertheless, none of the computed correlations survived a false discovery 

rate correction from multiple comparisons. 

 

Multivariate patient classification by means of EKG and EEG markers 

To determine if the EKG extracted information is partially independent to the 

consciousness related information extracted from the EEG, we trained classifiers to 

distinguish clinical groups and compared the performance of using as features EEG makers 

alone or combinations of EEG and EKG markers. Multivariate analysis combining EEG and  

EKGcog showed better performance compared to EEG and EKGveg markers and EEG markers 

alone (Figure 6). Combining the EKGcog and EEG markers led to an improvement of the 

performance (EEG+EKGcog, AUC=76.1; EEG+EKGcog+EKGveg, AUC=75.7). On the other hand, 

when EKGcog markers were not included in the MVPA the performance did not differ from 

EEG alone (EEG only, AUC=73.7; EEG+EKGveg, AUC=73.3). As a control test for the effect of 

the number of features, classification was also computed combining EEG and label-shuffled 

EKG markers; in this case, the AUC was estimated at 73.6. Using solely cardiac markers, the 

classifier performed above chance with a mean AUC of 60.1. When we compared the 

performance of MVPAs that included EEG features, we only found significant differences 

when the MVPAs also included EKGcog versus when the MVPAs did not include these cardiac 

features (p<1e-9, Kruskall-Willis test, corrected for multiple comparisons). The inclusion of 

EKGveg features didn’t significantly changed the performance of the tested MVPA classifiers 

(p>0.1). 

 

Discussion 

We here aimed at characterizing consciousness state in patients with DOC by means of 

baseline heart activity and heart-brain interactions. We tested if cardiac-extracted 

information can complement single-patient EEG-based classification performance. When we 

contrasted behaviorally non-overlapping VS/UWS and MCS patients we found higher HR and 

HRV in the VS/UWS than MCS group, in accordance to a recent study 39. This comparison 

included MCS patients who were in the higher end of the CRS-R scale versus the VS/UWS 
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patients who were in the lower end of the CRS-R. When all DOC patients were included in 

order to retain clinical reality we did not find group differences of overall cardiac autonomic 

markers between the groups. This suggests a common underlying baseline cardiac function 

across patients. Interestingly, we found a positive correlation between CRS-R total scores 

and three autonomic markers (HR, HRV HF and HRF LF) only in the VS/UWS patients. 

Our results are consistent with previous findings showing a relationship between the 

level of consciousness and dysautonomia in DOC after traumatic brain injuries. Specifically, 

low CRS-R scores were related to tachycardia in patients with low scores on the Glasgow 

Coma Scale20 and to lower HRV (in both high and low frequencies), which was considered as 

a symptom of a neurological disconnection syndrome21. Taken together, these results 

suggest that the diversity of behaviors characterizing conscious states (associated with 

cortical processing) does not necessarily translate into strong correlations with autonomic 

markers, such as HR and HRV. Therefore, the observed differences in these markers in 

VS/UWS patients on the lower end of the CRS-R scale seems to be associated with an overall 

deterioration of clinical condition, rather than to cognitive processing. 

Our analysis of the heart evoked potentials revealed two results. First, we observed a 

statistical difference between VS/UWS and MCS in the CFA corresponding to the T wave but 

no difference in association to the QRS wave. The differences observed in the T-wave 

between VS/UWS and MCS patients, in the shape of a dipole with a left-posterior positivity 

and a right-frontal negativity, are similar to the reported cardiac repolarization changes 

induced by mental stress15 and neurodegeneration or stroke40. Although previous works 

depict a main modulation during the time window corresponding to the T-wave with frontal 

negativities, in our study the differences between the groups of DOC patients are highlighted 

by the cluster statistic in the posterior positive side of the dipole. Second, we found 

differences between VS/UWS and MCS patients in a time window after the T-wave. Crucially, 

this difference had a different topography to the previously described CFA. The maximal 

differences in the EEG were obtained in the central electrodes. Taken together these results 

further suggest differences in heart-brain interaction between VS/UWS and MCS patients.  

In terms of cognitive processing, we analyzed the cardiac activity while patients were 

evaluated with the `Local Global’ paradigm aiming to probe cognitive-related responses on 

cardiac markers. Such brain-heart interactions have been previously shown in protocols 

where, by quantifying neural events locked to heartbeats, one could predict whether a 
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subject would report a fast flashing visual stimulus as perceived or not 16. In addition, during 

complex cognitive processing, such as when playing chess, the heartrate dynamics, as 

measured before players made a move, could predict the likelihood of them eventually 

committing an error 41. Heartbeat-evoked cortical responses were further shown to differ in 

auditory interoceptive learning tasks 42 and emotional states 43. Taken together, these 

studies suggest a bi-directional interaction between brain and heart that can be modulated 

by cognitive processes.  

In our protocol, we found that the cardiac cycle was modulated by the processing of 

global auditory regularities only in the MCS group. Specifically, MCS patients showed an 

acceleration of the timing of the heartbeat following the auditory stimulus (shortening of the 

POST interval) which disrupted the global regularity. No such modulation of cardiac cycle 

was found in the VS/UWS patients, nor any effect was found in either group for the local 

irregularities. No modulations of the PRE intervals were found, this suggests that the only 

observed modulation is a direct effect of the cognitive process of the stimulation. It is 

important to compare this results with previous works that analyzed the evoked responses 

in the EEG using the same protocol. These studies show that the violations of local 

regularities (in the form of a mismatch negativity response) can be detected in healthy and 

awake controls but also unconscious conditions such as subjects during sleep, coma and 

VS/UWS 44–46. In contrast, disruptions of the global regularities (eliciting a P3b response) are 

only present in conscious and attentive subjects (although see Tzovara et al.47 and Naccache 

et al.48 for ongoing discussions). The fact that cardiac cycle modulation effect was present 

only associated to global irregularities (which requires maintaining conscious attention) and 

only in the MCS patients only (who are generally characterized by more complex brain 

function compared to VS/UWS patients 49) suggests that the source of this effect is a brain-

driven indirect modulation due to the conscious processing of information. 

A recent study demonstrated a link between conscious perception and cardiac activity 

in normal subjects 16. Specifically, in visual detection task, subjects’ heart rate decreased 

during a warning cue and increased immediately after reporting the perception or not of the 

stimuli following the cue. When subjects responded correctly, following RR intervals were 

significantly shorter than the ones corresponding to an incorrect response. This indicates an 

interaction between conscious perception and the modulation of cardiac activity. 

Interestingly, previous studies showed that the characterization of the modulation depends 
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on the stimulation inter-trial interval. With short intervals, this cardiac slowing is reversed 

within the same cycle that the target is detected 50,51. In our work we depict a shortening of 

the RR interval containing the stimuli. Nevertheless, only when the stimulus is known to 

produce neural modulations and only in patients with higher level of consciousness. Our 

attention-driven effect is consistent with these previous results and characterizes the 

modulation in relation to the subjects’ overall level of consciousness. 

Having a proficient test at the single-subject level is a clinical necessity in order to 

reduce the diagnostic uncertainty each case. The modulation of the heart cycle within each 

subject was not powerful enough to have a significant effect to distinguish the clinical state 

of individual subject.  With the aim of improving the single case performance of diagnostics 

tests, and particularly in terms of EEG, we have shown that multivariate classification 

performance of the combination of 120 EEG markers (such as quantifications comprising 

connectivity analysis, information complexity, spectral analysis and evoked related 

potentials) outperformed the univariate classification accuracy, when markers were 

considered individually. This combination of EEG markers allowed an enhanced classification 

of conscious state at single-patient level7. Although the cardiac measures alone did not allow 

a single subject diagnosis, combining information from both neural and cardiac sources 

increased significantly the accuracy of the classification of these patients. This indicates that 

the information extracted from the modulations of cardiac activity due to cognitive 

processing is partially independent from the neural correlates of consciousness as measured 

by EEG. To our knowledge, this is the first time that body-related signals are considered as 

contributing factors in data-driven diagnosis in patient with DOC. We think that such an 

embodied approach to cognition 52 paves the way for further investigations of body-brain 

interactions in DOC which might be informative not only for clinics but also for tracing the 

neural correlates of consciousness. In the future, and with the aim of improving the single 

case performance of this test, we will introduce novel versions of stimulation paradigm (with 

stimulations contextually locked to the ongoing cardiac cycle). 

 In conclusion, we show a relation between autonomic nervous system function and a 

stimulation paradigm exposing subjects to violations of auditory regularities in MCS patients. 

Our results suggest that cardiac cycle modulation is relevant for the assessment of patients 

with DOC because it potentially carries partially independent information when taken 

together with neural correlates of consciousness. We think that our work opens a window to 
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the study of DOC via the embodied paradigm, according to which body-brain functions 

contribute to a holistic approach to conscious processing. 
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Figure Legends 

 

Figure 1. 

Illustration of the auditory paradigm (A) and the cardiac-related markers used in the 

analysis (B). 

(A) Each trial of the auditory paradigm was composed by 5 consecutive sounds. Four equal 

sounds defined a local regularity (music notes). The 5th sound could be equal or different, 

defining a local standard or deviant trial respectively.  At a second level, frequent trials (80%, 

left shaded area) defined a global regularity and rare trials (20%, right shaded area) violated 

this regularity. (B) Two consecutive EKG QRS complexes defined an RR interval. Overall heart 

rate was computed from the robust average of the RR intervals. Conscious response to the 

stimulation was analyzed based on the definition of two intervals: (1) the PRE interval, 

measured between the R-peak previous to the 5th sound and the onset of that sound and (2) 

the POST interval, measured between the onset of the 5th sound and the following R-peak. In 

order to avoid coupling with the heartbeats, trials in which the sound was less than 20 ms or 

more than 600 ms apart from the R-peak were discarded. 

 

Figure 2. 
EKG Independent components present no difference in the QRS complex between clinical 

groups. 

(A) Timeseries from 7 typical EEG sensors from one UWS patient. (B) Corresponding 

timeseries of 7 ICA components extracted from the previous EEG recording and the 

respective weights topographies. The independent component with cardiac information is 
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shown in red. Dotted lines represents the automatically detected R-peak. (C) Mean weights 

topographies for each clinical group (top). A sensor-wise Bayesian t-test shows evidence for 

no difference in the topographies between groups (bottom). (D) Mean and standard error of 

the mean for each clinical group QRS complex from the ICA-extracted EKG. A single channel 

cluster permutation test indicated significant differences (p=0.017) only between 184 and 

344ms after the R-peak, consistent with the location of the T wave. (E) We evaluated two 

independent groups of healthy controls (n=12) and patients (n=12) using simultaneous EEG 

and EKG recordings. For each subject, EKG was also extracted using the described ICA 

method. We then computed the differences between each R-peak onset detected in the 

direct EKG and the corresponding R-peak detected using ICA (left). Right panel shows the 

mean difference and 95% CI for each type of trial and subject as measured in samples (1 

sample = 4 ms). Using Bayesian ANOVA, we found no evidence for a difference as an effect 

of the trial type (BF01>4.27) and strong evidence for no difference for the interaction 

between the type of trial and the clinical state (BF01>15). 

 

Figure 3. 

Cardiac autonomic markers show no difference between clinical groups. Lower CRS-R 

scores in VS/UWS patients correlates with a faster and less variable cardiac cycle as a 

manifestation of the overall deterioration of the clinical condition. 

Each panel depicts the cardiac marker values (y-axis, Heart rate (A), Heart rate variability in 

high frequencies (B), in low frequencies (C), and in very low frequencies (D)) for each patient 

(dot), categorized by clinical group (top, 70 VS/UWS, 57 MCS, 12 Healthy) and by Coma 

Recovery Scale-Revised scores (CRS-R, bottom – only for patients). The Spearman’s 

regression line between the scores and the EKG-related markers for the VS/UWS patients, 

indicates a significant positive correlation between the CRS-R score and Heart Rate (A), Heart 

Rate Variability in high frequencies (B), and in low frequencies (C). Boxplots with 

interquartile range, median (black line) and mean (dashed line) represent the distribution of 

data in both clinical groups. 

 

Figure 4. 

R-peak locked EEG evoked responses shows differences between clinical groups 
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(A) Mean EEG topographies for each clinical group time locked to the R-peak at 0, 100, 250, 

350, 450 and 500 ms. (B) Contrast and statistical comparison of the R-peak evoked potentials 

between clinical groups. (C) The left panel shows the only significant cluster of a 

permutation analysis (p=0.034), the electrodes composing the cluster are shown with white 

circles (left). The right panel shows the timeseries of the corresponding cluster (mean and 

standard deviation across subjects). Two main modulations are observed, (1) in the time 

window corresponding to the T wave, a left-posterior positivity and a right-frontal negativity 

; and, (2) a central electrode spatial pattern positivity after the T-wave (>350ms), suggesting 

differences in the brain processing of the heart activity between VS/UWS and MCS patients. 

 

Figure 5. 

Violations of global regularities induce cardiac cycle phase acceleration only in minimally 

conscious patients.  

Local violations did not affect the ongoing cardiac activity for the intervals between the 

stimulation onset and the preceding R-peak (PRE, top left) nor the following R-peak (POST, 

top right). Similarly, global violations did not affect the ongoing cardiac activity at the PRE 

interval (bottom left). In clear contrast, they induced shortened POST intervals (bottom 

right) only in the minimally conscious state (MCS) group (between-group contrast BF=34.15; 

within-group sign-test p-value=0.01). The small sample of healthy controls included in this 

study presented a pattern of results similar to the MCS subjects (although not statistically 

significant). Each dot represents a patient in vegetative state/unresponsive wakefulness 

syndrome (VS/UWS, N=70), in minimally consciousness state (MCS, N=57) or a healthy 

control (Healthy, n=12). Boxplots with interquartile range, median (black line) and mean 

(dashed line) represent the distribution of data in the clinical groups.  

 

Figure 6. 

Cognitive EKG markers carries partially independent information from EEG. 

Six distinct multivariate classifiers were trained to distinguish between VS/UWS and MCS 

patients using different combinations of EKG and EEG markers. We used as features 

combinations of 120 EEG markers, cognitive EKG markers (EKGcog; PRE and POST intervals, 

Local and Global effects contrasts) and the vegetative function markers (EKGveg; Heart Rate 

and Variability). All the models that summed EEG markers and EKGcog, presented a significant 
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increase in the classification accuracy (compared to MVPA of EEG without EKGcog, p<1e-9). 

Using only EEG markers (mean AUC 73.7) showed no significant difference with EEG in 

combination with EKGveg markers (mean AUC 73.3). As a control to equalize the number of 

features, the combination of EEG and all of the EKG markers with shuffled labels reported a 

mean AUC of 73.3. When we used only EKG markers, the classifier performed above chance, 

obtaining a mean AUC of 60.1. Means were estimated using 250 repetitions of stratified 8-

fold cross validation. Each dot represents the mean value across folds for each repetition. 

Boxplots with interquartile range, median and mean (dotted line) represent the distribution 

of values for each set of features. 

 

Tables 

 
MARKER R STATISTIC P-VALUE  P-VALUE  

(FDR CORRECTED) 

  

CNV   0.45   0.649  0.744   
K   -2.31    0.022 * 0.138   
PE   -2.63    0.009 * 0.138   
ALPHA   -1.30    0.192  0.412   

ALPHA N   -1.31    0.190  0.412   
BETA   -1.91    0.058  0.251   
BETA N   -1.53    0.128  0.349   
DELTA   0.85    0.393  0.562   
DELTA N   2.40    0.017 * 0.138   
GAMMA   -1.67    0.096  0.321   
GAMMA N   -1.43    0.154  0.385   

SE   -2.30    0.023 * 0.138   
THETA   -0.50    0.616  0.744   
THETA N   -0.94    0.345  0.562   
MSF   -1.61    0.108  0.324   
SEF90   -1.87    0.062  0.251   
SEF95   -1.84    0.067  0.251   

WSMI   -2.34    0.020 * 0.138   
GD-GS   0.54    0.589  0.744   
LD-LS   0.43    0.662  0.744   
LSGD-LDGS    -0.31    0.756  0.810   
LSGS-LDGD    -0.99    0.320  0.562   
MMN    -0.86    0.387  0.562   

DELTA P3A    -0.02    0.979  0.979   
DELTA P3B    -0.42    0.669  0.744   
P1    -0.22    0.820  0.848   
TOPO P3A    -0.86    0.387  0.562   
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TOPO P3B    -1.11    0.265  0.501   
DECOD GLOBAL    0.62    0.532  0.726   
DECOD LOCAL    1.11    0.267 0.501   

 
Table 1. 

Correlations between the Global Effect values as measured by the EKG POST interval and 

‘traditional’ EEG markers used to diagnose the state of consciousness in DOC patients. 

For detailed information see Sitt et al.7 (including supplementary material). 
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Illustration of the auditory paradigm (A) and the cardiac-related markers used in the analysis (B). 
(A) Each trial of the auditory paradigm was composed by 5 consecutive sounds. Four equal sounds defined a 
local regularity (music notes). The 5th sound could be equal or different, defining a local standard or deviant 

trial respectively.  At a second level, frequent trials (80%, left shaded area) defined a global regularity and 
rare trials (20%, right shaded area) violated this regularity. (B) Two consecutive EKG QRS complexes 
defined an RR interval. Overall heart rate was computed from the robust average of the RR intervals. 

Conscious response to the stimulation was analyzed based on the definition of two intervals: (1) the PRE 
interval, measured between the R-peak previous to the 5th sound and the onset of that sound and (2) the 
POST interval, measured between the onset of the 5th sound and the following R-peak. In order to avoid 

coupling with the heartbeats, trials in which the sound was less than 20 ms or more than 600 ms apart from 
the R-peak were discarded. 
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EKG Independent components present no difference in the QRS complex between clinical groups.  
(A) Timeseries from 7 typical EEG sensors from one UWS patient. (B) Corresponding timeseries of 7 ICA 
components extracted from the previous EEG recording and the respective weights topographies. The 

independent component with cardiac information is shown in red. Dotted lines represents the automatically 
detected R-peak. (C) Mean weights topographies for each clinical group (top). A sensor-wise Bayesian t-test 

shows evidence for no difference in the topographies between groups (bottom). (D) Mean and standard 
error of the mean for each clinical group QRS complex from the ICA-extracted EKG. A single channel cluster 
permutation test indicated significant differences (p=0.017) only between 184 and 344ms after the R-peak, 
consistent with the location of the T wave. (E) We evaluated two independent groups of healthy controls 
(n=12) and patients (n=12) using simultaneous EEG and EKG recordings. For each subject, EKG was also 
extracted using the described ICA method. We then computed the differences between each R-peak onset 
detected in the direct EKG and the corresponding R-peak detected using ICA (left). Right panel shows the 
mean difference and 95% CI for each type of trial and subject as measured in samples (1 sample = 4 ms). 
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Using Bayesian ANOVA, we found no evidence for a difference as an effect of the trial type (BF01>4.27) and 

strong evidence for no difference for the interaction between the type of trial and the clinical state 
(BF01>15).  
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Cardiac autonomic markers show no difference between clinical groups. Lower CRS-R scores in VS/UWS 
patients correlates with a faster and less variable cardiac cycle as a manifestation of the overall deterioration 

of the clinical condition. 

Each panel depicts the cardiac marker values (y-axis, Heart rate (A), Heart rate variability in high 
frequencies (B), in low frequencies (C), and in very low frequencies (D)) for each patient (dot), categorized 
by clinical group (top, 70 VS/UWS, 57 MCS, 12 Healthy) and by Coma Recovery Scale-Revised scores (CRS-

R, bottom – only for patients). The Spearman’s regression line between the scores and the EKG-related 
markers for the VS/UWS patients, indicates a significant positive correlation between the CRS-R score and 
Heart Rate (A), Heart Rate Variability in high frequencies (B), and in low frequencies (C). Boxplots with 
interquartile range, median (black line) and mean (dashed line) represent the distribution of data in both 

clinical groups. 
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R-peak locked EEG evoked responses shows differences between clinical groups 
(A) Mean EEG topographies for each clinical group time locked to the R-peak at 0, 100, 250, 350, 450 and 

500 ms. (B) Contrast and statistical comparison of the R-peak evoked potentials between clinical groups. (C) 
The left panel shows the only significant cluster of a permutation analysis (p=0.034), the electrodes 
composing the cluster are shown with white circles (left). The right panel shows the timeseries of the 

corresponding cluster (mean and standard deviation across subjects). Two main modulations are observed, 
(1) in the time window corresponding to the T wave, a left-posterior positivity and a right-frontal negativity ; 
and, (2) a central electrode spatial pattern positivity after the T-wave (>350ms), suggesting differences in 

the brain processing of the heart activity between VS/UWS and MCS patients.  
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Violations of global regularities induce cardiac cycle phase acceleration only in minimally conscious patients. 
Local violations did not affect the ongoing cardiac activity for the intervals between the stimulation onset 

and the preceding R-peak (PRE, top left) nor the following R-peak (POST, top right). Similarly, global 

violations did not affect the ongoing cardiac activity at the PRE interval (bottom left). In clear contrast, they 
induced shortened POST intervals (bottom right) only in the minimally conscious state (MCS) group 

(between-group contrast BF=34.15; within-group sign-test p-value=0.01). The small sample of healthy 
controls included in this study presented a pattern of results similar to the MCS subjects (although not 
statistically significant). Each dot represents a patient in vegetative state/unresponsive wakefulness 

syndrome (VS/UWS, N=70), in minimally consciousness state (MCS, N=57) or a healthy control (Healthy, 
n=12). Boxplots with interquartile range, median (black line) and mean (dashed line) represent the 

distribution of data in the clinical groups.  
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Cognitive EKG markers carries partially independent information from EEG.  
Six distinct multivariate classifiers were trained to distinguish between VS/UWS and MCS patients using 
different combinations of EKG and EEG markers. We used as features combinations of 120 EEG markers, 

cognitive EKG markers (EKGcog; PRE and POST intervals, Local and Global effects contrasts) and the 
vegetative function markers (EKGveg; Heart Rate and Variability). All the models that summed EEG markers 

and EKGcog, presented a significant increase in the classification accuracy (compared to MVPA of EEG 
without EKGcog, p<1e-9). Using only EEG markers (mean AUC 73.7) showed no significant difference with 

EEG in combination with EKGveg markers (mean AUC 73.3). As a control to equalize the number of features, 
the combination of EEG and all of the EKG markers with shuffled labels reported a mean AUC of 73.3. When 
we used only EKG markers, the classifier performed above chance, obtaining a mean AUC of 60.1. Means 
were estimated using 250 repetitions of stratified 8-fold cross validation. Each dot represents the mean 
value across folds for each repetition. Boxplots with interquartile range, median and mean (dotted line) 

represent the distribution of values for each set of features.  
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