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The minimal area for surfaces whose borders are rectangular and circular loops are calculated using
the Hamilton-Jacobi (HJ) equation. This amounts to solving the HJ equation for the value of the minimal
area, without calculating the shape of the corresponding surface. This is done for bulk geometries that are
asymptotically anti–de Sitter (AdS). For the rectangular contour, the HJ equation, which is separable, can
be solved exactly. For the circular contour an expansion in powers of the radius is implemented. The HJ
approach naturally leads to a regularization which consists in locating the contour away from the border.
The results are compared with the ϵ-regularization which leaves the contour at the border and calculates the
area of the corresponding minimal surface up to a diameter smaller than the one of the contour at the border.
The results for the circular loop do not coincide if the expansion parameter is taken to be the radius of the
contour at the border. It is shown that using this expansion parameter the ϵ-regularization leads to incorrect
results for certain solvable non-AdS cases. However, if the expansion parameter is taken to be the radius of
the minimal surface whose area is computed, then the results coincide with the HJ scheme. This is traced
back to the fact that in the HJ case the expansion parameter for the area of a minimal surface is intrinsic to
the surface; however, the radius of the contour at the border is related to the way one chooses to regularize
in the ϵ-scheme the calculation of this area.
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I. INTRODUCTION

The relation between large N gauge theories and string
theory [1] together with the AdS=CFT correspondence [2–5]
has opened new insights into strongly interacting gauge
theories. The application of these ideas to QCD has received
significant attention since those breakthroughs. From the
phenomenological point of view, the so-called AdS=QCD
approach has produced very interesting results in spite of
the strong assumptions involved in its formulation [6–11]. It
seems important to further proceed investigating these ideas
and refining the current understanding of a possible QCD
gravity dual.
In the holographic approach, the vacuum expectation

value of the Wilson loop is obtained by minimizing the
Nambu-Goto (NG) action for a loop lying in the boundary
space [12,13]. This is known to work in the strictly anti–de
Sitter (AdS) case, i.e., for a conformal boundary field theory.
In this work it is assumed that this procedure also works in
the nonconformal-QCD case provided an adequate five-
dimensional background metric is chosen. It is remarked that
the vacuum expectation value of Wilson loops are phenom-
enologically relevant quantities directly connected with the
condensates of the gauge theory [14–16]. In this respect, as
shown in [16], it is worth remarking that there is a direct
relation between the phenomenological values for the gauge

theory condensates and the coefficients in the expansion of
the warp factor around the AdS case.
In this work the minimal area is computed by solving

the Hamilton-Jacobi (HJ) equation. This approach has the
advantage that the minimal area can be obtained without
solving the equations of motion. It amounts to studying the
variation of the minimal area under changes in the location
and shape of the contour. This approach naturally leads to a
regularization which consists in moving the contour into
the bulk out of the border. This HJ regularization was also
considered in [17] for the AdS case and in [18] in relation
with UV divergences. In the former reference another
regularization was also employed, which consists in locat-
ing the contour at the border but computing the area only
up to a diameter smaller than that of the contour. This
approach will be referred to as the ϵ-scheme. It was shown
that for the AdS case the results for smooth surfaces
computed using both schemes coincide except with respect
to zigzag symmetry. The HJ scheme respects this sym-
metry, but the ϵ-scheme does not. In the present work, it is
shown that for the non-AdS case, depending on the choice
of expansion parameter, the results for the coefficients of
the expansion in powers of the diameter of the circular
contour of the NG action may not coincide for both
schemes, even for regular surfaces. Furthermore, it is
shown that choosing the radius of the loop at the border
as the expansion parameter, the ϵ-regularization scheme
leads to wrong results for certain solvable non-AdS cases.
The features and results of this work are summarized as

follows:
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(i) The HJ approach is employed for the calculation of
minimal areas of rectangular and circular loops in
asymptotically AdS spaces.

(ii) For the case of the rectangular loop the HJ equation
is separable and can be solved exactly.

(iii) For the case of the circular loop an expansion of the
NG on-shell action in powers of the radius of the loop
is implemented. At each order the relevant differential
equation is linear and solvable up to the calculation of
an integral. For the cases where the warp factor in
conformal coordinate z is a pure power z2n, these
integrals can be exactly calculated for any n ≥ −1.

(iv) The HJ approach naturally leads to a regularization
that consists in locating the loop contour away from
the border. The divergences are removed by means
of substracting to the regularized result and adequate
number of derivatives with respect to the geometrical
parameter characterizing the loop.

(v) The two regularizations considered in [17] are applied
in this case. One of them is the one mentioned above
that fits naturally in the HJ approach. The other one
considers a minimal surface whose contour is at the
border and computes the area of the surface up to a
diameter smaller than the one of the contour at the
border.

(vi) The results for the expansion coefficients of the NG
on-shell action in powers of the radius are considered.
For the circular loop, depending on the choice of
expansion parameter, the results may not coincide for
the two regularizations mentioned above. It is shown
that the ϵ-regularization, using the radius of the
contour at the border as an expansion parameter,
leads to incorrect results for certain solvable non-AdS
cases. This is investigated in detail and has its origin
in the use of the above mentioned regularization
dependent expansion parameter in this scheme.

This paper is organized as follows. Section II defines the
bulk metrics to be considered and recalls the NG action.
Section III deals with the rectangular loop in the HJ
approach. Section IV studies the circular loop in the HJ
approach and the approximate solution of the HJ equation
as a power series in the loop’s radius. Section V deals with
the substraction scheme and its explicit computation.
Section VI compares both regularizations. The failure of
the ϵ-regularization for certain solvable non-AdS cases is
explained, and the origin of this situation is considered.
Section VII presents some concluding remarks. In addition
two appendixes are included, one of them giving explicit
expressions of the expansion coefficients mentioned above
and the other showing the source of the differences between
both regularization schemes.

II. THE NAMBU-GOTO ACTION

The distance to be considered has the following general
form:

ds2 ¼ e2AðzÞðdz2 þ ηijdxidxjÞ
¼ Gμνdxμdxν μ; ν ¼ 1;…; dþ 1: ð2:1Þ

It is defined by a metric with no dependence on the
boundary coordinates, which therefore preserves the boun-
dary space Poincaré invariance. This should be the case if
only vacuum properties are considered. The form of the
warp factor AðzÞ to be considered is

AðzÞ ¼ − ln

�
z
L

�
þ fðzÞ; ð2:2Þ

where fðzÞ is a dimensionless function. In this work fðzÞ is
taken to be a series in even1 powers of z, i.e.,

fðzÞ ¼
X
k¼1

α2kz2k: ð2:3Þ

The case fðzÞ ¼ 0 corresponds to the AdS metric. This
deviation from the AdS case could be produced by a bulk
gravity theory including matter fields. Possible candidates
for these bulk gravity theories have been considered
in [19,20].
The area of a surface embedded in this space is given by

the NG action,

SNG ¼ 1

2πα0

Z
d2σ

ffiffiffi
g

p
; ð2:4Þ

where g is the determinant of the induced metric on the
surface, which is given by

gab ¼ Gμν∂axμ∂bxν;

where xμða; bÞ are the coordinates of the surface embedded
in the ambient (dþ 1)-dimensional space. The indices a, b
refer to coordinates on the surface.

III. RECTANGULAR LOOP

The surface contoured by this loop is described by the
following embedding:

x1 ¼ t; t ∈
�
−
T
2
;
T
2

�
;

xi ¼ x; x ∈ ½−a; a�;
xk ¼ 0; ∀k ≠ i;

x5 ¼ z ¼ zðxÞ:

The determinant of the induced metric,

1Restricting to even powers implies that no odd dimensional
condensates will appear [16]. The motivation for this requirement
is that this is the case in QCD where no odd dimensional
condensates appear.
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gab ¼ Gμν∂axμ∂bxν ða; b ¼ t; xÞ;

is given by

detðgabÞ ¼ ½1þ z0ðxÞ2�e4AðzÞ;
leading to the following expression for the NG action:

SNG ¼ 1

2πα0

Z T
2

−T
2

dt
Z

a

−a
dxe2AðzðxÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0ðxÞ2

q

¼ T
πα0

Z
a

0

dxe2AðzðxÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0ðxÞ2

q
; ð3:1Þ

where in the last equality translation and reflection sym-
metry has been employed. The geometrical setting given
above is described in Fig. 1.
As described in Fig. 2, the loop is located at a value z1

of the coordinate orthogonal to the border; in addition,
the corresponding minimal surface is required to be regular
at the origin. Therefore the boundary conditions for the
minimal surface are

zðaÞ ¼ z1; z0ð0Þ ¼ 0:

The potential between static quarks can be obtained from
the NG action as follows:

Vq̄qðRÞ ¼ lim
T→þ∞

SNG

T
¼ 1

πα0

Z
a

0

dxe2AðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0ðxÞ2

q
;

ð3:2Þ

where R ¼ 2a is the interquark separation.

A. Hamilton-Jacobi approach

With the boundary conditions mentioned above, the
on-shell NG action is a function of the interquark separa-
tion a and z1, the location of the loop, i.e.,

SNG ¼ SNGða; z1Þ;
and the corresponding Hamilton-Jacobi equation is given by

∂SNGða; z1Þ
∂a þH

�
z1;

∂SNGða; z1Þ
∂z1 ; a

�
¼ 0;

where H ¼ Hðz; p; xÞ is the Hamiltonian, p the canonical
conjugate momenta to z, and x the coordinate along the
spatial dimension of the loop. To make the calculations
easier, it is helpful to neglect the multiplicative factor T

πα0 in
(3.1) and reintroduce it in the final expression. Standard
methods lead to

Hðz; p; xÞ ¼ pz0ðz; p; xÞ − Lðz; z0ðz; p; xÞ; xÞ

¼ −
e2AðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4AðzÞ − p2

q
; ð3:3Þ

leading to the following form of the HJ equation:

∂SNGða; z1Þ
∂a −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4Aðz1Þ −

�∂SNGða; z1Þ
∂z1

�
2

s
¼ 0: ð3:4Þ

FIG. 1. (a) The rectangular loop is located at z ¼ 0. The corresponding world sheet zðxÞ lives in the bulk. For T → ∞, the world sheet
parametrization zðxÞ is t independent. (b) Aworld sheet section for fixed t. In this case the contour is located at a value z1. This value can
be sent to zero after substraction.

FIG. 2. A loop located at z ¼ z1, and the corresponding world
sheet.
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In this case, since the Lagrangian does not depend on the
coordinate x, the Hamiltonian is a constant of motion E;
thus,

∂SNGða; z1Þ
∂a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4Aðz1Þ −

�∂SNGða; z1Þ
∂z1

�
2

s
¼ −E;

and the value of E can be obtained from (3.3) as follows:

E ¼ −
e2AðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p ¼ −e2Aðz0Þ;

where z0 is the maximum value of the coordinate z attained
by the minimal surface, which is therefore such that

z0 ¼ zð0Þ; z0ð0Þ ¼ 0:

An expression for z0 as a function of a and z1 can be
obtained by means of

a ¼
Z

a

0

dx ¼
Z

zðaÞ

zð0Þ

dx
dz

dz ð3:5Þ

¼
Z

z1

z0

1

z0
dz ¼

Z
z0

z1

e2Aðz0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4AðzÞ − e4Aðz0Þ

p dz: ð3:6Þ

Having a constant of motion, a solution by separation of
variables is possible,

SNGða; z1Þ ¼ AðaÞ þ Zðz1Þ;

and replacing in (3.4) gives

A0ðaÞ ¼ −E;

Z0ðz1Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4Aðz1Þ − E2

p
:

The general solution to these equations is2

AðaÞ ¼¼ −E · aþ A0;

Zðz1Þ ¼ −
Z

z1

zinf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4AðzÞ − E2

p
dz

where the integration constants A0 and zinf have to be
determined by choosing adequate boundary conditions.
The following boundary condition is adopted:

lim
a→0

SNGða; z1Þ ¼ 0; ∀ z1: ð3:7Þ

This condition is satisfied by the following solution:

AðaÞ ¼¼ −E · a;

Zðz1Þ ¼ −
Z

z1

z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4AðzÞ − E2

p
dz:

Noting that lima→0z0 ¼ z1 shows that the required boundary
condition (3.7) is fulfilled.
Replacing SNGða; z1Þ in (3.2), the interquark potential is

given by

Vq̄qðRÞ ¼
1

2πα0

�
Re2Aðz0Þ þ 2

Z
z0

z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4AðzÞ − e4Aðz0Þ

p
dz

�
;

ð3:8Þ

which coincides with the results in [21]. In order to express
this potential in terms of a and z1, Eq. (3.5) can be
employed to obtain z0 as a function of a and z1. In the
AdS case AðzÞ ¼ − lnðzLÞ, the integrals appearing in (3.5)
and (3.8) are elliptic and can be evaluated to give
expressions in terms of the hypergeometric function. In
the general case, near the border, i.e., for z1 → 0, the
integrals can be evaluated up to terms proportional to
positive powers of z1, leading to

Vq̄qðRÞ ¼
L2

2πα0

�
Re2Aðz0Þ þ

ffiffiffi
π

p
Γð− 1

4
Þ

4z0Γð54Þ
þ 2

z1

�
þOðz1Þ;

a ¼
ffiffiffi
π

p
z0Γð34Þ
Γð1

4
Þ þOðz31Þ; ð3:9Þ

which clearly shows that there is a divergence for z1 → 0.
This happens also in the non-AdS case and is related to the
divergence of the metric near the border. A substraction
procedure should be employed to obtain a finite value.
This substraction will be discussed in Sec. V.

IV. CIRCULAR LOOP

The surface contoured by the circular loop is described
by the following embedding:

x1 ¼ 0;

xσ ¼ 0 ∀ σ ≠ μ; ν;

xμ ¼ r cosðφÞ;
xν ¼ r sinðφÞ;
x5 ¼ z ¼ zðrÞ; 0 ≤ φ ≤ 2π; 0 ≤ r ≤ a:

It should be noted that the coordinate z has been taken to
depend only on r, due to the rotational symmetry of the
contour and the metric. The corresponding geometrical
setting is shown in Fig. 2. The induced metric

gab ¼ Gμν∂axμ∂bxν ða; b ¼ φ; rÞ
2In the second equation below, the minus sign has been chosen.

This choice corresponds to a minimal surface that extends from
the border z ¼ 0 to greater values of z.
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and its determinant are given by

gab ¼
� ½1þ z0ðrÞ2�e2AðzÞ 0

0 r2e2AðzÞ

�
;

detðgabÞ ¼ r2 ½1þ z0ðrÞ2�e4AðzÞ ;

which leads to the following expression for the correspond-
ing NG action:

SNG ¼ 1

α0

Z
a

0

drre2AðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0ðrÞ2

q
; ð4:1Þ

where the φ integration has been done, canceling the 2π
factor in (2.4). It is worth noting that this Lagrangian
depends on the integration variable, and therefore the
Hamiltonian is not a constant of motion in this case.
The Euler-Lagrange equations of motion arising from this
action are

r
z00ðrÞ

1þ z0ðrÞ2 þ z0ðrÞ − 2rA0ðzÞ ¼ 0; ð4:2Þ

and the boundary conditions to be considered are

zðaÞ ¼ z1; z0ð0Þ ¼ 0; ð4:3Þ

which correspond to a smooth surface contoured by a
circular loop of radius a located at the value z1 of the
coordinate z orthogonal to the border. For the AdS case
AðzÞ ¼ − lnðzLÞ, the solution to (4.2) with the boundary
conditions (4.3) is

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z21 − r2

q
; 0 ≤ r ≤ a: ð4:4Þ

A. Hamilton-Jacobi approach

In this case, the NG action is a function of the radius a
and the location z1 of the circular loop. The momentum
canonically conjugate to z and the Hamiltonian appearing
in the HJ equation are given by

pðz; z0; rÞ ≔ ∂Lðz; z0; rÞ
∂z0 ¼ 1

α0
rz0e2AðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p ⇒ z0ðz; p; aÞ

¼ � α0pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e4AðzÞ − α02p2

p ;

Hðz; p; rÞ ¼ pz0ðz; p; rÞ − Lðz; z0ðz; p; rÞ; rÞ
¼ −

p
z0ðz; p; rÞ

¼ ∓ 1

α0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e4AðzÞ − α02p2

q
: ð4:5Þ

Replacing in the HJ equation,

∂SNGða; z1Þ
∂a þH

�
z1;

∂SNGða; z1Þ
∂z1 ; a

�
¼ 0

leads to

∂SNGða; z1Þ
∂a ∓ 1

α0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2e4Aðz1Þ − α02

�∂SNGða; z1Þ
∂z1

�
2

s
¼ 0;

ð4:6Þ

which implies�∂SNGða; z1Þ
∂a

�
2

þ
�∂SNGða; z1Þ

∂z1
�
2

¼ 1

α02
a2e4Aðz1Þ: ð4:7Þ

In the AdS case this equation is

�∂SNGða; z1Þ
∂a

�
2

þ
�∂SNGða; z1Þ

∂z1
�
2

¼ L4

α02
a2

z41
;

whose solution with the boundary condition,

lim
a→0þ

SNGða; z1Þ≡ 0 ðz1 ¼ cteÞ; ð4:8Þ

is

SAdSNG ða; z1Þ ¼
L2

α0

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

z21

s
− 1

#
; ð4:9Þ

which coincides with what is obtained by replacing the
solution (4.4) in the NG action (4.1).

B. Expansion in powers of the radius a

An expansion of the on-shell NG action for the circular
loop in powers of a allows one to obtain information about
the gluon condensates in the dual gauge theory [14–16]. It
is not totally straightforward to perform such an expansion.
This can be seen from the result (4.9) for the on-shell NG
action in the AdS case. The series expansion of SAdSNG ða; z1Þ
in powers of a is given by

α0

L2
SAdSNG ða; z1Þ ¼

a2

2z21
−

a4

8z41
þ a6

16z61
þOða7Þ; ð4:10Þ

which is convergent for a
z1
< 1. Therefore such an expan-

sion is not suited to reproduce the behavior of SAdSNG ða; z1Þ
for z1 → 0 and a fixed. Indeed, (4.9) shows that

α0

L2
SAdSNG ða; z1Þ ¼z1≪1 a

z1
: ð4:11Þ

In this respect it is convenient to consider the NG action
in terms of the variables w1 ¼ z1

a and a instead of z1 and a.
Doing this for the AdS case gives
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α0

L2
SAdSNG ða; w1aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

1

p
w1

− 1;

whose Laurent expansion for w1 ≪ 1 reproduces the
divergence term 1=w1 in (4.11); this is not the case for
the expansion (4.10).
Defining the action Sða; w1Þ by

Sða; w1Þ ¼ SNGða; w1aÞ

and taking into account that

∂SNGða; z1Þ
∂a ¼ ∂Sða; w1Þ

∂a −
w1

a
∂Sða; w1Þ

∂w1

;

∂SNGða; z1Þ
∂z1 ¼ 1

a
∂Sða; w1Þ

∂w1

;

the HJ equation is rewritten as follows:

a2
�∂Sða; w1Þ

∂a
�
2

þ ð1þ w2
1Þ
�∂Sða; w1Þ

∂w1

�
2

− 2w1a
∂Sða; w1Þ

∂a
∂Sða; w1Þ

∂w1

¼ 1

α02
a4e4Aðw1·aÞ; ð4:12Þ

and the boundary condition (4.8) is now

0 ¼ lim
a→0þ

SNGða; z1Þ ¼ lim
a→0þ

S

�
a;
z1
a

�
ðz1 ¼ cst:Þ:

ð4:13Þ

Next the following power series expansion is considered:

Sða; w1Þ ¼
L2

α0
X∞
n¼0

s2nðw1Þa2n; ð4:14Þ

and replacing this expansion in (4.12) leads to

X∞
n¼0

�Xn
k¼0

4ðkþ1Þðn−kþ1Þs2ðkþ1Þðw1Þs2ðn−kþ1Þðw1Þ
�
a2nþ4

−2w1

X∞
n¼0

�Xn
k¼0

2ðkþ1Þs2ðkþ1Þðw1Þs02ðn−kÞðw1Þ
�
a2nþ2

þð1þw2
1Þ
X∞
n¼0

�Xn
k¼0

s02kðw1Þs02ðn−kÞðw1Þ
�
a2n

−
X∞
n¼0

β2nw2n−4
1 a2n¼0; ð4:15Þ

where βm are the power series expansion coefficients of
e4Aðw1aÞ, i.e.,

e4Aðw1aÞ ¼ L4

ðw1aÞ4
e4fðw1aÞ ¼ L4

ðw1aÞ4
X∞
n¼0

β2nðw1aÞ2n:

ð4:16Þ

These coefficients can be written as polynomials in the α
coefficients appearing in (2.3). Equating to zero the
coefficient of an in the left-hand side of (4.15) leads to

2ð1þ w2
1Þs00ðw1Þs02nðw1Þ − 4nw1s00ðw1Þs2nðw1Þ

þ
Xn−1
k¼1

fð1þ w2
1Þs02kðw1Þs02ðn−kÞðw1Þ

þ 4kðn − kÞs2kðw1Þs2ðn−kÞðw1Þ
− 4w1ks2kðw1Þs02ðn−kÞðw1Þg − β2nw2n−4

1 ¼ 0; ð4:17Þ

valid for n ¼ 0; 1; 2;…. The boundary condition (4.13)
leads to

lim
a→0þ

Sða; z1=aÞ ¼ 0 ⇔ lim
a→0þ

s2nðz1=aÞ · a2n ¼ 0

∀ n; z1 ¼ cst: ð4:18Þ

For a given n, Eq. (4.17) involves the functions s2kðw1Þ and
s02kðw1Þ for 0 ≤ k ≤ n. Therefore starting with n ¼ 0, the
resulting equation only involves s0ðw1Þ and s00ðw1Þ, and
when solving for them they can be replaced in the equation
for n ¼ 1 to get s2ðw1Þ and s02ðw1Þ and so on. The equation
for n ¼ 0 and its solution satisfying the boundary condition
(4.18) are

½s00ðw1Þ�2 ¼
1

w4
1ð1þ w2

1Þ
⇒ s0ðw1Þ ¼ þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

1

p
w1

− 1

�
;

ð4:19Þ

where the sign in the second equation has been chosen so as
to get a positive area for a nonvanishing radius. For the
cases with n ¼ 1; 2;…, the differential equations to be
considered are of the form

Að2nÞðw1Þs02nðw1Þ þ Bð2nÞðw1Þs2nðw1Þ þ Cð2nÞðw1Þ ¼ 0;

ð4:20Þ

and the general solution to this equation is

s2nðw1Þ ¼ cð2nÞeFðw1Þ − eFðw1Þ
Z

w1

0

e−FðxÞ
Cð2nÞðxÞ
Að2nÞðxÞ dx;

Fðw1Þ ¼ −
Z

w1

0

Bð2nÞðxÞ
Að2nÞðxÞ dx; ð4:21Þ

where cð2nÞ is a constant to be determined using the
boundary condition (4.18). Equation (4.17) implies that
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Bð2nÞðxÞ
Að2nÞðxÞ ¼ −2n

w1

1þ w2
1

⇒ Fðw1Þ ¼ ln½ð1þ w2
1Þn�;

and replacing in (4.21) leads to

s2nðw1Þ ¼ cð2nÞð1þ w2
1Þn þ

1

2
ð1þ w2

1Þn

×
Z

w1

0

x2

ð1þ x2Þnþ1
2

Cð2nÞðxÞdx; ð4:22Þ

where the following equalities were employed: Að2nÞðxÞ ¼
2ð1þ x2Þs00ðxÞ ¼ − 2

ffiffiffiffiffiffiffiffi
1þx2

p
x2 . Imposing the boundary con-

dition (4.18) leads to

cð2nÞ ¼ −
1

2

Z þ∞

0

x2

ð1þ x2Þnþ1
2

Cð2nÞðxÞdx;

which replacing in (4.22) gives

s2nðw1Þ ¼ −
1

2
ð1þ w2

1Þ
Z þ∞

w1

x2

ð1þ x2Þnþ1
2

Cð2nÞðxÞdx:

ð4:23Þ

The functions Cð2nÞ appearing in this expression are
obtained from (4.17),

Cð2nÞðxÞ ¼
Xn−1
k¼1

fð1þ x2Þs02kðxÞs02ðn−kÞðxÞ

þ 4kðn − kÞs2kðxÞs2ðn−kÞðxÞ
− 4w1ks2kðxÞs02ðn−kÞðxÞg − β2nx2n−4; ð4:24Þ

and for n ¼ 0, 1, 2, 3 the results for Cð2nÞðxÞ and s2nðw1Þ
are given in Appendix A.
In addition, the special cases where only one of the β2n is

nonvanishing3 can be exactly calculated for any n. In such
cases,

Cð2nÞðxÞ ¼ −β2nx2n−4;

which leads to

s2n ¼ −
1

4
ð1þ w2

1Þ
Z

∞

w1
dx

x2

ð1þ x2Þnþ1
2

Cð2nÞðxÞ

¼ β2n
2

ð1þ w2
1Þ
Z

∞

w1
dx

x2n−2

ð1þ x2Þnþ1
2

¼ β2n
2

ð1þ w2
1Þ
�
1 − w2n−1

1 ð1þ w2
1Þ

1
2
−n

2n − 1

�

¼w1→0 β2n
2ð2n − 1Þ :

Switching on other β’s will give additional contributions to
the s2n. However, the numerical coefficient in front of β2n
will be the same as above.

V. SUBSTRACTION

In the previous section the NG action has been regular-
ized by locating the border of the surface at a nonzero value
z1 of the coordinate z. Other regularizations can also be
employed, and one example of these will be considered
in Sec. VI. Once regularized the next step is to define a
substraction. The important properties of a substraction are
that it should remove the divergence terms and that the
substracted quantity should not depend on the regulariza-
tion employed. This is normally achieved by means of
substracting to the regularized quantity a certain number of
terms of its expansion around certain values of the
parameters on which it depends. In the present case, the
calculation of the NG action, the parameters characterizing
the calculation are purely geometrical and consist in the
ones that describe the contour of the loop at the border of
the surface whose area is computed. In both cases consid-
ered in this work the divergences are proportional to the
perimeter of the loop at the border of the surface whose area
is computed. This last fact can be derived for the rectan-
gular loop by direct computation as (3.9) shows.4 For the
circular loop this can be derived as in Sec. III. A in [16].
This motivates the following definitions of the substracted
NG action for the rectangular and circular loops:

Rectangular SR;subs:NG ¼ lim
Λ→∞

ðSNG − SNGjR¼R0
Þ

Circular SC;subs:NG ¼ lim
Λ→∞

ðSNG − SNGja¼a0 − ∂SNG∂a ja¼a0
ða − a0ÞÞ;

ð5:1Þ

where R denotes the interquark separation, a denotes the radius of the circular loop, and R0, a0 denote the corresponding
substraction points. In the above expressions limΛ→∞ indicates that the cutoff limit should be taken.

3It is remarked that the exact solvability of these cases is not obvious from the point of view of solving the corresponding equations of
motion (4.2).

4For the rectangular loop, in the limit T → ∞, the perimeter is, up to a small correction, the same as 2T.
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A. The substracted rectangular loop

For the rectangular loop the above definition leads to the
following expression for the substracted NG action:

SR;subs:NG ¼ lim
z1→0

T
2πα0

�
Re2Aðz0ðRÞÞ − R0e2Aðz0ðR0ÞÞ

þ 2

Z
z0ðRÞ

z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4AðzÞ − e4Aðz0ðRÞÞ

p
dz

− 2

Z
z0ðR0Þ

z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4AðzÞ − e4Aðz0ðR0ÞÞ

p
dz

�
;

and this expression is finite. This can be seen by noting
that the integrands of the two last terms have the same
singularity for z → 0, with the same coefficient. Therefore
they cancel leading to a finite expression.
For the case of confining wrap factors, i.e., when e2AðzÞ has

a minimum at a finite value of z, it leads to a linear potential
between static quarks, with a string tension given by5

e2Aðz0ðRÞÞ that does not depend on the substraction point
R0. In addition, there are constant terms that do depend on the
substraction point. This can be seen explicitly using (3.9).

B. The substracted circular loop

The result for the regularized NG action is

SNGða; w1Þ ¼
L2

α0

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

1

p
w1

− 1

�
þ
X∞
n¼1

s2nðw1Þa2n
�
;

where the coefficients s2nðw1Þ are given in Appendix A.
Replacing the relation w1 ¼ z1

a in this last relation leads to

SNGða; z1Þ ¼
L2

α0

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

z21

s
− 1þ

X∞
n¼1

s2n

�
z1
a

�
a2n
!

and replacing in (5.1) leads to

SC;subs:NG ¼ lim
z1→0

L2

α0

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

z21

s
− 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

z21

s
þ 1 − ða − a0Þ

z1
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

1

a2

q
!

þ
X∞
n¼1

�
s2n

�
z1
a

�
a2n − s2n

�
z1
a0

�
a02n

�

¼ L2

α0

�
−δa0;0 þ

X∞
n¼1

ðs2nð0Þa2n − s2nð0Þa02nÞ
�
:

This expression shows that the substracted action is finite
and that only the constant term independent of a depends
on the substraction point a0.
It is remarked that for the circular loop the substracted

action presented in this work coincides with the one given
in [16] up to terms proportional to the perimeter. The
important difference between both is that the last procedure
is given in terms of the particular regularization chosen in
that work. This is not the case for the one given here since it
does not depend on the regularization employed.

VI. COMPARISON WITH OTHER
COMPUTATIONS

In this section the computations done above are com-
pared with the analogous ones computed using the
ϵ-scheme. This is particularly relevant since, although
the results coincide for the case of the rectangular loop,
this is not the case for the circular loop. The result for the
expansion coefficients s2n of the substracted NG action in
powers of the radius a for the HJ scheme and6 ~a for the
ϵ-scheme for the case of the circular loop do not coincide

between both schemes in the limit z1 → 0. he source of
this discrepancy is analyzed below. In order to do this it is
necessary to consider the process of regularization/sub-
straction involved in the ϵ-scheme. The ϵ-regularization
scheme is depicted in Fig. 3.
For the nonconformal case this scheme is considered in

[15]. It consists in considering the solution of the minimiz-
ing equations (4.2) for a surface whose boundary is located
at z ¼ 0. The area of such a surface is divergent. This is
regularized by computing another area that corresponds to
integrating the same integrand up to a value of the border
coordinate orthogonal to this boundary an amount ϵ less7

than the one of the boundary located at z ¼ 0. This area is
grayed in Fig. 3. This approach can be alternatively
obtained by considering the solution to the equation of
motion (4.2) with the boundary conditions (4.3) and taking
the limit z1 → 0 in the integrand of the NG action. This last
approach was employed in [16]. In the subsections appear-
ing below the two schemes are analyzed in detail for both
the rectangular and the circular loops.

5For these wrap factors the minimum of the potential coincides
with z0, the maximum value of z attained by the surface. In other
words, the minimal surface sticks to the minimum of e2AðzÞ in
order to minimize its area.

6 ~a denotes the radius of the contour at the border z ¼ 0.

7In Ref. [15], for the case of the circular loop of radius ~a at
z ¼ 0, the ϵ employed in this work is written as ϵ ¼
~a −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 − z21

p
¼z1→0 z2

1

2~a. This relation between ϵ and z1, is the
one that would correspond if the minimal surface would be the
AdS one. The z1 in this work is called ϵ in Ref. [15].
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A. The rectangular loop

The solution to the equations of motion for this case can
be obtained by noting that the Hamiltonian corresponding
to the Lagrangian appearing in (3.1) is a constant of motion
E, given by

E ¼ −
e2Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z0ðxÞ2
p ;

where the 0 indicates the derivative with respect to x. This
leads to the following linear ordinary differential equation:

z0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4A

E2
− 1

r

from which it is simple to obtain x as a function of z,

xðzÞ ¼ a −
Z

z

z1

dz
Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e4A − E2
p : ð6:1Þ

This solution satisfies the boundary condition xðz1Þ ¼ a,
and therefore corresponds to a pair of static quarks located
at z ¼ z1 and separated a distance 2a. The relation between
z1, z0, E, and a can be obtained using that by definition
xðz0Þ ¼ 0, leading to

a ¼
Z

z0

z1

dz
Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e4A − E2
p : ð6:2Þ

In order to insert this solution in the Nambu-Goto action
it is convenient to consider an alternative embedding of the
same surface in the five-dimensional space. In this embed-
ding one considers x as a function of z. It is given by

x1 ¼ t; t ∈
�
−
T
2
;
T
2

�
;

xi ¼ x ¼ xðzÞ; x ∈ ½−a; a�;
xk ¼ 0; ∀k ≠ i;

x5 ¼ z:

The NG action is given in terms of this embedding by

SNG ¼ 1

2πα0

Z T
2

−T
2

dt
Z

z0

z1

dze2AðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x0ðzÞ2

q
; ð6:3Þ

where now the 0 indicates the derivative with respect to z, z1
is the location of the loop contour, and z0 is the maximum
value of z attained by the minimal surface. Evaluation of the
NG action in the solution of the equations of motion amounts
to replace (6.1) in (6.3). The integrand in (6.3) is independent
of z1, because x0ðzÞ is independent of z1 as implied by (6.1).
The lower integration limit is common to the HJ and the
ϵ-regularization. The upper limit of integration is to be
determined as a function of a and z1 by means of (6.2). For
the ϵ-regularization this amounts to take z1 → 0 in (6.2). The
function z0ða; z1Þ just gives the maximum of the minimal
surface, and this function has no singularities for any value
of z1 ≥ 0. Therefore taking the limit z1 → 0 before or after
the integration makes no difference. Thus the result for the
substracted NG action is the same for both schemes.

B. Circular loop

The results for the expansion coefficients s2n of the NG
action in powers of the radius a for the case of the circular
loop are shown in Table I. The first column corresponds to
the results computed with the HJ scheme. The second
column corresponds to the results computed in [16] using
the ϵ-scheme and taking the radius of the contour at the
border as the expansion parameter. The first two rows in
column ϵ also coincide with the results in [15], which takes
αn ¼ δn2α2. In the ϵ-computation the loop is located at
z ¼ 0. These two approaches were considered in [17] for
the case of the supersymmetric conformal theory. There it is
shown that in the AdS case for smooth surfaces both
regularizations lead to the same results, except with respect
to zigzag symmetry. The HJ regularization respects this
symmetry but the ϵ-regularization does not.

TABLE I. Results for the expansion coefficients of the NG action for the circular loop in powers of the radius a.
The results for s6, s8, and s10 are given taking α2 ¼ 0.

s2n HJ ϵ

s2 2α2
10
3
α2

s4 2
3
ð17 − 24 log 2Þα22 þ 2

3
α4

14
9
ð17 − 24 log 2Þα22 þ 14

9
α4

s6 2
5
α6

3
5
α6

s8 2
945

ð2111 − 3360 log 2Þα24 þ 2
7
α8

11
5670

½ð2111 − 3360 log 2Þα24 þ 270α8�
s10 4

1575
ð2999 − 5040 log 2Þα4α6 þ 2

9
α10

13
4725

½ð2999 − 5040 log 2Þα4α6 þ 175α10�

FIG. 3. The ϵ regularization.
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Below it is shown that for a particular choice of
βn coefficients, which can be exactly solved, the
ϵ-regularization leads to a wrong result if the radius ~a
corresponding to the intersection of the minimal surface with
the plane z ¼ 0 is employed as the expansion parameter. For
the case of the HJ regularization the radius a of the border of
the grayed area in Fig. 3 is the expansion parameter. In this
respect it is worth noting that the radius a is intrinsic to the
geometrical problem to be considered. This is so because a is
the radius of the border of the minimal surface whose area is
computed. In contrast, ~a is a quantity that is related to the
way one chooses to regularize in the ϵ-scheme the calcu-
lation of this area.8 It is also important to recall that the
substraction considered in Sec. V is given in terms of the
radius of the border of the minimal surface whose area is to
be computed, and this radius is a and not ~a. Indeed, at that
level, ~a is not even defined since the substraction should not
depend on the regularization employed.
In addition, it is also shown that if instead of taking the

limit z1 → 0 in the integrand (which corresponds to the
ϵ-regularization), terms up to order Oðz31Þ are kept, then
the results also coincide with the HJ approach.

1. For solvable case ϵ-scheme gives wrong result

In the following it is shown that for a particular choice
of the β-coefficients the NG action for the circular loop
can be calculated without approximations. This choice
corresponds to taking

βn ¼ β2δn2:

The above assertion can readily be understood since this
case corresponds to a warp factor that leads to a flat metric;
indeed in such a case,

e2AðzÞ ¼ 1

z2
β2z2 ¼ β2 ⇒ A0ðzÞ ¼ 0;

the solution of the equation of motion (4.2) in this case is

z0ðrÞ ¼ 0:

Therefore the on-shell NG action has no divergences and is
given by

SNG ¼ 1

α0

Z
a

0

drre2AðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0ðrÞ2

q

¼ 1

α0

Z
a

0

drre2AðzÞ ¼ 1

α0

Z
a

0

drrβ2

¼ 1

α0
β2
2
a2 ¼ 1

α0
2α2a2:

This result coincides with the one obtained using the HJ
scheme and not with the one corresponding to the

ϵ-scheme. Thus showing that at least in this case the
ϵ-scheme, using the radius ~a as the expansion parameter,
gives a wrong answer.

2. Using a as expansion parameter in the ϵ-scheme
gives the same results as the HJ scheme

Both regularizations are directly related to one another.
Indeed, both are solutions of the same minimizing equa-
tions with different boundary conditions. It is therefore
geometrically clear that there should exist a value of ϵ and a
location of the contour at z ¼ 0, such that a line parallel to
the z axis should intersect the minimization surface at
z ¼ z1. This is shown in Fig. 3. If the radius of the circular
loop located at z ¼ 0 in the ϵ-regularization is denoted by ~a,
which implies that

zð ~aÞ ¼ 0; ð6:4Þ
then the radius a is defined as the one that corresponds to
the circle that intersects the minimal surface at z ¼ z1, i.e.,

zðaÞ ¼ z1: ð6:5Þ
The discrepancy between both computations appears when
the expansion parameter in the ϵ-scheme is taken to be ~a.
Although in the cutoff limit (ϵ → 0, z1 → 0) both values
coincide (limϵ→0 ~a ¼ a), it is not the same to take the limit
before or after doing the integration. This is so because the
integration limit depends on ϵ or equivalently on z1. The
important point is that if one replaces ~a in terms of a and z1,
in the expansion of the integrand of the NG action in powers
of ~a, then upon integration the HJ result for the coefficients of
the expansion of the NG action in powers of a are obtained.
The relation between ~a and a can be obtained in the

following way. First it is noted that for the case of interest
z1 ≪ a, and therefore it is adequate to express ~a as a series in
powers of z1. The coefficients of this series can be obtained
by taking the solution of the equations of motion (4.2) with
the boundary condition (6.4) and solving Eq. (6.5). This
leads to the following expression of ~a in terms of a:

~a ¼ aþ z21
2a

þ 4

3
α2z31 þOðz41Þ:

3. Expanding the integrand up to Oðz31Þ gives the
same results as the HJ scheme

The results for the HJ regularization can be computed
either by the HJ approach or by solving the differential
equation and replacing the solution in the NG action. Both
methods lead to the same results. In the second approach
there appear terms in the integrand that go to zero when
z1 → 0 but survive after integration. These terms are
responsible for the discrepancy with the ϵ-regularization
which, as mentioned before, is equivalent to taking the limit
z1 → 0 in the integrand before performing the integral. In
Appendix B a concrete example is considered which shows
how these terms arise for the case of the coefficient s2.

8In mathematical terms, ~a is a quantity dependent on the way
the loop contour is embedded in five-dimensional space, and
therefore is not intrinsic to the geometry of the surface under
consideration.
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VII. CONCLUDING REMARKS

In this work the HJ approach has been employed for
the calculation of minimal areas on asymptotically AdS
spaces. These calculations are relevant, from the holo-
graphic point of view, in obtaining expectation values
of Wilson loops in the gauge theory living at the border
of these spaces. These expectation values are related to the
phenomenologically relevant condensates of the gauge
theory [16]. In this respect it is worth noting the following:

(i) This approach directly calculates the minimal area
without need to solve the equations of motion and
replace the solution in the NG action. This makes the
calculation more direct and in practice much simpler.
In this respect it is noteworthy that for the cases
considered at the end of Sec. IV B, the expansion
coefficients of SNG can be exactly computed.

This calculation is not obvious from the point of
view of solving the equations of motion.

(ii) In this approach variations of the on-shell classical
action under changes in its boundary conditions are
studied. The location of the loop contour is one of
these conditions. Therefore the HJ-approach also
leads to a natural regularization, which consists in
moving the location of the contour out of the border.

(iii) Regarding the issue of regularization schemes it
was shown that different schemes lead to different
results. For the AdS case if one requires zigzag
symmetry to be respected then, as shown in [17], the
HJ scheme should be chosen. In addition, it is
shown that for certain solvable non-AdS cases the
ϵ-regularization leads to wrong results if the radius ~a
of the contour at the border is employed as the
expansion parameter. That parameter is regulariza-
tion dependent and geometrically nonintrinsic.

APPENDIX A: THE FIRST TERMS IN THE EXPANSION IN POWERS OF THE RADIUS

Cð2ÞðxÞ ¼ −
β2
x2

;

s2ðw1Þ ¼ −w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

1

q
β2
2
þ β2

2
ð1þ w2

1Þ ¼w1→0 β2
2
¼ 2α2;

Cð4ÞðxÞ ¼ ð1þ x2Þs02ðxÞ2 − 4xs02ðxÞs2ðxÞ þ 4s2ðxÞ2 − β4;

s4ðw1Þ ¼
1

24

�
4β4 þ 4β4ð2þ w2

1Þw2
1 − 4β4w3

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q
þ 3β22

�
w2
1

�
9w2

1 − 9w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q
þ 14

	
− 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q
þ 5w1

�

þ12β22ð1þ w2
1Þ2½2 arcsinðw1Þ − log ð1þ w2

1Þ − logð4Þ�



¼w1→0 β4
6
þ β22

�
5

8
− logð2Þ

�
¼ 2

3
α4 þ

1

3
α22ð34 − 24 logð4ÞÞ;

Cð6ÞðxÞ ¼ 2ð1þ x2Þs02ðxÞs04ðxÞ − 8xs4ðxÞs02ðxÞ − 4xs2ðxÞs04ðxÞ þ 16s2ðxÞs4ðxÞ − β6x2;

s6ðw1Þ ¼ −
1

48
ð1þ w2

1Þ3
�
−
24

5
β6 − 24β32log

2ð4Þ þ 3β32½36 logð4Þ − 73� þ 4

3
β2β4½24 logð4Þ − 59�

−
8ð3β22 þ β4Þβ2
ð1þ w2

1Þ2
þ 204β32 þ 48β2β4

1þ w2
1

− 24β32log
2ð1þ w2

1Þ − 96β32 logð2Þ log ð1þ w2
1Þ

þ 4ð27β32 þ 8β2β4Þ log ð1þ w2
1Þ þ

192β32w1 arcsinðw1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

1

p þ 96β32 arcsinðw1Þ
1þ w2

1

−
48β32 log ð4þ 4w2

1Þð1þ 2w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

1

p
− 2ð1þ w2

1Þ arcsinðw1ÞÞ
w2
1 þ 1

− 96β32arcsin
2ðw1Þ − 216β32 arcsinðw1Þ − 64β2β4 arcsinðw1Þ

þw1

72β6w4
1 þ 45β32ð73w4

1 þ 112w2
1 þ 40Þ þ 20β2β4ð59w4

1 þ 104w2
1 þ 48Þ

15ð1þ w2
1Þ5=2




¼w1→0 β6
10

þ 1

48
β32ð39þ 8 logð2Þðlogð4096Þ − 15ÞÞ þ 1

36
β4β2ð29 − 48 logð2ÞÞ

¼ 2

5
α6 þ

1

45
ð4α32ð887þ 120 logð2Þðlogð4096Þ − 19ÞÞ þ 4α4α2ð163 − 240 logð2ÞÞÞ:
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In addition, assuming β2 ¼ 0, it is possible to compute up to s10, and the results are

s8ðw1Þ ¼ ðw2
1 þ 1Þ4

�
β8
14

þ β24

�
623

1080
−
4 logð2Þ

9

��

þ 1

7560
β24ð−2520 − 8400w2

1 − 9240w4
1 − 3360w6

1 − 3360w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q
− 10640w3

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q
− 11536w5

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q
− 4361w7

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q
þ −1680ðw2

1 þ 1Þ4 log ðw2
1 þ 1Þ þ 3360ðw2

1 þ 1Þ4sinh−1ðw1ÞÞ −
540

7560
β8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q
w7
1

¼w1→0 β8
14

þ β24
ð1841 − 3360 logð2ÞÞ

7560
¼ 2α8

7
þ α24

�
4222

945
−
64 logð2Þ

9

�
;

s10ðw1Þ ¼
1

6300
ðw2

1 þ 1Þ5ð7199 − 2520 logð4Þ þ 315ð16sinh−1ðw1Þ

þ 1

315

�
−
420ð15w4

1 þ 24w2
1 þ 10Þ

ðw2
1 þ 1Þ3 −

1

ðw2
1 þ 1Þ9=2 w1ð21000w2

1 þ 5040

þ 7199w8
1 þ 24048w6

1 þ 33264w4
1Þ − 2520 log ðw2

1 þ 1Þ
�
β4β6

þ 1

18
ðβ10 − β4β6Þðw2

1 þ 1Þ5 − 1

18
ðβ10 − β4β6Þw9

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q

¼w1→0 β10
18

−
β4β6ð840 logð4Þ − 883Þ

2100
¼ 2α10

9
þ 4α4α6ð2999 − 2520 logð4ÞÞ

1575
:

These coefficients can be written in terms of the α’s appearing in (2.3) by means of the following relations:

β2 ¼ 4α2; β4 ¼ 4α4 þ 8α22; β6 ¼ 4α6 þ 16α4α2 þ
32

3
α32;

β8 ¼α2→0
4α8 þ 8α24; β10 ¼α2→0

4α10 þ 16α4α6;

which can be obtained by equating the coefficients in the series expansion of (4.16).

APPENDIX B: THE DIFFERENCE BETWEEN THE z1-REGULARIZATION
AND THE ϵ-REGULARIZATION

In terms of the variables,

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
z1
a

�
2

−
�
r
a

�
2

s
; ψðtÞ ¼

�
z
a

�
2

;

the NG action is

SNG ¼ L2

α0

Z ffiffiffiffiffiffiffiffi
1þw2

1

p

w1

e2ða2α2ψþa4α4ψ2Þt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ð1þw2

1
−t2Þψ 0ðtÞ2

t2ψðtÞ

q
2ψðtÞ dt: ðB1Þ

The solution to the equation of motion with the boundary conditions,

ψðw1Þ ¼ w2
1 ≡ ðzðaÞ ¼ z1Þ; ψ 0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

1

q 	
¼ 0; ≡ðz0ð0Þ ¼ 0Þ;

up to order a2 is given by
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ψðtÞ ¼ t2 − 4a2α2ðw2
1 þ 1Þ

�
ðw2

1 þ 1Þ log ð−t2 þ w2
1 þ 1Þ þ ðw1 − tÞ

�
−tþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q
− w1

�

þ 2ðw2
1 þ 1Þtanh−1

�
tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
1 þ 1

p �
− 2ðw2

1 þ 1Þsinh−1ðw1Þ
�
;

and replacing in (B1) gives the following expression for the integrand up to order a2:

Iðw1; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

1

p
t2

þ a2
2α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

p
t4

�
2t4 þ 4t2w2

1 − 2t2w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q
− t2w2

1 log ð−t2 þ w2
1 þ 1Þ − t2 log ð−t2 þ w2

1 þ 1Þ

þ 6w2
1 log ð−t2 þ w2

1 þ 1Þþ3 log ð−t2 þ w2
1 þ 1Þ þ 2ðw2

1 þ 1Þðt2 − 3ðw2
1 þ 1ÞÞsinh−1ðw1Þ

− 2ðw2
1 þ 1Þðt2 − 3w2

1 − 3Þtanh−1
�

tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

p �
þ 3w4

1 log ð−t2 þ w2
1 þ 1Þ

þ 3t2 − 6tw2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q
− 6t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q
− 3w4

1 − 3w2
1 þ 6w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q
þ 6w3

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ 1

q �
:

The last term in this integrand is proportional to w3
1=t

4, which vanish when w1 → 0. However, integrating and then taking
the limit, they lead to a nonvanishing result,

Z ffiffiffiffiffiffiffiffi
1þw2

1

p

w1

dt
w3
1

t4
¼ −

1

3

w3
1

t3

����
ffiffiffiffiffiffiffiffi
1þw2

1

p

w1

¼w1→0 1

3
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