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DNA methylation is an indispensible epigenetic modification

required for regulating the expression of mammalian genomes.

Immunoprecipitation-based methods for DNA methylome

analysis are rapidly shifting the bottleneck in this field from

data generation to data analysis, necessitating the

development of better analytical tools. In particular, an in-

ability to estimate absolute methylation levels remains a major

analytical difficulty associated with immunoprecipitation-

based DNA methylation profiling. To address this issue, we

developed a cross-platform algorithm—Bayesian tool for

methylation analysis (Batman)—for analyzing methylated

DNA immunoprecipitation (MeDIP) profiles generated using

oligonucleotide arrays (MeDIP-chip) or next-generation

sequencing (MeDIP-seq). We developed the latter approach

to provide a high-resolution whole-genome DNA methylation

profile (DNA methylome) of a mammalian genome. Strong

correlation of our data, obtained using mature human

spermatozoa, with those obtained using bisulfite sequencing

suggest that combining MeDIP-seq or MeDIP-chip with

Batman provides a robust, quantitative and cost-effective

functional genomic strategy for elucidating the function of

DNA methylation.

Modulation of the epigenome—the combination of DNA- and
chromatin-associated epigenetic modifications that exist within a
cell—is one of the key mechanisms by which cells generate functional
diversity from an essentially static genome1. The epigenome is a
dynamic entity influenced by predetermined genetic programs or
external environmental cues. Given the diversity of cell types within

complex organisms such as mammals, it is staggering to think of how
many epigenomes exist, or are possible, and unraveling this complex-
ity remains an important challenge.

DNA methylation is the only known epigenetic system that modi-
fies the DNA molecule itself. In mammals, it occurs predominantly at
CpG dinucleotides and is involved in diverse processes such as
development, genomic integrity, X-inactivation and imprinting2.
Furthermore, perturbed DNA methyation is a hallmark of several
human diseases, including cancer. Consequently, there is great interest
in experimental and analytical tools for genome-wide (that is, a
limited number of genomic sites that are representative of the
genome) or whole-genome DNA methylation profiling. In the last
few years, a variety of experimental approaches have emerged for
genome-wide, and very recently whole-genome, DNA methylation
profiling (reviewed in ref. 3). These can be classified into three main
categories. The first of these, restriction enzyme–based methods, uses
one or more enzymes that restrict DNA only if it is unmethylated (e.g.,
HpaII or NotI) or methylated (e.g., McrBC). These methods, coupled
with either microarrays4–10 or capillary sequencing11, have been
applied to genome-wide DNA methylation profiling of several organ-
isms but are limited to the analysis of CpG sites located within the
enzyme recognition site(s). The second group of techniques is based
on the reaction between genomic DNA and sodium bisulfite, which
converts unmethylated cytosines to uracil (and eventually thymine
following amplification), while leaving methylated cytosines uncon-
verted12. Bisulfite conversion–based approaches offer single CpG
resolution and have been applied to microarrays13–16, high-through-
put PCR sequencing17,18 and, more recently, to next-generation
bisulfite sequencing (BS-seq)19, resulting in an almost complete
DNA methylation profile (DNA methylome) for the B120-Mb
genome of Arabidopsis thaliana. However, the reduction of sequence
complexity following bisulfite conversion means that it is difficult to
design enough unique probes to analyze bisulfite-converted DNA
comprehensively on a genome-wide scale on microarrays, whereas
the BS-seq approach is currently prohibitively expensive for the
routine analysis of large genomes such as human. Methods of the
third class use either 5-methylcytosine-specific antibodies (methylated
DNA immunoprecipitation20, MeDIP or mDIP21) or methyl-binding
domain proteins22–24 to enrich for the methylated (or unmethylated25)
fraction of the genome by immunopreciptation. MeDIP/mDIP, com-
bined with microarrays (MeDIP-chip), was used to delineate the first
high-resolution whole-genome DNA methylation profile of anyPublished online 8 July 2008; doi:10.1038/nbt1414
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genome (Arabidopsis22,26) and the first high-
resolution DNA methylation profile of
human promoters27. However, until now, it
has not been possible to estimate absolute
methylation levels from MeDIP, and analysis
of regions with low CpG density has been
assumed to be problematic27.

Although no single experimental method
offers the ‘perfect solution’, MeDIP-chip has
quickly become a widely used20–22,26–31 and
cost-effective approach for genome-wide and/
or whole-genome DNA methylation analysis.
Here, we report the development of a cross-
platform algorithm—Batman—that can esti-
mate absolute DNA methylation levels, across
a wide range of CpG densities, from MeDIP-
based experiments. We first demonstrate Bat-
man’s performance on MeDIP-chip, and then
show it can also be used to analyze MeDIP profiles generated from
next-generation sequencing—a technique we called MeDIP-seq,
described here. Our MeDIP-seq data represent a high-resolution
whole-genome DNA methylation profile of a mammalian genome,
which to our knowledge has not been done before. Batman is a cross-
platform analytical tool for data generated from microarrays or
next-generation sequencing and will aid future studies aiming to
understand the role of DNA methylation in the wider context of
the epigenome.

RESULTS

Generation of human genome-wide MeDIP-chip data

MeDIP was performed on three biological replicates of mature
spermatozoa from normal human donors (Supplementary Table 1
online) using a modified version of the original MeDIP protocol20

(Supplementary Figs. 1 and 2 online). Human spermatozoa are
relatively homogenous, easily obtained and of interest from the
point of view of understanding the role of DNA methylation during
gametogenesis, fertilization and early embryogenesis. After MeDIP,
samples were hybridized to custom high-density oligonucleotide
microarrays (Nimblegen Systems) that contained 42,144 regions
of interest (ROIs), each typically 500–1,000 bp in length, containing
5–10 unique 50-mer probes. The ROIs overlapped 82% of all known
transcriptional start sites (TSSs), 72% of nonpromoter CpG islands
and a number of exonic, intronic and intergenic regions in the human
genome (Ensembl genome browser32, Homo sapiens release 45.36 g,
NCBI36). The correlation coeffecients (Pearson’s) ranged from 0.54 to
0.72 among the three biological replicates and 0.82 between a pair of
technical replicates (dye swaps), suggesting our MeDIP-chip experi-
ments were reproducible.

Bayesian tool for methylation analysis (Batman)

The efficiency of immunoprecipitation in MeDIP depends on the
density of methylated CpG sites, which vary greatly within any given
mammalian genome, making it difficult to distinguish variations in
enrichment from confounding CpG density effects27. Consequently,
until now, it has been impossible to estimate absolute methylation
levels from MeDIP experiments, and the analysis of CpG-poor regions,
in particular, has been assumed to be difficult27. Therefore, to analyze
our MeDIP-chip data, we developed a new algorithm that models the
effect of varying densities of methylated CpGs on MeDIP enrichment.
This transforms normalized MeDIP-chip log2-ratios into a quantita-
tive measure of DNA methylation across a wide range of CpG

densities. Our algorithm, Batman, is implemented as a suite of
Java scripts (freely available from http://td-blade.gurdon.cam.ac.uk/
software/batman/ under the GNU Lesser General Public License).

Batman relies on the knowledge that almost all DNA methylation in
mammals occurs at CpG dinucleotides and, consequently, generates
methylation estimates in this context only. We define the coupling
factor, Ccp, between probe p and CpG dinucleotide c as the fraction of
DNA molecules hybridizing to probe p that contain the CpG c. As we
know the approximate range of DNA fragment sizes used in the
MeDIP experiment (typically 400–700 bp) and assume that there are
no fragment-length biases, this is simply a function of the distance
between the probe’s genomic location and the CpG dinucleotide. This
can be estimated empirically by sampling from the fragment-length
distribution and randomly placing each fragment such that it overlaps
the probe. The resulting distribution is shown in Figure 1a. For a
given probe, the sum of coupling factors, which we call Ctot, gives a
measure of local CpG density. Plotting this parameter against the
normalized log2-ratios from a typical MeDIP-chip experiment shows a
fairly complex relationship (Fig. 1b). However, consistent with the fact
that most CpG-poor regions are methylated, whereas the regions
richest in CpG motifs (CpG islands) are generally unmethylated,
focusing on the low-CpG portion of this plot reveals an approximately
linear relationship between the MeDIP-chip output and the density of
methylated CpGs as measured by Ctot. Based on this observation, and
assuming that only methylated CpGs contribute to the observed
signal, we developed a model whereby the signal observed at each
array probe should depend on the methylation states of all nearby
CpGs, weighted by the coupling factors between those CpGs and the
probe. If we let mc indicate the methylation state at position c, and
assume that the errors on the microarray are normally distributed with
precision, then we can write a probability distribution for a complete
set of array observations, A, given a set of methylation states, m, as:

fðAjmÞ ¼
Y

p

GðApjAbase + r
X

c

Ccpmc; n�1Þ

where G (x|m, s2) is a Gaussian probability density function. We can
now use any standard Bayesian inference approach to find f(m|A), the
posterior distribution of the methylation state parameters given the
array (MeDIP-chip) data, and thus generate quantitative methylation
profile information.

To reduce the computational cost of analyzing regions with very
high CpG density, we took advantage of the fact that CpG methylation
state is generally very highly correlated over a scale of hundreds of
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Figure 1 Calibration of the Batman model against MeDIP-chip data. (a) Estimated CpG coupling

factors for a MeDIP-chip experiment as a function of the distance between a CpG dinucleotide and a

microarray probe. (b) Plot of array signal against total CpG coupling factor, showing a linear regression

fit to the low-CpG portion, as used in the Batman calibration step. This plot shows all data from one

array on chromosome 6.
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bases18. Instead of modeling every CpG individually, we grouped
together all CpGs in 50- or 100-bp windows and assumed that they
would have the same methylation state. Inferring the methylation
status at each CpG is now a deconvolution problem somewhat
analogous to that considered when analyzing chromatin immunopre-
cipitation data33. Standard Bayesian techniques can be used to infer
f(m|A), that is, the distribution of likely methylation states given one
or more sets of MeDIP-chip outputs. Our implementation of the
Batman model uses nested sampling (http://www.inference.phy.cam.
ac.uk/bayesys/), a highly robust Monte Carlo technique, to solve this
inference problem. For each tiled region of the genome, we used a
nested sampler–based approach to generate 100 independent samples
from f(m|A). We then summarized the most likely methylation state in
100-bp windows by fitting beta distributions to these samples. The
modes of the most likely beta distributions were used as our final
methylation calls.

We assessed Batman’s quantitative performance by comparing the
Batman-analyzed MeDIP-chip data with bisulfite-PCR sequencing, a
technique that allows DNA methylation measurements at individual
CpG sites. We considered 667 bisulifte-PCR amplicons (spanning a
wide range of CpG densities) from the Human Epigenome Project
(HEP)18 that overlapped 1,481 50-mer probes in our microarray. The
HEP bisulifte-PCR amplicons were generated from sperm samples
different from those used in our MeDIP-chip experiments. Figure 2a
shows a different version of the Batman calibration plot in which the

MeDIP-chip log2-ratios have been colored according to HEP methyla-
tion levels, confirming that the calibration system we use provides a
very good fit to the methylated section of the data. Figure 2b shows
how Batman transforms LOESS-normalized log2-ratios into more
quantitative results (R2 ¼ 0.82, Pearson’s) by increasing the dynamic
range in low-CpG regions (although some noise still remains in this
region). This is a significant improvement over using (i) LOESS-
normalized log2-ratios (in a 100-bp window centered around a
50-mer) probe that overlaps a HEP amplicon, (R2 ¼ 0.46, Pearson’s
correlation coefficient)), (ii) simple averaging of the LOESS-normal-
ized log2-ratios for all probes within a 500-bp window (R2 ¼ 0.55,
Pearson’s correlation coefficient) or (iii) averaging of the LOESS-
normalized log2-ratios for all probes within a 500-bp window and
then dividing by the number of CpG sites within that window (R2 ¼
0.50, Pearson’s correlation coefficient). There are two likely explana-
tions for the poor performance of the last method: firstly, as it isn’t a
Bayesian method, there is no propagation of uncertainty (conse-
quently noise in low-CpG regions is amplified), and secondly, the
CpG influence is not necessarily the same for all probes in a 500-bp
window. Batman addresses both of these issues. It is important to note
that, in addition to estimating methylation levels in CpG-poor
regions, Batman also effectively estimates methylation levels in CpG-
dense methylated regions. Of the 667 bisulfite-PCR amplicons men-
tioned above, 15 are classified as CpG islands in the Ensembl genome
browser and display 480% methylation in the HEP. Batman
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Figure 2 Comparison of Batman-analyzed MeDIP-chip data with bisulfite-PCR sequencing data from the Human Epigenome Project. (a) Plot of MeDIP-chip

data against CpG coupling factor, with points colored by methylation values from the HEP bisulfite-sequencing data. All probes that did not overlap with at

least one CpG annotated in HEP were excluded. (b) Comparisons of MeDIP-chip data with those of HEP using a range of processing strategies: LOESS-

normalized log2-ratios in a 100-bp window centered around a 50-mer probe that overlaps a HEP amplicon (top left), simple averaging of the LOESS-

normalized log2-ratios for all probes within a 500-bp window (top right), averaging of the LOESS-normalized log2-ratios for all probes within a 500-bp

window and then dividing by the observed/expected CpG density (bottom left), Batman analyzed (bottom right). This analysis was derived from 1,481

MeDIP-chip probes that overlapped 667 bisulfite-PCR amplicons from the HEP. HEP methylation values for all CpGs that overlapped any given 100-bp

MeDIP-chip window were averaged. Furthermore, to reduce noise in the HEP data set, all 100-bp windows were required to have at least two HEP scores

(that is, data from the top and bottom bisulfite-PCR strands for windows containing a single CpG site, or from at least two different CpG sites) that

differed by o50%. The purple-yellow (0–30) color bar shows the total CpG coupling factor for each probe. (c) Comparison of Batman-quantified MeDIP

data with bisulfite data from HEP. Points show the mean Batman output for regions with a given HEP methylation level. Error bars show 95% bootstrap
credible intervals.
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identified all 15 as being heavily methylated
(81–100% methylation, Supplementary
Table 2 online). We further validated the
Batman analysis by bisulfite-PCR sequencing
of the same sperm samples used for MeDIP-
chip. We selected 29 ROIs spanning a range
of CpG densities and again observed a very
good correlation (R2 ¼ 0.85, Supplementary
Fig. 3 and Supplementary Table 3 online).

We also tested Batman’s performance on
an independently generated MeDIP-chip data
set27. Weber et al. (2007) analyzed MeDIP
profiles of B16,000 promoters in human
WI38 primary lung fibroblasts using high-
density oligonucleotide arrays. We applied
Batman to their MeDIP-chip data and
analyzed promoters for which they also gen-
erated bisulfite-sequencing data (Supplemen-
tary Fig. 4 online). Batman was able to estimate absolute methylation
levels over a wide range of CpG densities including low CpG density
promoters (or LCPs27, CpGo/e B0.2).

As there is still a degree of noise in the Batman results, we also show
the mean Batman score for all regions with a given bisulfite methyla-
tion state (Fig. 2c), demonstrating Batman’s output correlates almost
linearly with the bisulfite results. It should be noted that Batman rarely
outputs very extreme values (close to 0% or 100%) from MeDIP-chip
data. This is a consequence of the Bayesian approach taken by Batman:
each methylation call is associated with some degree of uncertainty, as
represented by a credible interval. As methylation levels o0% or
4100% are meaningless, the entire credible interval must fit within a
0–100% scale. This means that the most credible estimates of
methylation state are displaced away from the extremes. In principle,
it would be possible to correct for this ‘compression‘ artifact by
reading values off a curve (Fig. 2c). However, this transformation
would complicate any consideration of the uncertainties attached to
each methylation estimate. As we do not find the compression to be a
major problem when working with MeDIP-chip data, we report the
output of the Bayesian model directly.

A human methylome generated using MeDIP-seq

Recently, next-generation sequencing technologies have emerged as
powerful tools for whole-genome profiling of epigenetic modifica-
tions. They have been combined with chromatin immunoprecipita-
tion (ChIP-Seq)34,35 for the analysis of histone modifications in
human and mouse and with bisulfite sequencing (BS-seq19) to
elucidate the DNA methylation profile of the 120-Mb Arabidopsis

genome. Inspired by these approaches, we combined MeDIP with
next-generation sequencing—an approach we term MeDIP-seq—to
generate a high-resolution whole-genome DNA methylation profile
(DNA methylome) of a mammalian genome and show that Batman
can also be used to estimate absolute DNA methylation levels from
MeDIP-seq DNA methylome data.

We performed a second MeDIP on one of the sperm samples
used in our MeDIP-chip experiments (sample SP3, Supplementary
Table 1). The immunoprecipitated fraction was then subjected to
next-generation sequencing using an Illumina Genome Analyzer. We
obtained B34.2 million single- and B12 million paired-end reads
that were mapped to the human genome using the Maq software
(http://maq.sf.net/ and Li et al., data not shown). Only high-quality
read placements (Maq quality Z 10) were used, resulting in a total of
B26.5 million reads meeting this criterion. To maximize coverage,
given the relatively short reads generated by the Illumina Genome
Analyzer, we performed a smoothing step on the data by extending
each paired-end read to a constant length of 500 bp and representing
each singleton read as a 500-bp block centered around the single read’s
mapping position. We do not expect this step to be necessary if longer
fragments are selected.

Assessment of the mapping quality revealed a degree of nonuni-
formity. For instance, there is a secondary peak of windows with
extremely low mapping quality (o10% of reads map with q Z 10)
(Fig. 3a). Many of these windows occur in large (megabase-scale)
blocks. Investigation of representative examples suggests that they
correspond with known duplications/structural variations in the
human genome32 (data not shown). We chose to mask out these
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Figure 4 Comparison of Batman-analyzed

MeDIP-seq data with bisulfite-PCR sequencing

data from the Human Epigenome Project.

(a) MeDIP-seq read depth (that is, the number

of confidently placed reads overlapping a given

point in the genome) for points overlapping HEP

amplicons, plotted against total CpG coupling

factor. Points are colored according to sperm

DNA methylation (yellow-blue represents

0–100% methylation), as measured in HEP16.

(b) MeDIP-seq versus sperm bisulfite-PCR sequencing data from HEP16. 100 bp MeDIP-seq tiles are plotted against 1,322 overlapping HEP bisulfite-PCR
amplicons. As in Figure 2b, HEP methylation values for all CpGs that overlapped any given 100-bp MeDIP-seq tile were averaged, and all 100-bp windows

were required to have at least two HEP scores (that is, either data from the top and bottom strand for a single CpG site, or at least two CpG sites) that

differed by o50%. The purple-yellow (0–30) color bar on the right of each figure shows the total CpG coupling factor for each 100-bp tile. The same data

stratified by CpG density is displayed in Supplementary Fig. 4 online.
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regions, representing B75 Mb of the genome. These regions are not
included in the MeDIP-seq web display or any of our subsequent
analyses. Such regions are also likely to be difficult to handle using
other DNA methylation profiling strategies.

We then assessed whether sufficient read-depth had been obtained,
as an insufficient number of reads would result in some parts of the
genome being incorrectly called unmethylated. We therefore consid-
ered regions of the genome scored by MeDIP-chip as methylated and
calculated the fraction of these regions that were covered by either the
complete set of MeDIP-seq reads or by randomly chosen subsets of
various sizes (Fig. 3b). This shows that our MeDIP-seq data set covers
497% of methylated regions. We consider this coverage to be good,
supported by subsequent comparisons of our MeDIP-seq results with
bisulfite-PCR sequencing data from the HEP (described below). A
further increase in read depth would possibly yield slightly more
accurate results, but any such improvement would be subject to
rapidly diminishing returns.

Batman analysis of MeDIP-seq

Two slight modifications to the MeDIP-chip version of Batman were
required when handling MeDIP-seq data. First, as the read-out we use
for MeDIP-seq is an absolute read density (which we sampled at
arbitrary 50-bp intervals along the genome) rather than a log2-ratio, a
different model was required. Based on visual inspection of the
MeDIP-seq data (Fig. 4a), we used a polynomial model of order 2
instead of the linear model used for MeDIP-chip (Figs. 1b and 2a).
Second, the Gaussian error model was no longer appropriate (as the
read density can never fall below zero), but a rectified Gaussian model
could be used in a closely analogous manner. Following these two
modifications, inference was performed as described above. We
selected an output resolution of 100 bp as a good compromise
between fast computation and high resolution. This resolution is
likely to be sufficient for many applications, as the methylation status
of CpG sites within o1,000 bp is significantly correlated (e.g., B75%
for r100 bp). Initially, this process gave results covering the entire
human genome except for assembly gaps and regions containing no
CpGs. However, as the short reads from the Illumina Genome
Analyzer cannot be unambiguously mapped onto some repetitive
parts of the genome, we expect Batman to undercall the methylation
levels of the interior parts of large repeats. In recognition of this, we

discarded all Batman results overlapping 500-bp genomic tiles with
450% repeat coverage. Comparison of the Batman-analyzed MeDIP-
seq results with sperm data from the HEP revealed a strong overall
correlation (R2 ¼ 0.85) (Fig. 4b and Supplementary Fig. 5 online).

Our MeDIP-seq data provides high-resolution, quantitative cover-
age for B90% of all CpG sites within CpG islands, promoters and
other regulatory sequences, exons and introns, and B60% of all CpGs
in the human genome (Fig. 5a). This represents a B20� improve-
ment in coverage over existing methods. The use of paired-end
sequencing allowed us to measure DNA methylation levels of some
small repeat-element families. Several recent studies on human36,37

and mouse38,39 have reported epigenetic variability at repeat elements,
and these could have phenotypic consequences. Furthermore, epige-
netic silencing of repeat elements is thought to be critical for genomic
integrity40. MeDIP-seq thus provides a means of analyzing such repeat
elements in future DNA methylome studies. Consistent with previous
observations from genome-wide studies18,27, Batman analysis of the
MeDIP-seq data reveals that promoters display an inverse correlation
between CpG density and methylation (Supplementary Fig. 6 online);
CpG islands are predominantly unmethylated; a significant propor-
tion of sites recognized by CTCF, a DNA binding protein involved in
insulator activity, are unmethylated41; and most other regions of the
genome are methylated. Our Batman-analyzed MeDIP-seq data (and
the MeDIP-chip data) are freely accessible via the Ensembl Genome
Browser (Fig. 5b and http://www.ensembl.org/), representing a useful
resource for the scientific community.

DISCUSSION

Unraveling the complexities of the epigenome is a very important
objective, and recent years have seen the development of several
strategies for genome-wide analysis of epigenetic marks, including
DNA methylation. One of the principal challenges now is to develop
more powerful analytical tools to interpret the vast amounts of data
that continue to be generated.

Here, we have reported the development and validation of Batman,
a cross-platform algorithm for the quantitative analysis of MeDIP data
generated using either arrays (MeDIP-chip) or next-generation
sequencing technologies (MeDIP-seq, representing a high-resolution
DNA methylome of a mammalian genome). Batman, combined with
MeDIP-chip or MeDIP-seq, estimates absolute methylation levels over
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Figure 5 Genomic coverage and web display of the MeDIP-seq data. (a) Genomic coverage of MeDIP-seq (measured as fraction of CpGs). Genomic features

are from the Ensembl genome database (release 45). The first ten bars are mutually exclusive, that is, repeats are not included when considering subsequent

features. Numbers in parentheses indicate the total number of CpGs within the human genome in that category. Promoters are defined as 2-kb regions

centered on annotated transcriptional start sites, and Reg. features represent nonpromoter Regulatory Features in Ensembl. The colors represent the range of

DNA methylation levels. (b) MeDIP-seq data integrated into Ensembl along with MeDIP-chip data of the same sperm DNA sample, and sperm bisulfite-PCR

data from the Human Epigenome Project16. The yellow-green-blue color gradient represents 0–100% methylation.
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a wide range of CpG densities. This is a very useful property for DNA
methylome analyses, as it will allow more effective profiling, including
CpG-poor regions that have traditionally been overlooked in most
DNA methylome studies. Furthermore, estimation of absolute DNA
methylation levels will facilitate cross-platform comparisons.

Although several strategies now exist for DNA methylation profil-
ing, there are, to the best of our knowledge, only two others that
compare with combining Batman with MeDIP-chip or MeDIP-seq in
terms of genomic coverage and quantitative performance. The first,
comprehensive high-throughput arrays for relative methylation
(CHARM), combines a tiling-array design strategy with statistical
procedures that average information from neighboring genomic loca-
tions42. The authors applied CHARM to an assay involving digesting
DNA with McrBC, which restricts methylated DNA (recognition
sequence RmC(N)55–103RmC). The enzyme is used on size-selected
(1.5–4.0 kb) DNA to fractionate unmethylated DNA after digestion,
which is co-hybridized on arrays with DNA similarly processed but
not cut with the enzyme. Although CHARM correlates well with
bisulfite conversion–based data (R2 ¼ 0.76)42, it is not a ‘stand-alone’
algorithm but rather a strategy that requires the use of a particular
array design. Moreover, it is unclear whether it can be adapted to next-
generation sequencing technologies. It does not estimate absolute
DNA methylation levels and suffers to some degree in the ability to
discriminate highly methylated from highly unmethylated CpG
islands42. Interestingly, the authors also tested MeDIP-chip and con-
cluded that it cannot be used to analyze CpG-poor regions42. Our
results show that combining MeDIP with Batman can provide absolute
DNA methylation levels across a range of CpG densities (including
CpG-poor regions) from arrays or next-generation sequencing.

Another recently reported approach, BS-seq, was used to delineate a
DNA methylome for the B120-Mb Arabidopsis genome19. BS-seq has
the ability to provide single bp–resolution DNA methylation profiles,
which is indeed a very useful property. However, at current sequencing
costs, such an approach is still prohibitively expensive to analyze
larger genomes such as the human, which is B25� bigger than the
Arabidopsis genome. Based on our results, we estimate that B40
million paired-end reads (less than a single run of an Illumina Genome
Analyzer) are sufficient to generate a high-quality mammalian methy-
lome, whereas B3.8 Gb of sequence (which would equate to 440
million paired-end reads) was required to generate a single-base pair
resolution (B20� coverage) methylome for the B120-Mb Arabidopsis
genome using BS-seq19. Also, even though single-CpG resolution is
desirable, the fact that the methylation status of CpG sites within
o1,000 bp is significantly correlated18 (e.g., B75% for r100 bp)
means that the B100 bp resolution is suitable for many applications.

Although Batman in its present form performs well, we see
opportunities for future development of MeDIP–post-processing
platforms, especially with regard to the use of sequencing technologies.
In particular, when analyzing paired-end MeDIP-seq data, it should
be possible to take advantage of the exact mapping positions of
each read, rather than summarizing the data as a set of read-depth
samples, thereby improving the resolution. Also, it would be interest-
ing to apply Batman to the analysis of Arabidopsis MeDIP data.
Although both CpG and non-CpG methylation is found in
Arabidopsis22,26, gene bodies contain predominantly the former, and
therefore, it should be possible to use Batman for the analysis of
genic regions.

In the near future, the integration of (epi)genomic and functional
approaches is going to be crucial for elucidating the biological role of
DNA methylation. The need for such an integrated approach is also
evident from the recently announced National Institutes of Health

Epigenome Roadmap Initiative calling for mapping of reference DNA
methylation profiles on an unprecedented scale (http://nihroadmap.
nih.gov/epigenomics/). Combining the Batman algorithm with
MeDIP-chip or MeDIP-seq should provide cost-effective strategies
for quantitative, high-resolution DNA methylome analysis and will
contribute toward elucidating the role of the epigenome in health
and disease.

METHODS
Sperm samples. Human mature spermatozoa were obtained as part of the

major histocompatibility complex (MHC) Haplotype Project (http://www.

sanger.ac.uk/HGP/Chr6/MHC/) under Cambridge Local Research Ethics

Committee approvals LREC-03/094 and LREC-04/Q0108/46.

Methylated DNA immunoprecipitation. MeDIP was performed using a

previously published protocol20, but we also included a ligation-mediated

PCR (LM-PCR) step43 to amplify the material (the LM-PCR step was not

performed for MeDIP-seq). Hybridizations of pre- and post-LM-PCR samples

on custom tile-path arrays (2 kb resolution) for the human MHC showed

that the LM-PCR did not introduce significant bias (Supplementary Fig. 1).

A detailed protocol is provided in the Supplementary Methods online.

Custom oligonucleotide array design and pre-Batman processing. Our

microarray consists of 382,178 50-bp probes. Although we aimed to target all

annotated TSSs and nonpromoter CpG islands (CGIs), we were unable to

design suitable unique probes for 18% of the TSSs and 28% of nonpromoter

CGIs. The array also contained 50-mer probes tiled at B100-bp density across

the entire human MHC, and promoters and nonpromoter CpG islands on the

X- and Y-chromosomes. Analyses of these regions will be presented elsewhere.

The array was originally designed using the NCBI build 35 version of the

human genome assembly, but then mapped to NCBI build 36 using Exoner-

ate44. To be mapped, probes were required to align full length and without gaps

or mismatches. Probes that aligned more than once to the NCBI36 sequence

were removed from the analysis. Tiled regions were defined by clustering

uniquely mapped probes within 200 bp of one another. Singleton probes were

discarded. The tiled regions were then divided into 500-bp ROIs. After

hybridization (performed by Nimblegen using their standard conditions),

arrays were LOESS-normalized using custom R-scripts before Batman anlaysis

of the resulting log2 ratios.

Illumina Genome Analyzer sequencing. Based on the manufacturer’s recom-

mended protocol, we nebulized 10 mg sperm DNA (SP3 in Supplementary

Table 1) with compressed nitrogen for 6 min at 32 p.s.i., giving fragments of

o800 bp. We then end repaired, phosphorylated and A-tailed the fragmented

DNA and ligated Illumina paired end adapters to fragments. Of this, we used

B1 mg of adaptor-ligated DNA for subsequent MeDIP enrichment (performed

as described above but without the LM-PCR step). Because the quantity of

DNA obtained after MeDIP was low (B30 ng), we deviated from the standard

Illumina protocol and amplified the sample using Illumina paired-end PCR

primers before gel electrophoresis and size-selecting libraries. We excised bands

from the gel to produce libraries with insert sizes of 85–160 bp and quantified

these libraries using an Agilent Bioanalyzer 2100. We prepared paired-end

flowcells with 3.2 pM DNA (using two-primer chemistry) using the manu-

facturer’s recommended protocol and sequenced for 36 cycles on an Illumina

genome analyzer fitted with a paired-end module. The reads were mapped onto

the human genome reference sequence using the high-performance alignment

software ‘maq’ (http://maq.sf.net/) before Batman analysis.

Statistics. All correlation coefficients were computed using Pearson’s product-

moment formula. All credible intervals were estimated by bootstrapping. All

other statistical procedures related to Batman are described in the main text.

Accession codes. ArrayExpress: MeDIP-chip data have been deposited

with number E-TABM-445; MeDIP-seq data have been deposited with number

E-TABM-482.

Note: Supplementary information is available on the Nature Biotechnology website.
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