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Abstract Zero-range processes with decreasing jump rates are known to exhibit con-
densation, where a finite fraction of all particles concentrates on a single lattice site
when the total density exceeds a critical value. We study such a process on a one-
dimensional lattice with periodic boundary conditions in the thermodynamic limit
with fixed, super-critical particle density. We show that the process exhibits metasta-
bility with respect to the condensate location, i.e. the suitably accelerated process
of the rescaled location converges to a limiting Markov process on the unit torus.
This process has stationary, independent increments and the rates are characterized
by the scaling limit of capacities of a single random walker on the lattice. Our result
extends previous work for fixed lattices and diverging density [In: Beltran and Landim,
Probab Theory Relat Fields 152(3–4):781–807, 2012], and we follow the martingale
approach developed there and in subsequent publications. Besides additional tech-
nical difficulties in estimating error bounds for transition rates, the thermodynamic
limit requires new estimates for equilibration towards a suitably defined distribution
in metastable wells, corresponding to a typical set of configurations with a particular
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condensate location. The total exit rates from individual wells turn out to diverge in
the limit, which requires an intermediate regularization step using the symmetries of
the process and the regularity of the limit generator. Another important novel contri-
bution is a coupling construction to provide a uniform bound on the exit rates from
metastable wells, which is of a general nature and can be adapted to other models.

Keywords Metastability · Zero Range Process · Condensation
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1 Introduction

A rigorous understanding of metastability phenomena in stochastic particle or spin
systems has been a subject of major recent research. Intuitively, in such systems, the
configuration space contains two or more disjoint metastable sets (called wells in the
following) with an associated separation of time scales phenomenon in the scaling
limit of a system parameter. In each well, the process spends a very long time which
allows it to equilibrate to a metastable state. Exits fromwells are then triggered by rare
fluctuations, which lead to exponentially distributed waiting times in a well. Once acti-
vated, transitions to other wells occur on a much faster time scale, and do not depend
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Metastability in a condensing zero-range process… 107

on the detailed past of the sample path. So the limiting metastable dynamics corre-
sponds to an effective Markov process on a highly reduced state space of metastable
states associated to the wells. On a mathematically rigorous level, important concep-
tual questions of current research interest include a proper definition of metastable
states in terms of probability measures, as well as a general practical framework to
establish the separation of time scales. An important aspect in this context is the pre-
cise definition of metastable wells and in particular an optimal choice of their size,
which is to some extent arbitrary. Intuitively, maximizing the depth and minimizing
the complexity, or size, of the wells leads to a stronger separation of time scales. In
combination they effectively characterize the free energy landscape for the chosen def-
inition of wells in analogy to the classical framework of competition between energy
(depth) and entropy (complexity).

Different approaches to metastability are summarized in [40], Chapter 4, including
a pathwise treatment [20] which is based on an analysis of empirical averages along
typical trajectories, and has more recently been studied also in [28]. For reversible
systems a powerful potential theoretic approach has been developed [17,18], using
systematically the concept of capacities to establish sharp estimates on expected tran-
sition times between metastable states. This technique was applied in various models
and is summarized in the newmonograph [15] and the review papers [14,22]. Potential
theoretic methods have been applied to a particular family of condensing zero-range
processes in [6,7], leading to the development of a martingale approach summarized
in [9] which we follow in this paper. Instead of deriving exponential limit distributions
of individual exit rates from metastable wells directly, the limit process is identified
as a Markov process via the solution to a martingale problem.

The zero-range process was introduced in [44] as a stochastic particle system with-
out restriction on the local occupation numbers, where the jump rates of particles
depend only on the occupation number of the departure site. The dynamics locally
conserves the number of particles and the process is known to have a family of sta-
tionary product measures [1], which can be indexed by the particle density ρ. Under
certain conditions on the jump rates this family has a maximal element at a finite
(critical) density ρc, and the process exhibits a condensation transition. Conditioned
on densities ρ > ρc the system phase separates into a homogeneous phase distributed
at the critical product measure, and a condensate, where the remaining mass concen-
trates in a single lattice site for typical stationary configurations of large, finite systems.
This phenomenon was first reported in the theoretical physics literature [25,27], and
rigorous results including the equivalence of ensembles, a law of large numbers and
a central limit theorem for the condensate size have been established in [3,35,36]. In
spatially inhomogeneous zero-range processes a condensation phenomenon can occur
that has different dynamic and static features as discussed above, and can be studied
with the help of coupling techniques (see e.g. [4] and references therein). In this paper
we focus on spatially homogeneous systems, which are necessarily non-monotone
[41] and where basic coupling techniques cannot be applied.

On a translation invariant lattice of size L the condensed state exhibits an L-fold
degeneracy with respect to the location of the condensate, which is uniformly distrib-
uted under the stationary measure. The metastable limit dynamics of the condensate
location for reversible processes has been established in [6,7] in a slightly more gen-
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eral setting allowing for spatial inhomogeneities, but these results are restricted to
a fixed lattice in the limit of diverging particle number N . In this setting, the depth
of metastable wells dominates their complexity and they are relatively small sets.
Repeated visits to particular configurations occur before the process exits the well
(often called attractor states), which provides a renewal structure that can be used to
establish the separation of time scales. The limit process of the condensate location
is then a continuous-time random walk on the fixed lattice, where transition rates are
proportional to the capacities of a single randomwalker. For the samemodel, matching
upper and lower bounds for exit rates from metastable wells have been derived in [19]
in the limit L , N → ∞ with diverging particle density N/L → ∞ (see also [15],
Chapter 21).

In this paper we establish the full metastable limit dynamics for the condensate
location for the above family of reversible zero-range processes in the thermodynamic
limit, i.e. we take L , N → ∞ with finite, supercritical density N/L → ρ > ρc.
We consider a one-dimensional system with periodic boundary conditions, which
leads to a Lévy-type limit process for the rescaled condensate location on the unit
torus with stationary, independent increments. A major new difficulty is related to
thermalizationwithin themetastablewells, which are exponentially large in the system
size and previously applied renewal techniques do not apply. To separate the slow
and fast variables effectively, we describe the thermalization dynamics on the wells
using the restricted process introduced in [12] and [9]. We can then prove relaxation
time bounds for this process by a comparison argument with independent birth-death
chains. Another key ingredient is a uniform bound on exit rates from a well which is
established by a novel coupling construction and is used in several occasions in our
proof, including thermalization. The characterization of the limiting generator of the
process is more difficult in the thermodynamic limit due to increasing complexity of
the free energy landscape, caused by the diverging number ofwells and transition paths
between them. To tackle this we have to introduce an intermediate regularization step
on a coarse-grained lattice using the full symmetries of the model and regularity of the
limit process.We note that, similarly to the results in [19] for diverging particle density,
we are not able to establish matching bounds for transition rates between individual
wells. But in order to identify the limit process it is sufficient to get matching bounds
only between regularized sets of wells. As in previous results on this model, the
leading order of transition rates between wells is polynomial in the system size L ,
which requires sharp estimates on transition rates from potential theory. Due to the
increasing complexity of transition paths we need a better control than results in [6,7]
on the leading order error terms, which constitutes an additional technical difficulty.
We note that a rescaling argument in a different context has also been used in [38] to
establish metastability for the ABC model.

So far, there are only few metastability results that deal with infinite volume limits
as summarized in [15], Part VII. Examples include kinetic Ising models at low tem-
peratures [16] or low magnetic fields [43], results on the dynamics of critical droplets
[33], or dilute gases at vanishing density and temperature [30]. All these results feature
the additional scaling of a system parameter such as temperature or density, which
increases the depth of metastable wells compared to their complexity. Often this is a
necessary requirement for metastability to occur at all, and in [19] this has been used
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Metastability in a condensing zero-range process… 109

as a simplifying assumption to obtain results for the zero-range process in an infinite
density limit. To our knowledge, the thermodynamic limit result derived here without
any scaling of system parameters constitutes therefore one of the first metastability
results of this kind.

The paper is organized as follows. In Sect. 2 we introduce notation and state our
main result. The proof and a more technical discussion of the result is given in Sect. 3.
The remaining sections are devoted to establishing the main ingredients of the proof,
including the equilibration dynamics inwells in Sect. 4, uniformbounds on exit rates in
Sect. 5, and the derivation of the generator of the limiting process in Sect. 6. Upper and
lower bounds on expected transition rates from capacity estimates are given in Sect.
7, and Sects. 8 and 9 contain auxiliary results on tightness, martingale convergence
and properties of the stationary measure.

2 Notation and main result

2.1 Notation

Consider the zero-range process
(
η(t) : t ≥ 0

)
on the one-dimensional discrete torus

� = Z/LZ with N particles and state space

XL ,N =
{
η ∈ N

�
0 : SL(η) = N

}
where we denote SL(η) =

∑

x∈�

ηx . (2.1)

The dynamics is defined by the generator

L f (η) =
∑

x,y∈�

p(x, y) g(ηx )
(
f (ηx,y)− f (η)

)
(2.2)

for all continuous functions f : XL ,N → R, with the usual notation η
x,y
z = ηz −

δz,x + δz,y , z ∈ � for the configuration ηx,y where one particle has moved from site
x to site y. We focus on symmetric, nearest neighbour jump probabilities p(x, y) =
1
2δy,x−1+ 1

2δy,x+1 with periodic boundary conditions, and jump rates are of the form

g(0) = 0, g(1) = 1 and g(n) =
( n

n − 1

)b
for n ≥ 2, with b > 0. (2.3)

Without the canonical constraint SL = N , the process is known to exhibit a family
of stationary product measures with a maximal element ν [1,27,35,36], which has
marginals

ν[ηx = n] = 1

zc

1

g!(n)
with g!(n) =

n∏

k=1
g(k) = nb for n ≥ 1 and g!(0) = 1.

(2.4)
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As long as b > 2 the normalization and first moment of ν are both finite, i.e.

zc := 1+
∞∑

n=1
n−b < ∞ and ρc := ν(ηx ) = 1

zc

∞∑

n=1
n1−b < ∞. (2.5)

The process is irreducible on XL ,N and the corresponding unique stationary measures
μL ,N are call ed canonical distributions, and can be written as conditional product
measures

μL ,N = ν
[ · ∣∣SL = N

]
. (2.6)

To simplify notation we will write μ = μL ,N from Sect. 3 onwards.
We study the large scale behaviour of the process in the thermodynamic limit with

particle density ρ ≥ 0, i.e.

L , N = NL →∞, such that N/L → ρ. (2.7)

For b > 2 and ρ > ρc (2.5), the process is known to exhibit a condensation transition
in the following sense. Denoting by

ML = max
x∈�

ηx (2.8)

the maximum occupation number as a relevant order parameter, we have a weak law
of large numbers [27,35,36]

ML/L →
{
0 , ρ ≤ ρc
ρ − ρc , ρ > ρc

as L , N →∞ (2.7), (2.9)

where convergence holds in distribution w.r.t. the sequence μL ,N . A corresponding
CLT has been established in [3], and the fluctuations are Gaussian and of order

√
L for

b > 3, and of order L1/(b−1) with an associated stable law for 2 < b ≤ 3. Moreover,
the distribution of the configuration outside the maximum is known to converge to the
maximal product measure ν with density ρc in the limit (2.7), so the largest occupation
number in the bulk outside the maximum is typically of order L1/(b−1) � L , which
holds for all b > 2 independently of the fluctuations of the maximum. Therefore
for supercritical densities ρ > ρc configurations exhibit a unique extensive maximum
with high probability, called the condensate, and the rescaled location of themaximum

ψL(η) = 1

L

{
x ∈ � : ηx = ML(η)

}
(2.10)

is given by a single site in the rescaled lattice 1
L �. By translation invariance, ψL

is distributed uniformly in 1
L � under μL ,N , and ergodicity of the process on XL ,N

implies that ψL
(
η(t)

)
visits the whole lattice on a long time scale. It is expected that

this dynamics is metastable, i.e.ψL
(
η(t)

)
is constant for a long (random) time interval,
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and then changes abruptly to a new value which depends only on the current location
of the condensate.

Our main result is that, indeed, for large enough b > 2 and ρ > ρc the zero-range
process

(
η(t) : t ≥ 0

)
in the thermodynamic limit (2.7) exhibits metastability with

respect to the observable ψL on the time scale

θL := L1+b. (2.11)

This means that the sequence of processes
( 1
L ψL(ηtθL ) : t ≥ 0

)
converges to a

Markovian limit process on the unit torus T = R/Z, the scaling limit of 1
L �. A

rigorous version of this result is provided in the next subsection in Theorem 2.2,
including an exact formulation of the mode of convergence and required assumptions.

2.2 The trace process and main result

The rigorous formulation and proof of our main result on the large scale metastable
dynamics of the condensate follows the martingale approach developed in [6,7,9],
which requires a partition of the state space as a first step. We define the well E x as
the set of configurations where the condensate is located at x ∈ �,

E x := {
η ∈ XL ,N : ηx = ML ≥ N − ρcL − αL , ηy ≤ βL for all y 	= x

}
.

(2.12)

We choose the scales in this definition as

αL = L
1
2+ 5

2b and βL = 2
L 4
b−1 �, (2.13)

which allow for typical fluctuations of the condensate size of order
√
L , and of bulk

occupation numbers of order L1/(b−1) for any b > 3. Note that under our conditions
on b in Theorem 2.2 we also have αL , βL � L . We choose βL as a sequence of
integers for later convenience, while the exponent in αL is optimal for the estimates
in Sect. 6.2. We denote by

E := ∪x∈�E x and � := XL ,N\E (2.14)

the set of all wells and its complement. The first result states that the process started
from a well spends only a negligible amount of time on the set � on the timescale θL .
As usual, we denote by Pη and Eη the path measure and expectation of the process
η(·) with generator (2.2) and with initial condition η(0) = η.

Proposition 2.1 (Replacement by the trace process) For the process defined in (2.2)
with rates (2.3) and b > 20, we have for all t > 0

sup
η∈E

Eη

[ ∫ θL t

0
1�(η(s)) ds

]/
θL → 0 as L , N →∞ (2.7) with ρ > ρc.

(2.15)
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The proof of this result is given in Sect. 5.3. The larger lower bound on the parameter
b is a purely technical restriction which we discuss in Sect. 3.2. Since the process
spends only negligible time outside E , re-parametrizing time by the local time on E
will not change the process in the limit. Denote by

Tt :=
∫ t

0
1E (ηs) ds and St := sup

{
s ≥ 0 : Ts ≤ t

}
(2.16)

the local time on E and its generalized inverse, respectively. The trace process is then
defined as

(
ηE (t) : t ≥ 0

)
with ηE (t) := ηSt , (2.17)

which takes values in the set E and is well defined since Tt diverges Pη − a.s. as
t → ∞ due to the irreducibility on the finite state space XL ,N . As is shown in [6],
Sect. 6.1, (2.17) is in fact an irreducible Markov process on E with jump rates

rE (η, ξ) := r(η, ξ)+
∑

ζ∈�

r(η, ζ )Pζ [TE = Tξ ] . (2.18)

Here r(η, ξ) : =∑
x∈� g(ηx )

1
2

(
1ξ (η

x,x+1)+ 1ξ (η
x,x−1)

)
are the jump rates of the

process η(·) with generator (2.2), and

TF := inf
{
t ≥ 0 : ηt ∈ F

}
(2.19)

denotes the hitting time of a set F ⊂ XL ,N . For point subsets F = {ξ} we use the
shorthand T{ξ} = Tξ . The trace process has generator

LE f (η) =
∑

ξ∈E
rE (η, ξ)

[
f (ξ)− f (η)

]
, (2.20)

and reversible invariant measure μL ,N
[ · ∣∣E] restricted to E . To simplify notation, we

will call
μE [·] = μL ,N

[ · ∣∣E]. (2.21)

On the set of wells E the rescaled location of the maximum can be written as

ψL(η) := 1

L

∑

x∈�

x 1E x (η) ∈ T = R/Z, (2.22)

and is well defined without degeneracy. We can now state our main result.
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Theorem 2.2 Consider the zero-range process with generator (2.2) and rates (2.3)
with b > 20. Fix a sequence of initial conditions η(0) ∈ E such that ψL(η(0)) →
Y0 ∈ T. In the thermodynamic limit (2.7) with N/L → ρ > ρc we have for the trace
process (2.17) on the time scale θL = L1+b

(
ψL

(
ηE (tθL)

) : t ≥ 0
)
⇒ (

Yt : t ≥ 0
)
, (2.23)

where convergence holdsweakly on the path space D
([0,∞),T

)
in the usual Skorohod

topology.
The process (Yt : t ≥ 0) has stationary and independent increments on T, initial

condition Y0 and generator

LT f (u) =
∫

T\{0}
rT(v)

(
f (u + v)− f (u)

)
dv (2.24)

for all Lipschitz continuous functions f : T→ R, with rates

rT(v) = 1

zc Ib (ρ − ρc)b+1
1

dT(0, v)
, v ∈ T. (2.25)

Embedding the unit torus in [0, 1) ⊂ R, the distance on T is given by dT(0, v) =
|v|(1− |v|). zc is the normalization of the invariant measure (2.5), and

Ib :=
∫ 1

0
xb(1− x)b dx = �(b + 1)2

�(2b + 2)
(2.26)

is a constant depending only on b.

Note that (2.15) and our main result do not apply for initial conditions η(0) ∈
�, which are, however, untypical if the process starts from the stationary measure
μL ,N (cf. Corollary 9.5). The mode of convergence in terms of the trace process as
presented here has been introduced in [6,7], and extended recently in [9] to a more
general context. The (random) time change in the definition of the trace process,
which is negligible in the limit L → ∞, can also be absorbed in a definition of
a suitable topology on the path space of the limiting process. Further discussion,
including possible extensions of our result, is provided in Sect. 3.2.

3 Proof of the main result

The proof of Theorem 2.2 uses a standard approach to establish existence of a limit
process by a tightness argument, and to identify the limit by the solution of amartingale
problem. We follow the method outlined in [9], proofs of auxiliary results used below
are given in the rest of the paper. We also discuss the main novelties and possible
extensions.

Here and in the following sections we adopt a few shorthands and conventions to
avoid an overload of notation. We write μ = μL ,N for the invariant measure of the
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full process, and μE for the invariant measure of the trace process (2.21). Constants
denoted by C are independent of L and N , and can vary from line to line.

3.1 Proof of Theorem 2.2

The proof of convergence holds on arbitrarily large compact time intervals for the limit
process, and throughout this section we denote the length of this interval by T > 0.
Let

(Y L
t : t ≥ 0) ∈ D

([0, T ],T) with Y L
t := ψL

(
ηE (θL t)

)
, (3.1)

be the speeded up process of the rescaled maximum location, and let QL be its distri-
bution on path space D

([0, T ],T).
Proposition 3.1 (Tightness) Under the conditions of Theorem 2.2 with b > 20 the
sequence QL of path space distributions is tight on D

([0, T ],T).
The proof is given in Sect. 8 where a control of the quadratic variation excludes

the accumulation of jumps and ensures that limit points have right-continuous paths.
Tightness implies existence of sub-sequential weak limits of QL in the Skorohod
topology, and we denote any such weak limit by Q. In order to identify the limit we
need to show that for all t ≤ T and all Lipschitz-continuous functions f ∈ Lip(T)

f (ωt )− f (ω0)−
∫ t

0
LT f (ωs)ds is a martingale, (3.2)

where ωt : D
([0,∞),T

) → T is the coordinate process on path space. Together
with the uniqueness result for the martingale problem associated with LT proved in
Subsect. 8.3, this implies convergence of QL and characterizes the limit Q as the law
of the Markov process

(
Yt : t ∈ [0, T ]

)
with generator LT (2.24), because Lipschitz

functions form a core for this generator. Since T > 0 is arbitrary, this implies Theorem
2.2. Precisely, we need to show that

E
Q

[
g
(
(ωu : 0 ≤ u ≤ s)

)(
f (ωt )− f (ωs)−

∫ t

s
LT f (ωu) du

)]
= 0, (3.3)

for all 0 ≤ s < t ≤ T and all bounded, continuous functions g : D([0, T ],T)→ R.
Since

(
ηE (θL t) : t ∈ [0, T ]

)
is a Markov process with generator θLLE , we know that

f (Y L
t )− f (Y L

0 )− θL

∫ t

0
LE ( f ◦ ψL)(ηE (θLs)) ds

= f (Y L
t )− f (Y L

0 )−
∫ t

0
LT f (Y L

s ) ds

+
∫ t

0

(
LT f (Y L

s )− θLLE ( f ◦ ψL)(ηE (θLs))
)
ds

is a martingale for all t ∈ [0, T ] and L ∈ N. We will establish below that
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sup
η∈E

Eη

∣∣∣∣

∫ t

0

(
LT f (Y L

s )− θLLE ( f ◦ ψL)(ηE (θLs))
)
ds

∣∣∣∣→ 0 (3.4)

as L →∞, which implies that

E
Q

L
[
g
(
(ωu : 0 ≤ u ≤ s)

)(
f (ωt )− f (ωs)−

∫ t

s
LT f (ωu) du

)]
→ 0, (3.5)

for all 0 ≤ s < t ≤ T and bounded, continuous g : D([0, T ],T)→ R. To identify the
limit of the left-hand side with (3.3) we use the following result, which is immediate
from Lemma 8.2 in Sect. 8.2.

Proposition 3.2 Let M f
t (ω) = f (ωt )− f (ωs)−

∫ t
s LT f (ωu) du. Then

E
Q

L
[
g
(
(ωu : 0 ≤ u ≤ s)

)
M f

t (ω)
]
→ E

Q

[
g
(
(ωu : 0 ≤ u ≤ s)

)
M f

t (ω)
]

(3.6)

as L →∞ for any t ∈ [0, T ].

To conclude the proofwe have to show (3.4), i.e. that we can replace the generator of
the trace process with that of the limit process (cf. Sect. 3 in [9]). This is the main part
of the paper and is divided into several steps. Since we cannot compare the generators
LE and LT directly, we will introduce an auxiliary processes on T with generator L�

which is explained in detail below, and we rewrite the time integral in (3.4) as

∫ t

0

(
LT f (Y L

s )− θLLE ( f ◦ ψL)(ηE (θLs))
)
ds =

=
∫ t

0

(
LT f (Y L

s )− θLL� f (Y L
s )
)
ds (3.7)

+ θL

∫ t

0

(
L� f (Y L

s )− LE ( f ◦ ψL)(ηE (θLs))
)
ds. (3.8)

The goal is now to show that the terms in (3.7) and (3.8) vanish individually as
L →∞ in L1-norm. In (3.8) we compare the trace process to the auxiliary process on
the rescaled lattice 1

L � ⊂ T, which describes the effective jumps of the condensate
location. Its generator is defined as

L� f (x/L) :=
∑

z∈�,z 	=0
r�(z)

(
f
(
(x + z)/L

)− f (x/L)
)
, (3.9)

with jump rates (using translation invariance)

123



116 I. Armendáriz et al.

r�(z) =
∑

ξ∈E z

μ|E0
(
rE (., ξ)

) = 1

μ[E0]
∑

η∈E0

ξ∈E z

μ[η] rE (η, ξ), (3.10)

given by the expected rate between wells for the trace process. Therefore, we can
also write the generator (3.9) as the expectation L� f (x/L) = μ|E x

(
LE ( f ◦ ψL)

)
.

Before the location of the condensate changes, the process remains in the same well
E x for a long enough time to equilibrate, and the transition between wells is effectively
described by stationary averages of jump rates as in (3.10), which is established in the
next result.

Proposition 3.3 (Equilibration in thewells)Under the conditions of Theorem 2.2with
b > 20,

sup
η∈E

Eη

∣
∣∣∣θL

∫ t

0

(
L� f (Y L

s )− LE( f ◦ ψL
)(

ηE (θLs)
))
ds

∣
∣∣∣→ 0 (3.11)

as L →∞, for all t ∈ [0, T ].
In addition to using Lemma 3.5 given below, the proof requires an estimate on the

relaxation and mixing times within a well, which have to be strictly smaller than θL ,
and is provided in Sect. 4.

In (3.7) we replace the generator of the auxiliary process with that of the limit
process using the following result.

Proposition 3.4 (Dynamics betweenwells)Under the conditions of Theorem 2.2 with
b > 5,

sup
η∈E

Eη

∣∣
∣∣

∫ t

0

(
LT f

(
Y L
s

)− θLL� f
(
Y L
s

))
ds

∣∣
∣∣→ 0 (3.12)

as L →∞, for all t ∈ [0, T ].
The proof is given in Sect. 6 and requires sharp bounds on the transition rates of

the auxiliary process, which are provided by capacity estimates in Sect. 7. In order to
get matching upper and lower bounds, an important new step in this part of the proof
is to regularize the rates r�(z) on an intermediate scale and use the regularity of the
test function f , which is explained in detail in Sect. 6. This finishes the proof of our
main result, Theorem 2.2. ��

An important estimate that is used in the proof of tightness, equilibration and
replacement of the trace process is the following uniform bound on the exit rate from
a well. The proof of this Lemma is given by a coupling argument in Section 5, which
is one of the crucial new results of this paper.
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Lemma 3.5 (Uniform bound on the exit rate) Under the conditions of Theorem 2.2
with b > 20, there exists a constant C > 0 such that the exit rate from a well is
uniformly bounded by

sup
η∈E0

∑

ξ /∈E0

rE (η, ξ) ≤ C

L5 log2 L
. (3.13)

3.2 Discussion

Main new ideas: Our proof follows the martingale approach outlined in [9], which
was previously applied to zero-range processes on a fixed lattice in the limit N →∞
[7]. In contrast to this case, the thermodynamic limit (2.7) considered here involves a
significant change in the complexity of metastable wells, since the sizes of the wells
and the number of transition paths between them increase with L . Following the
discussion in [29], this presents a technically more challenging metastability scenario,
in particular since the free energy barriers of the metastable wells in the zero-range
process are only logarithmic. We quickly summarize the resulting conceptual and
technical difficulties and the three main novel contributions of this paper to overcome
them.

• In previous work with limits of diverging particle density [7,19] the depth of the
metastable wells was dominating their size, and they could effectively be replaced
by individual configurations, so-called attractor states. The repeated visits to those
configurations before hitting another well lead to a relatively simple renewal-type
proof for equilibration in the wells. In our case of finite particle density the size
of metastable wells increases exponentially with L and these types of arguments
do not apply. Instead, we have to describe the metastable states as probability
distributions on wells. As outlined in [9,29] a suitable candidate is simply the
restriction of the stationary measure, and to prove Proposition 3.3 we use suitable
dynamics restricted to a well following [9], see Sect. 4. Using a standard jacknife
estimate [26] we establish a Poincaré inequality comparing these dynamics to
independent birth-death chains in Sect. 4.2, and obtain a bound on the relaxation
time on the metastable well of order L4 in Lemma 4.1. This is clearly not optimal,
and a sharp bound is expected to be of order L2, which would moderately improve
our conditions on the parameter b in Proposition 3.3 and Lemma 3.5, currently
b > 20, to b > 13.

• Resulting from capacity bounds presented in Sect. 7, the transition rates between
wells r�(z) (3.10) scale like 1/(|z|(L − |z|)) (6.6). The total exit rate from a well
on the scale θL diverges as log L (6.7) in the thermodynamic limit, and the exit
time distribution from awell degenerates in the scaling limit and does not converge
to an exponential random variable. This is due to small jumps which accumulate
at diverging rate, but are still negligible on the macroscopic scale for the rescaled
limit dynamics, which is established rigorously by showing tightness in Sect. 8.
Related to this, the errors in (6.6) also do not allow to get matching upper and lower
bounds on transition rates between individual wells, in analogy with results in [19]
for diverging density. We address both issues in the standard thermodynamic limit
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for fixed density, using the symmetry of the system and the regularity of the limit
dynamics on the unit torus, which are fully characterized by Lipschitz-continuous
test functions.We regularize the dynamics on an intermediate scale in Sect. 6 to get
matching bounds on rates between regularized sets of wells, which are sufficient to
derive the limiting generator and prove Proposition 3.4. As an additional technical
difficulty we have to keep track of corrections of capacity bounds to leading order
in L , which require very precise estimates on the stationary measure summarized
in Sect. 9. Sections 6 and 7 are independent of the rest of the proof, and the only
restrictions on the parameter b arising there are given by Eqs. (6.4) and (6.13),
resulting in a much weaker condition of b > 5.

• While the limiting metastable dynamics are determined by stationary averages of
transition rates r� given in (3.10), a uniform control of the exit rates from a well is
important to estimate error terms as is discussed in general in [9]. Some particular
examples of spin systems where this has been achieved are mentioned in [15], but
note that using capacities between individual configurations in the thermodynamic
limit would lead to bounds that diverge exponentially in the system size. Here we
derive a uniform upper bound on exit rates scaling as L−5 log−2 L in Lemma 3.5,
which is proved in Sect. 5 by a novel coupling construction with a growing number
of birth-death chains. The number of chains increases only linearly in time, and
the construction ensures that in the event of changing well, at least one of the
chains has grown a condensate. This is a central auxiliary result of the paper, and
is used in the proof of equilibration in the wells (Proposition 3.3), replacement by
the trace process (Proposition 2.1), as well as for tightness (Proposition 3.1). The
proof of Lemma 3.5 requires b > 20, and sharper estimates on equilibration times
in wells would slightly improve this condition as mentioned above.

The bottleneck of the method leading to restrictive conditions on the parameter b
results from the inherent competition between depth and complexity of metastable
wells. Both quantities increase with the size of the wells, and the aim to maximize
depth and minimize complexity leads to an optimal choice of their size that enters
most prominently in the uniform bounds on exit rates. The coupling argument in Sect.
5.1 gives a lower bound on the expected time to change wells for the full zero-range
process. To turn this into an estimate for the trace process, we have to bound the time
spent outside the wells on the set �, which is controlled by the invariant measure in
Corollary 9.5. Larger wells of increased depth improve this bound, but at the same
time lead to an increase in the number of transition paths to other wells. Both effects
compete and affect the uniform bound on the exit rates in Lemma 3.5. It turns out that
the optimal size is controlled by the parameter βL (2.12), and the crucial estimate in
this context is (5.24) for the probability that the trace process has changed well on
the time scale θL , where terms of the form βb−1

L and β1−b
L appear in bounds of the

right-hand side. The best choice of βL in (2.13) leads to a bound in Lemma 3.5 which
is small enough for the required estimates in the proofs of Propositions 2.1, 3.1 and
3.3 as long as b > 20. The mechanism leading to this constraint is of a fundamental
nature, and it seems very hard to significantly improve this with the techniques used
in this paper.
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The optimal choice of the second parameter αL in (2.12), (2.13) controlling the
fluctuations of the condensate is of a more technical nature, and arises from two con-
ditions on the upper bound error of the capacity estimates in (7.12). To obtain the upper
bound, a test function is constructed that concentrates on wells and tubes (7.4), which
are subsets of � where the transition paths between wells are expected to concentrate
on. The size of tubes and wells both increase with the parameter α, and increasing α

therefore reduces the distances between wells and increases the corresponding capac-
ity. At the same time, increasing tube size improves the approximation and therefore
decreases the upper bound on those capacities. The optimal choice of αL results from
estimates in Lemmas 7.4 and 7.5 and only leads to the weak requirement b > 5.

Possible extensions: We focus on symmetric, nearest-neighbour probabilities p(x, y)
= 1

2δy,x−1+ 1
2δy,x+1 in one dimension with periodic boundary conditions, two prop-

erties of which are essential for our proof.

• Symmetry: this leads to reversible dynamics, which is a necessary condition for
the potential theoretic estimates on transition rates we use in Sect. 7. There is sig-
nificant recent research interest on extended Dirichlet principles for non-reversible
systems which involve double variational formulas [8,10,31], see also references
in [15], Chapter 7. This has been applied to the totally asymmetric zero-range
process on a fixed lattice in [37], but since a result in the thermodynamic limit
requires much better control on error bounds an extenstion to this case would be
a significant technical complication. While a (non-optimal) relaxation time esti-
mate for non-reversible systems can probably be obtained, we also make critical
use of symmetry of the jump rates in the regularization step in Sect. 6, which is
not obviously adapted to asymmetric situations.

• Translation invariance: the results in [6,7] apply to zero-range processes without
this property, leading to spatially inhomogeneous limit dynamics on a fixed lattice
which are directly related to the choice of p(x, y). We use translation invariance
in our proof for equilibration and also in the regularization step in Sects. 4 and 6.
Specific simple examples of non-translation invariance, such as alternating p(x, y)
or isolated inhomogeneities, can be treated as a direct extension of our result
on a case-by-case basis. However, it is not clear how to formulate a result in
the generality covered in [6,7], where the first problem already may arise when
defining the limiting process if the probabilities p(x, y) do not have good scaling
properties.

Whenever the p(x, y) are symmetric and translation invariant and admit a well
defined scaling limit of the capacities of a single random walk on � analogously
to (6.6), our results can be extended without much effort to lead to limit processes
with stationary, independent increments. General finite range symmetric p(x, y) in
one or higher dimensions which scale to Brownian motion should all give the same
result related to the corresponding harmonic functions of a single walker, appropri-
ately modified on the torus. Note that in three and more dimensions these functions
have a constant scaling limit leading to uniform displacement of the condensate, with
expected logarithmic corrections in two dimensions. Also if p(x, y) has range diverg-
ing with L with well defined scaling limits for capacities our result can be directly
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adapted, including for example uniform p(x, y) which leads to uniform condensate
dynamics on the limiting torus. Due to the special properties of one-dimensional dif-
fusion the case covered here is already one of the most interesting. Note also that even
for finite-range p(x, y) the condensate dynamics will be non-local in all dimensions,
in contrast to an analogous result for inclusion processes [34].

In addition to the jump rates g(n) (2.3) considered here, there are various other
choices that lead to condensing zero-range processes (see e.g. [41] and references
therein). A well studied example is for rates with asymptotic behaviour g(n) ∼ 1 +
b/nλ with λ ∈ (0, 1) leading to stretched exponential tails for the stationary measure
[2,21]. The lighter tail of the measure increases the depth of the metastable wells and
leads to free energy barriers that grow sublinearly in the system size L , which is much
faster than the logarithmic growth for the present model corresponding to λ = 1.
Therefore, even though an actual generalization would require considerable work, we
expect that all our techniques can be applied and some estimates, in particular the ones
in Sect. 7, should even get easier.

The depth ofmetastablewells increaseswith particle density, andwith the parameter
b which determines the tail of the stationary measure. In contrast to the restrictive
conditions on b, our proof is robust in this system parameter and does not require any
additional constraints on the particle density except ρ > ρc. As long as the excess
mass N − ρcL � √

L log L it is known that the zero-range process still exhibits the
condensation phenomenon on the level of stationary measures [2]. It would therefore
be interesting to investigate, but is beyond the scope of this paper, in how far our results
can be applied also for subextensive excess mass.

Relatedwork: The results presented here and othermetastability results for zero-range
processes only concern the stationary dynamics of a single condensate, corresponding
to the slowest time scale in the system. In particular, these results only apply when the
process is started on one of the metastable wells. Starting the process from a uniform
initial condition with supercritical or diverging density leads to a dynamic formation
of the single condensate on a different, faster time scale. This has been discussed
heuristically in [32,35], where it was found that after a rapid formation of several large
clusters, they exchange particles in a coarsening process on the time scale L3 � L1+b
which leads to the formation of a single condensate. Note that the location of the
clusters on this time scale is fixed. Recently the first rigorous result in this context has
been obtained on a fixed lattice in the limit N →∞ in [5]. The coarsening dynamics
takes place outside the setE and is therefore approachedwith entirely differentmethods
than the ones in this paper. For the condensation phenomenon in the inclusion process
the dynamics of the condensate and the coarsening process take place on the same
time scale, and both have been rigorously understood in [34].

4 Equilibration dynamics in the wells

To establish an upper bound for the thermalization time scale of the trace process in
a metastable well we follow the procedure outlined in [9]. We introduce a process
restricted to the well (called reflected process in [9]), which is reversible w.r.t. the

123



Metastability in a condensing zero-range process… 121

restricted measure μ, and estimate the relaxation time of this process. A general result
from [9] can then be applied to yield a simple proof of Proposition 3.3.

4.1 Proof of Proposition 3.3

For each well E x , x ∈ �, the restricted process is defined by the generator

Lx f (η) =
∑

ζ∈E x

r(η, ζ )
(
f (ζ )− f (η)

)
for all η ∈ E x . (4.1)

As before, r(η, ζ ) denote the jump rates of the full zero-range process, and jumps
outside the well E x are suppressed. Note that this is not equal to the trace process on
E x , which has additional rates at the boundary of E x . It is easy to see that this process
is irreducible on E x and that it is reversible w.r.t. the restricted measure

μx := μ[.|E x ]. (4.2)

The following estimate on the relaxation and mixing times of the restricted process
will be used to prove Proposition 3.3.

Lemma 4.1 The relaxation time trel and the ε-mixing time tmix(ε) of the restricted
process Lx (4.1) on E x are independent of x and bounded by

trel ≤ CL4 and tmix(ε) ≤ CL5(1+ L−1 log 1
ε
), (4.3)

for some constant C > 0, depending only on the fixed parameters ρ and b.

The proof of this Lemma uses path counting techniques to establish a Poincaré
inequality for the restricted process, which is independent of the rest of this section
and is therefore postponed to Sect. 4.2.

We will use the following L2 estimate for the ergodic average of a function that has
mean zero on all wells, starting from the stationary measure μE = μ[.|E] restricted
to the wells. The proof of can be found in [9], Section 3.1.

Lemma 4.2 For every function f : E → R which has vanishing mean μx ( f ) = 0 for
all x ∈ �, and for all t > 0

EμE

∣∣∣∣

∫ t

0
f (ηE (s)) ds

∣∣∣∣

2

≤ 24t
∑

x∈�

μ[E x ] t xrel μx ( f 2), (4.4)

where t xrel = trel is the relaxation time on E x of the restricted process, which does not
depend on x in our case.
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By translation invariance we can simply focus on initial conditions in a chosen well
E0 in the following. To prove Proposition 3.3 we have to show (3.11), i.e. prove that

Eη

∣∣
∣∣

∫ θL t

0

(
L� f

(
ψL(ηE (s))

)− LE( f ◦ ψL
)(

ηE (s)
))
ds

∣∣
∣∣

= Eη

∣∣∣∣

∫ θL t

0

∑

z∈�

z 	=0

(
r�(z)−rE (η(s), E z)

)(
f
(
ψL(η(s))+z/L

)− f
(
ψL(η(s))

))
∣∣∣∣

(4.5)

vanishes as L →∞ for all Lipschitz functions f : T → R and η ∈ E0. For the total
jump rate of the trace process into another well z 	= 0, we have used the obvious
notation

rE (η, E z) =
∑

ζ∈E z

rE (η, ζ ) for all η ∈ E0.

With the definition of r�(z) in (3.10) we have

r�(z) = μx
(
rE (., E x+z)

)
for all x, z ∈ �,

and since the function f ◦ ψL is constant on all wells, the function

h f (η) :=
∑

z 	=0

(
r�(z)− rE (η, E x+z)

)(
f
(
ψL(η)+ z/L

)− f
(
ψL(η)

))
(4.6)

has mean zero under μx for all x ∈ �, independently of f . On every well E x , we can
estimate its second moment as

μx(h2f
) ≤ μx

((∑

z 	=0
rE (·, E x+z)

(
f
(
ψL(·)+ z

L

)− f
(
ψL(·))

))2)

≤ C2
f μ

x
((∑

z 	=0
rE (·, E x+z)

)2)

≤ C f

∥∥∥
∑

z 	=0
rE (·, E z)

∥∥∥∞
∑

z 	=0
r�(z) ≤ CC f

1

L5 log2 L

log L

θL
, (4.7)

Here, C f is the Lipschitz constant of f . The last inequality follows from (3.13) in
Lemma 3.5 and Eq. (6.7), derived independently from capacity estimates in Sect. 7.
The latter implies that the espected total exit rate

θL
∑

z 	=0
r�(z) ≤ C(1+ εL) log L , with εL → 0 as L →∞. (4.8)
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With Lemmas 4.1 and 4.2, this implies that

EμE

[( ∫ tθL

0
h f (η(s)) ds

)2] ≤ CC f tθL
1

L5 log2 L
L4 log L

θL
= CC f t

1

L log L
,

(4.9)

with initial condition under the stationary distribution μE . Now

sup
x∈�

Eμx

[( ∫ tθL

0
h f (η(s)) ds

)2] ≤
∑

x∈�

Eμx

[( ∫ tθL

0
h f (η(s)) ds

)2]

= LEμE

[( ∫ tθL

0
h f (η(s)) ds

)2]
,

and therefore

sup
x∈�

Eμx

[( ∫ tθL

0
h f (η(s)) ds

)2] ≤ CC f t
1

log L
. (4.10)

Finally, we use Lemma 3.5 and our estimate on the mixing time in Lemma 4.1 to get
for ε of order 1/θL

Eη

∣∣∣∣

∫ tθL

0
h f (η(s)) ds

∣∣∣∣ ≤ Eη

∣∣∣∣

∫ tmix(ε)

0
h f (η(s)) ds

∣∣∣∣+ Eη

∣∣∣∣

∫ tθL

tmix(ε)

h f (η(s)) ds

∣∣∣∣

≤ C f

∥∥∥
∑

z 	=0
rE (·, E z)

∥∥∥∞
(
tmix(ε)+ εtθL

)+ sup
x∈�

(
Eμx

∣∣∣
∫ tθL

0
h f (η(s)) ds

∣∣∣
2
)1/2

≤ CC f

((
L5 + t

) 1

L5 log2 L
+√

t/ log L
)
−→ 0 as L →∞. (4.11)

This finishes the proof of Proposition 3.3. ��

4.2 Proof of Lemma 4.1

Wewill derive an upper bound on the relaxation time of the restricted process in a well
by proving a Poincaré inequality, due to translation invariance it is enough to focus
on the well E0. We will use that the stationary measure μ0 outside the condensate
location is essentially given by a product measure at the critical density in the limit
L →∞. With μ[E0] = μ[E]/L we can write

μ0[η] = μ0[(η0, η�\0)
] = νL−1[η�\0] ν1[η0]

νL [SL = N ]
L

μ[E] , (4.12)

where we use the notation η = (η0, η�\0) for η ∈ E0 to indicate the condensate
size η0 and the bulk configuration η�\0 outside the condensate. For fixed particle
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number N (i.e. under the measure μ), η�\0 obviously uniquely determines η0. To
simplify notation we identify measures with their mass function, and to avoid possible
confusion in this section we will indicate the dimension of the product measure ν in
each term with a superscript.

We interpret the product measure νL−1 in (4.12) as the stationary measure of an
auxiliary system of L − 1 independent birth death chains with birth rate 1 and death
rate g(n). Corresponding to our definition of the metastable wells in (2.12), we restrict
the state space of the chains to X = {0, . . . , βL}. Each chain has therefore themodified
stationary measure

ν̄1 = ν1[ . |X ] and ν̄1[n] = ν1[n]
ν1[X ] for all n ∈ X. (4.13)

Note that the state space of the auxiliary chains XL−1 contains in particular all bulk
configurations η�\0 for η ∈ E0, and recall that the product measure ν is stationary for
the zero-range process.

Lemma 4.3 There exists a C > 0 such that for all f : XL−1 → R and all L large
enough

Varμ0( f ) ≤ CνL−1[XL−1]Varν̄L−1( f 1B0). (4.14)

Here

B0 =
{
ζ ∈ XL−1 :

(
N −

L−1∑

x=1
ζx , ζ

)
∈ E0

}

=
{
ζ ∈ XL−1 :

L−1∑

x=1
ζx ≤ ρcL + αL

}
(4.15)

is the subset of configurations in X L−1 which are compatible bulk configurations in
the well E0. For η ∈ E0 we use the obvious extension f (η) : = f (η�\0) with a slight
abuse of notation, and the claim holds in particular for all functions defined on E0.

Proof Since μ0( f 2) − μ0( f )2 = infc μ0
(
( f − c)2

)
, using the notation f̄ = f −

ν̄L−1( f ) we have with (4.12)

Varμ0( f ) ≤ μ0( f̄ 2) = L

μ[E]
∑

η∈E0

νL−1[η�\0] ν1[η0]
νL [SL = N ] f̄ 2(η�\0). (4.16)

Following a result by Doney [24], νL [SL = N ] = L ν1
[
N − [ρcL]

](
1 + o(1)

)
as

L , N →∞ and N/L → ρ > ρc, and therefore for L large enough there existsC > 0
such that
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Varμ0( f ) ≤ C
∑

η∈E0

νL−1[η�\0] ν1[η0]
ν1
[
N − [ρcL]

] f̄ 2(η�\0)

≤ C
ν1
[
N − [ρcL] − [αL ]

]

ν1
[
N − [ρcL]

]
∑

η∈E0

νL−1[η�\0] f̄ 2(η�\0), (4.17)

where we have also used μ[E] → 1 and monotonicity of n �→ ν1[n]. Since ν has
power-law tails (2.4) the first ratio converges to 1, and with the notation (4.15) we get
for large enough L

Varμ0( f ) ≤ C
∑

ζ∈XL−1
νL−1[ζ ] f̄ 2(ζ )1B0(ζ ), (4.18)

which finishes the proof with the definition of ν̄ (4.13). ��

The Dirichlet form of a single birth-death chain is given by

D( f ) = 1

2

βL∑

n=0
ν̄1[n][g(n)

(
f (n − 1)− f (n)

)2 + 1X (n + 1)
(
f (n + 1)− f (n)

)2]

=
βL−1∑

n=0
ν̄1[n]( f (n + 1)− f (n)

)2
, (4.19)

where we have used ν̄[n] g(n) = ν̄[n−1] for n ≥ 1 (2.4) and g(0) = 0. The Dirichlet
form for L − 1 independent chains is therefore given by

DL−1( f ) =
L−1∑

x=1

∑

ζ∈XL−1
ν̄L−1[ζ ]( f (ζ x )− f (ζ )

)2
1X (ζx + 1), (4.20)

where we write ζ x for the configuration where a particle is added to ζ at site x ,
ζ x
z = ζz + δz,x .

Lemma 4.4 For all L > 1 we have a Poincaré inequality for L − 1 independent
chains, i.e. for all f : XL−1 → R

Varν̄L−1( f ) ≤
β2
L

4
DL−1( f ). (4.21)
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For functions f = f 1B0 concentrating on bulk configurations of E0 we can make a
stronger statement,

Varν̄L−1( f 1B0) ≤ β2
L

4

L−1∑

x=1

βL−1∑

ζx=0
ν̄L−1[ζ ]( f (ζ x )− f (ζ )

)2
1B0(ζ x )

:= β2
L

4
DB0

L−1( f ). (4.22)

This implies that the relaxation time for the independent birth-death chains is
bounded above by β2

L . This might seem like a crude bound, but it can in fact be
shown that the relaxation time scales like that of a symmetric random walk [42], even
though the chains are driven to the origin and have stationary measure ν̄1. So our
upper bound is sharp in the scaling β2

L , and prefactors are not important for us here.
Note that the stronger statement for bulk configurations ensures that in all terms the
function f is only evaluated on B0, which is important to avoid contributions from
the boundary of E0 in the final estimate by the Dirichlet form of the restricted process
in Lemma 4.5 below.

Proof We use a standard Efron-Stein estimate [13,26] to bound the variance for L−1
iid random variables. Writing �′ = �\0 for the bulk sites 1 to L − 1 this is given by

Varν̄L−1( f ) ≤
L−1∑

x=1

∑

ζ∈XL−1
ν̄L−1[ζ ]( f (ζ )− fx (ζ�′\x )

)2
, (4.23)

where we may choose any measurable function fx : XL−2 → R. To show the first
statement (4.21) we can simply choose

fx (ζ�′\x ) := f
(
(ζ�′\x , 0)

)
, (4.24)

where as before (ζ�′\x , 0) denotes the configuration ζ where ζx is replaced by 0. Using
the Cauchy-Schwarz inequality

(
f (ζ )− f (ζ�′\x , 0)

)2 ≤ ζx

ζx−1∑

l=0

(
f (ζ�′\x , l + 1)− f (ζ�′\x , l)

)2
, (4.25)

this leads to

Varν̄L−1( f ) ≤
L−1∑

x=1

∑

ζ�′\x∈XL−2
ν̄L−2[ζ�′\x ]

βL∑

ζx=0
ζx ν̄

1[ζx ]

×
ζx−1∑

l=0

(
f (ζ�′\x , l+1)− f (ζ�′\x , l)

)2
. (4.26)
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Reordering the sum and using that n �→ nν̄1[n] is monotone decreasing, we get

Varν̄L−1( f ) ≤
L−1∑

x=1

∑

ζ�′\x∈XL−2
ν̄L−2[ζ�′\x ]

×
βL−1∑

l=0

(
f (ζ�′\x , l+1)− f (ζ�′\x , l)

)2
βL∑

ζx=l+1
ζx ν̄

1[ζx ]

≤
L−1∑

x=1

∑

ζ�′\x∈XL−2
ν̄L−2[ζ�′\x ]

×
βL−1∑

l=0

(
f (ζ�′\x , l+1)− f (ζ�′\x , l)

)2
(βL−l) l︸ ︷︷ ︸
≤β2

L/4

ν̄1[l]

≤ β2
L

4
DL−1( f ). (4.27)

The same argument works when we restrict to functions f 1B0 . Note that ζ ∈ B0

implies (ζ�′\x , 0) ∈ B0, and also all configurations appearing in the Cauchy-
Schwarz decomposition in (4.25) are in B0. Therefore, restricting the sum in (4.23) to
ζ ∈ B0 leads to (4.22) with a completely analogous computation, which finishes the
proof. ��

To finish the proof of Lemma 4.1 we will bound the Dirichlet form of L − 1
independent birth-death chains restricted to B0 by the Dirichlet form of the restricted
process using a standard path counting argument. The bounds we get here are certainly
not optimal, and one of the reasons for our conditions on the parameter b.

Lemma 4.5 There exists C > 0 such that for all f : B0 → R (cf. (4.15)) and all L
large enough

DB0

L−1( f ) ≤ C
1

ν[XL−1]
L4

β2
L

D0( f ), (4.28)

where D0( f ) is the Dirichlet form of the restricted process

D0( f ) = 1

2

∑

η,ξ∈E0

μ0[η]r0(η, ξ)
(
f (ξ)− f (η)

)2
. (4.29)

Proof For each f : B0 → R we write f (η) : = f (η�\0) for its unique extension to
η ∈ E0 as before. The Dirichlet form of the restricted process is simply given by
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D0( f ) = 1

2

∑

η∈E0

μ0[η]
∑

x∈�

g(ηx )

2

((
f (ηx,x+1)− f (η)

)2
1E0(ηx,x+1)

+( f (ηx,x−1)− f (η)
)2
1E0(ηx,x−1)

)
, (4.30)

since all jumps leading outside E0 are suppressed. We change the summation to the
set

E0
N−1 =

{
η ∈ XL : ηz ∈ E0 for some z ∈ �

}
, (4.31)

and use μ0
L ,N [ηx ]g(ηx + 1) = μ0

L ,N−1[η] with the canonical measure for N − 1
particles, which follows from (2.4). The Dirichlet form can then be written as

D0( f ) = 1

2

∑

η∈E0
N−1

μ0
L ,N−1[η]

∑

x∈�

(
f (ηx+1)− f (ηx )

)2
1E0(ηx )1E0(ηx+1).

(4.32)

With the above notation the restricted Dirichlet form (4.22) of the independent chains
can be written as

DB0

L−1( f ) =
∑

η∈E0

∑

x∈�

ν̄L−1[η�\0]
(
f (η0,x )− f (η)

)2
1E0(η0,x )

=
∑

η∈E0
N−1

∑

x∈�

ν̄L−1[η�\0]
(
f (ηx )− f (η0)

)2
1E0(ηx )1E0(η0),

(4.33)

where we used the same change of summation variable as above in the second line,
and the fact that ν̄L−1[(η0)�\0] = ν̄L−1[η�\0]. We decompose the transport of a
particle from the condensate site 0 to x into nearest neighbour jumps and use the
Cauchy-Schwarz inequality on the telescoping sum to get

(
f (ηx )− f (η0)

)2 ≤ L
x−1∑

y=0

(
f (ηy+1)− f (ηy)

)2 (4.34)

for all x , since the longest path of a particle is clearly bounded by L . We can bound
every such term in (4.33) that way, and as long as ηy+1 ≤ βL for all y = 1, . . . x−1,
all ηy ∈ E0 and the terms in the sum (4.34) correspond to ’allowed’ transitions that
appear also in D0( f ). The ’flow’ of an allowed transition is the number of times it
appears in (4.33) using (4.34), and summing over all target positions x this is bounded
by L .

On the other hand, if there exist sites 0 < y1 < · · · < ym < x , m > 0, with
ηyi = βL , the generic path in (4.33) contains non-allowed transitions and has to be
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re-routed, increasing the flow of certain allowed transitions. To bound this increase,
we introduce the notation

σ
y
z η := η + δy − δz for y, z ∈ �, (4.35)

where δy is the configuration with a single particle at y. The path corresponding to the
sum (4.34) can then be represented by the equation

ηx = σ x
x−1 · · · σ 2

1 σ 1
0 η0.

If there is an isolated site y with ηy = βL and ηy±1 < βL , we re-route the path of a
particle from y − 1 to y + 1 from

ηy+1 = σ
y+1
y σ

y
y−1η

y−1 to ηy+1 = σ
y
y−1σ

y+1
y ηy−1.

Instead of moving the particle to site y, it remains in site y − 1 and a particle moves
from y to y + 1 first. In the next step the particle follows from site y − 1 to y
reaching ηy+1 only via allowed transitions. If there is a block of k consecutive sites
with ηy = · · · = ηy+k−1 = βL , the re-routed path of a particle from y − 1 to y + k
along valid transitions is

ηy+k = σ
y
y−1 · · · σ y+k−1

y+k−2 σ
y+k
y+k−1η

y−1. (4.36)

Possibly combining re-routing over several blocks of sites with occupation numberβL ,
we associate a unique particle path from 0 to x to each base configuration η ∈ XL ,N−1,
using only allowed transitions. The flowof a transition is thenmultiplied by the number
of associated base configurations that use it for some x ∈ �, and every transition with
multiplicity higher than 1 involves at least one site with occupation number βL . Denote
by ζ → ζ ′ one of the transitions along the path in (4.36), then one associated base
configuration is obviously η, and another one is given by the minimal configuration

ζ ∧ ζ ′ := (ζz ∧ ζ ′z : z ∈ �).

Note that for all transitions ζ → ζ ′ along the path in (4.36) we have for the maximal
configuration

ζ ∨ ζ ′ := (ζz ∨ ζ ′z : z ∈ �) = ηy−1,y+k = η + δy−1 + δy+k .

It is easy to see that any possible base configuration associated to a transition ζ → ζ ′
in (4.36) has to be of the form

ηy−1,y+k − δz − δz′ for some z, z′ ∈ {y − 1, . . . , k + 1}.

In many cases not all of those base configurations contribute (or are even in E), but this
provides an upper bound of (k + 1)2 for the flow multiplicity of transitions ζ → ζ ′
along the path (4.36).
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For any base configuration η summed over in (4.33) there are at most of order L/βL

sites with occupation number βL , and therefore, the multiplicity of the flow along any
allowed transition is bounded by C(L/βL)2. Together with the generic flow bound of
order L and (4.34) this implies that

DB0

L−1( f ) ≤ C
L4

β2
L

∑

η∈E0
N−1

ν̄L−1[η�\0]
∑

y∈�

(
f (ηy+1)− f (ηy)

)2
1E0(ηy)1E0(ηy+1).

Using again (4.12) and the same approach as in the proof of Lemma 4.3 we can bound

ν̄L−1[η�\0] = νL−1[η�\0]
νL−1[XL−1] =

1

νL−1[XL−1] μ0
L ,N−1[η]

νL [SL = N−1]μL ,N−1[E]
L ν1[η0]

≤ C
1

νL−1[XL−1] μ0
L ,N−1[η]

ν1
[
N − [ρcL]

]

ν1[N ] (4.37)

for a suitable C > 0. We have used again that νL [SL = N ] = L ν1
[
N − [ρcL]

](
1+

o(1)
)
[24], monotonicity of n �→ ν1[n] and μL ,N−1[E] → 1. Since

ν1[N ]
ν1
[
N − [ρcL]

] =
(ρ − ρc

ρ

)b(
1+ o(1)

)
,

we end up with

DB0

L−1( f ) ≤ C
L4

β2
LνL−1[XL−1]

∑

η∈E0
N−1

μ0
L ,N−1[η�\0]

×
∑

x∈�

(
f (ηx+1)− f (ηx )

)2
1E0(ηx )1E0(ηx+1),

which finishes the proof of Lemma 4.5. ��
Together with Lemmas 4.3 and 4.4 we get a Poincaré inequality for the restricted

process, i.e. for all f : E0 → R there exists C > 0 such that

Varμ0( f ) ≤ CL4D0( f ). (4.38)

Therefore, the relaxation time for the restricted process is bounded by trel ≤ CL4 on
each well E x , and by a standard result [39] this implies for the ε-mixing time that

tmix(ε) ≤ −trel log
(
ε min

η∈E0
μ0[η]) ≤ CL5(1+ L−1 log(1/ε)

)
, (4.39)

since μ0[η] is at most exponentially small in L . This finishes the proof of Lemma 4.1.
��
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5 Uniform bounds on exit rates via coupling

To derive the uniform bound of Lemma 3.5 on the exit rate out of a well for the
trace process, we will construct a coupling of the zero-range process with a growing
number of birth-death chains. The number of chains increases only linearly in time,
and the coupling ensures that in the event of changing well, at least one of the chains
has grown a condensate, the probability of which can be controlled directly from
metastability results on a fixed size lattice in [7]. We will need additional control on
howmuch time the full process spends outside the well E0, which we achieve by using
mixing estimates on larger wells containing the original ones. This is derived first in
the last subsection, together with a proof of Proposition 2.1 on substitution by the trace
process.

5.1 Construction of the coupling

We construct the coupling that will be used in the next subsection to prove uniform
bounds on exit rates from wells. Let (ζ(t) : t ≥ 0) be a birth-death chain on the state
space X = {0, 1, . . .} with birth/arrival rate 1 and death/departure rate g(ζ ) as given
in (2.3), characterized by the generator

L f (ζ ) = (
f (ζ + 1)− f (ζ )

)+ g(ζ )
(
f (ζ − 1)− f (ζ )

)
. (5.1)

Note that the boundary condition at ζ = 0 is included with g(0) = 0, and this chain
has stationary measure ν as given in (2.4). For some fixed ε ∈ (0, ρ − ρc) denote by

yL := (ρ − ρc − ε)L and TyL := inf{t ≥ 0 : ζ(t) ≥ yL} (5.2)

a size-dependent level that has to be crossed to grow a condensate, and the associated
hitting time. Lower bounds for the hitting time TyL are typically of order θL = L1+b
and can be derived by direct computation.

Lemma 5.1 There exist constants C1,C2 > 0, such that for all initial conditions
ζ(0) = ζ0 ∈ {0, 1, . . . , BL} with 1� BL � L, we have that

Eζ0 [TyL ] ≥ C1θL and Pζ0 [TyL ≤ t] ≤ C2
t Bb−1

L

θL
. (5.3)

Proof It is easy to show that the expected hitting time τ x
y = Ex [Ty] with x < y ∈ N

of a birth-death chain with birth rates h(ζ ), death rates g(ζ ), and stationary measure
ν is given by

τ x
y = Ex [Ty] =

y−1∑

ζ=x

1

h(ζ )ν[ζ ]
ζ∑

n=0
ν[n]. (5.4)
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For a reference see e.g. [42]. We have h(ζ ) = 1 and due to monotonicity of ν in this
case we can use simple integral bounds for sums. We get

ζ∑

n=0
ν[n] ≥ 1

zc

∫ ζ

1
u−b du = 1− ζ 1−b

zc(b − 1)
, (5.5)

which then analogously leads to

τ x
y ≥

y−1∑

ζ=x

ζ b − ζ

b − 1
≥ (y − 1)b+1 − xb+1

(b − 1)(b + 1)
− y2 − x2

2(b − 1)
. (5.6)

With x ≤ BL � y = yL ∼ L this directly implies the first statement.
To derive the second statement, for a given ζ0 we couple the chain with a modified

chain ζ ′(·) that cannot jump below ζ0, i.e. it has death rates

g′(ζ ) = g(ζ ) for ζ > ζ0 and g′(ζ0) = 0.

It is clear that the chain ζ ′(·) will reach yL before the original one, so its hitting time
T ′yL will provide a lower bound for TyL . Furthermore, the lowest hitting time is clearly
achieved for ζ0 = BL and we can focus on this case. Since the point ζ0 = BL is the left
end of the state space for the ζ ′(·) chain, the Markov property implies the following
sub-multiplicity,

P
′
BL
[T ′yL > s] ≤ P

′
BL
[T ′yL > t][s/t].

Integrating over s and re-arranging yields

P
′
BL
[T ′yL ≤ t] ≤ t/E′BL

[T ′yL ],

and it remains to estimate the expectation of T ′yL from below. Note that the chain ζ ′(·)
has the same stationary measure ν restricted to ζ ≥ BL , changing the normalization
to z′c. The latter cancels in (5.4), and we simply have to adapt (5.5) as

ζ∑

n=BL

ν[n] ≥ 1

z′c

∫ ζ

BL

u−b du = B1−b
L − ζ 1−b

z′c(b − 1)
.

Analogously to (5.6) this implies

E
′
BL
[T ′yL ] ≥

yL−1∑

ζ=BL

B1−b
L ζ b − ζ

b − 1
≥ C2B

1−b
L yb+1L ,

for a suitable constant C2 > 0, finishing the proof. ��
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Now let us fix a configuration η ∈ E0. For the original process (η(t) : t ≥ 0)
the occupation numbers outside the condensate ηx (t), x = {1, . . . , L − 1} are birth-
death processes withMarkovian departure processes at rate g(ηx ), but non-Markovian
arrival processes that depend on the neighbouring occupation numbers for each site.
Conditioned on the configuration η(t) at time t , the arrival rate at site x is given by

ax (η(t)) := 1

2
g
(
ηx−1(t)

)+ 1

2
g
(
ηx+1(t)

)
, (5.7)

and if both neighbouring sites are occupied this rate can be as large as 2b. In order to
dominate ηx (t) by a Markovian birth-death chain with arrival rate 1 to apply Lemma
5.1, we couple it with an increasing number of chains. At any given time, at least
one of those chains will dominate ηx (t) and lead to an estimate for the probability of
leaving the well E0.

Let m ≥ 2b be the smallest integer greater than or equal to the maximal jump rate
g(2) = 2b (2.3) of the zero range process. The coupling as described below is applied
for all times t ≥ 0 and sites x = 1, . . . , L − 1, and is illustrated in Figure 1 for the
simplest case m = 2. To each site x we associate an infinite number of birth-death
chains (ζ k

x (t) : t ≥ 0) with generator (5.1), where we index the chains by vectors of
variable length of the form k = (k1, . . . , kn) with ki ∈ {1, . . . ,m} and n = 1, 2, . . ..
This corresponds to indexing the chains by the nodes of an m-ary regular tree Rm

without root, with generations indexed by n, and we write k ∈ Rm . At any given
time, each chain ζ k

x (t) in the tree 1) is an identical copy of its unique parent chain,
2) evolves independently of ηx (t) and all other chains, or 3) is associated to ηx (t) as
described below. The assignment of each chain to one of these three groups changes
in time, and we denote by

Cx (t) :=
{
k ∈ Rm : ζ k

x (t) is associated to ηx (t), and no ancestor of ζ k
x (t)

is associated to ηx (t)
}

Ix (t) :=
{
k ∈ Rm : ζ k

x (t) evolves independently
}

(5.8)

the index sets of chains which are not identical copies of their parent. At any time
t ≥ 0, the number of chains in Cx (t) is |Cx (t)| = m, for all sites x .

Initially, we set the m chains in generation n = 1 equal to ηx , i.e. Cx (0) =
{(1), . . . , (m)}, Ix = ∅ and all other chains are identical copies of their parent. We
use identical initial conditions, that is, for each site x

ζ (1)
x (0) = · · · = ζ (m)

x (0) = ηx (0) ∈ {0, 1, . . . , βL}, (5.9)

and our coupling will ensure that ηx (t) ≤ ζ k
x (t) for all k ∈ Cx (t). For the departure

process of associated chains with k ∈ Cx (t) we simply use a basic coupling for all x
and t ≥ 0, i.e. particles in ζ k

x (t) leave together with particles in ηx (t) with probability
g
(
ζ k
x (t)

)
/g
(
ηx (t)

) ≤ 1 for ηx (t) > 1, and they additionally leave, independently
of particles in ηx (t), at rate g

(
ζ k
x (t)

) − g
(
ηx (t)

)
in case this quantity is positive for
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Fig. 1 Coupling procedure illustrated for m = 2, associated chains are shown in red and are encircled,
independent chains are shown in blue in a rectangular box. Arrows indicate identical copies. Initially (top)
only the chains in generation n = 1 are associated. After the first particle arrives at site x (middle) both

chains in the first generation become independent, and them descendants of the the chain ζ
(1)
x get associated.

This process is repeated after the second particle arrives (bottom) (colour figure online)

ηx (t) ≤ 1. Note that the departure dynamics preserve the order

ηx (t) ≤ ζ k
x (t) for all k ∈ Cx (t) and t ≥ 0, (5.10)

and we will couple the arrival processes in such a way that this is true also for the full
process. To achieve this, we change the structure summarized by the sets Cx (t) and
Ix (t) at every jump event on the arrival site. When a particle arrives at site x in the
η-process at time t we pick one of the m chains in Cx (t) uniformly at random, add a
particle to all of itsm children (which up to this point have evolved as identical copies
of their parent), and disassociate the chains in Cx (t−) so that from this time on they

123



Metastability in a condensing zero-range process… 135

run independently of ηx (s), s ≥ t . That is, sample k∗ ∼ U (Cx (t)), and let

Cx (t) =
{
(k∗, 1), (k∗, 2), . . . , (k∗,m)

}
, Ix (t) = Ix (t−) ∪ Cx (t−).

So far the coupling leads to an effective arrival rate of ax (η(t))/m ≤ 1, ax (η(t)) as
in (5.7), for each associated chain, which is typically strictly smaller than 1. To each
associated process we independently add particles at rate 1− ax (η(t))/m, leading to
a total arrival rate of 1 as required. Therefore all chains (ζ k

x (t) : t ≥ 0), k ∈ Rm , have
the desired marginal dynamics of a birth-death chain with generator (5.1). Note that
the total number of particles in the associated chains is not conserved and is growing
in time, but the main point is that the coupling fulfills (5.10).

This coupling construction leads to increasing sets Ix (t) of independently evolving
chains, but at any time there is only a finite number of chains which are not identical
copies of their parent. This number grows only linearly in time with high probability,
and we will use this in the next subsection to prove a uniform bound on the exit rate
from a well.

5.2 Proof of Lemma 3.5

For the trace process (ηE (s) : s ≥ 0), ηE (0) = η(0) ∈ E0, to reach another well
before time t > 0, one of the occupation numbers for x 	= 0 has to grow larger
than yL = (ρ − ρc − ε)L , ε ∈ (0, ρ − ρc) given in (5.2), before the full process
(η(s) : s ≥ 0) has spent a total of time t in the well E0. By construction of the above
coupling, this implies that at least one of the associated chains ζ k

x with k ∈ Rm and
x 	= 0 must also have reached this level. Again, it is important to note that for each
x 	= 0 and s ≥ 0 there is only the finite number of chains in Cx (s) ∪ Ix (s) ⊂ Rm

which are not identical copies of their parent. Since all the chains associated to site
x are birth-death chains with generator (5.1), we can use Lemma 5.1 to estimate the
time it takes for the chains to reach level yL .

Note that the dynamics of the birth-death chain (ζ(t), t ≥ 0) does not depend on
the parameter L , hence Lemma 5.1 in fact says that for any parameter K ↗∞, letting
TK : = inf{t ≥ 0 : ζ(t) ≥ K } and for an initial condition ζ0 ≤ BK , 1 � BK � K
we have

Pζ0

[
TK ≤ t

] ≤ C
t Bb−1

K

K 1+b . (5.11)

We apply this bound to gain control on the time it takes the process (η(s) : s ≥ 0)
to exit a larger well Ẽ0 ⊃ E0, which we choose as

Ẽ0 := {
η ∈ XL ,N : η0 ≥ N − ρcL − αL , ηy ≤ φL for all y 	= 0

}
, (5.12)

with φL := L
log L . Clearly, the larger wells define an analogous partition of the state

space that uniquely characterises the condensate location for sufficiently large L , so
the definition of the restricted process (4.1) in Sect. 4 can be adapted to the extended
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wells. Lemma 4.1 directly applies to Ẽ0 replacing βL by φL in the derivation of all
estimates, and therefore yields the following bounds on the relaxation time t̃rel and the
δ-mixing time t̃mix(δ) of the restricted process in Ẽ0,

t̃rel ≤ CL4 and tδ := t̃mix(δ) ≤ CL4 (L + log(1/δ)
)
. (5.13)

Let us denote by T̃ the exit time of the process (η(s) : s ≥ 0) from the set Ẽ0 and
for η ∈ Ẽ0 let us write

B(η) = max
x 	=0 ηx .

Lemma 5.2 There exist constants C, γ > 0, such that for any η ∈ Ẽ0 and t ≥ 0

Pη

[
T̃ ≤ t

] ≤ C
Lt2B(η)b−1

φ1+b
L

+ Le−γ t . (5.14)

Proof On account of the coupling argument of Sect. 5.1, if we consider the system
of birth-death chains (ζ k

x (s) : s ≥ 0, x ∈ �\{0}, k ∈ Rm) with initial condition
associated to η ∈ Ẽ0, so that in particular ζ k

x (0) ≤ B(η), x 	= 0, k ∈ Cx (0), then
{
T̃ ≤ t

} ⊆ {∃k ∈ Rm, x 	= 0 and s ∈ [0, t] such that ζ k
x (s) ≥ φL

}
,

so

Pη

[
T̃ ≤ t

] ≤ Pζ(η)

[
ζ k
x (s) ≥ φL for some s ∈ [0, t], x 	= 0, k ∈ Cx (s) ∪ Ix (s)

]
.

The number of chains in Cx (t) ∪ Ix (t) increases with arrival processes of particles
which are independent Poisson with bounded rates, so the probability that |Cx (t)| +
|Ix (t)| > Ct decays exponentially in t for C large enough. Applying (5.11) to each
of these chains independently with K = φL we obtain

Pη

[
T̃ ≤ t

] ≤ C
Lt2B(η)b−1

φ1+b
L

+ Pη

[|Cx (t)| + |Ix (t)| > Ct for some x 	= 0
]

≤ C
Lt2B(η)b−1

φ1+b
L

+ Le−γ t , (5.15)

which completes the proof of the Lemma. ��
We turn now to the Proof (3.13) in the statement of Lemma 3.5. Let us first note

that for any t > 0

Pη

[
ψL(ηE (s)) 	= 0 for some s ∈ [0, t]] ≥

(
1− e−t

∑
ξ 	=η r

E (η,ξ)
) ∑

ξ /∈E0 rE (η, ξ)
∑

ξ 	=η r
E (η, ξ)

,

(5.16)
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where the ratio on the right is the probability that the first jump out of the configuration
η is to a configuration in the complement of E0. Let now t = 1

L . Since

∑

ξ 	=η

rE (η, ξ) ≤
∑

ξ 	=η

r(η, ξ) =
∑

x∈�

g(ηx ) ≤ mL

we get that

∑

ξ /∈E0

rE (η, ξ) ≤ CL Pη

[
ψL(ηE (s)) 	= 0 for some s ≤ 1

L

]
, (5.17)

where

C = m

1− e−m
= sup

x∈(0,m]
x

1− e−x
.

We next prove that there exists a constant C > 0 such that

sup
η∈E0

Pη

[
ψL(ηE (s)) 	= 0 for some s ≤ 1

L

]
≤ C

1

L6 log2 L
, (5.18)

which together with (5.17) immediately implies the assertion of Lemma 3.5. For this,
write

{
ψL(ηE (s)) 	= 0 for some s ≤ 1

L

} = {
η(s) ∈ E\E0 for some s ∈ [0, SL−1 ]

}

=
{∫ TE\E0

0
1E0

(
η(s)

)
ds ≤ 1

L

}
, (5.19)

where St : = sup{s ≥ 0 : Ts ≤ t} is the inverse of the local time Ts in E0 defined in
Sect. 2.2 and TE\E0 is the hitting time of the process (η(s) : s ≥ 0) onE\E0 = ∪y 	=0E y .
To control the probability of the event in (5.19)we define an intermediate, deterministic
time tL which is small enough for the process η(·) started at η ∈ E0 to remain in Ẽ0

by tL with high probability, but large enough for the restricted process on Ẽ0, which
we denote by (ξ(s) : s ≥ 0), to have mixed. Precisely, we require

tL
tδ
≥ CLκ for some κ > 0 and sup

η∈E0
Pη

[
T̃ ≤ tL

] ≤ C

L6 log2 L
(5.20)

as L →∞. By (5.13) and Lemma 5.2 these conditions are simultaneously satisfied if
tL is chosen as

tL := L(b−10)/2

(log L)
b+5
2

. (5.21)
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In fact, the condition b > 20 arises from the need that tL � tδ in (5.20). Define now

A = { ∫ T̃

0
1E0

(
η(s)

)
ds ≤ 1

L

} ⊇ {
ψL(ηE (s)) 	= 0 for some s ≤ 1

L

}
. (5.22)

For η ∈ Ẽ0 we have

Pη

[
A
] ≤ Pη

[
T̃ ≤ tL

]+ Pη

[
A ∩ {T̃ > tL}

]

≤ Pη

[
T̃ ≤ tL

]+ Pη

[ ∫ T̃

tL
1E0

(
η(s)

)
ds ≤ 1

L
; T̃ > tL

]

≤ Pη

[
T̃ ≤ tL

]+ Eη

[
Pη(tL )

[
A
]; T̃ > tL

]
, (5.23)

where the third line follows from the Markov property. We may couple a restricted
process to Ẽ0, which we will denote by (ξ(t) : t ≥ 0), to the original process, so that
they jump together up to time T̃ . If Pcoup

(η,η) is the coupling measure with marginals Pη

(original process) and P̃η (restricted process), then

Eη

[
Pη(tL )

[
A
]; T̃ > tL

]
= E

coup
(η,η)

[
Pη(tL )

[
A
]; T̃ > tL

]
= E

coup
(η,η)

[
Pξ(tL )

[
A
]; T̃ > tL

]

≤ E
coup
(η,η)

[
Pξ(tL )

[
A
]] = Ẽη

[
Pξ(tL )

[
A
]]

.

We now substitute this estimate in (5.23) to get that for any η ∈ Ẽ0

Pη

[
A
] ≤ Pη

[
T̃ ≤ tL

]+ Ẽη

[
Pξ(tL )

[
A
]]

≤ Pη

[
T̃ ≤ tL

]+ Pμ̃0
[
A
]+ dL , (5.24)

where dL is the total variation distance between the distribution of ξ(tL) and the
invariant measure μ̃0 of the process (ξ(s) : s ≥ 0). By (4.2), μ̃0 is simply the invariant
distribution μ of η(·) restricted to Ẽ0, that is

μ̃0[ξ ] = 1Ẽ0(ξ)
μ[ξ ]
μ
[
Ẽ0
]

and by (4.35) in [39], choosing δ < 1/2 we have

dL ≤ (2δ)

[
tL
tδ

]

.

Whenη ∈ E0 (5.20) applies and, in viewof (5.22), (5.24) and the observation following
(5.18), the assertion of Lemma 3.5 reduces to showing that

Pμ̃0
[
A
] ≤ C

L6 log2 L
. (5.25)
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To estimate Pμ̃0
[
A
]
we partition Ẽ0 as Ẽ0 = E0,1 ∪ E0,2 ∪ E0,3, where

E0,1 =
{
η ∈ Ẽ0 : η0 ≥ N − ρcL − αL + βL

2
, B(η) ≤ βL

2

}
⊂ E0,

E0,2 = {η ∈ Ẽ0 : B(η) ≤ χL}\E0,1 and E0,3 = {η ∈ Ẽ0 : B(η) > χL},

for some χL to be determined later. We may now write

Pμ̃0
[
A
] ≤ sup

η∈E0,1
Pη

[
A
]+ sup

η∈E0,2
Pη

[
A
]
μ̃0[E0,2]+ μ̃0[E0,3] (5.26)

and use (5.24) to estimate the middle term of the sum on the right hand side. This
gives

(
1− μ̃0[E0,2])

Pμ̃0
[
A
] ≤ sup

η∈E0,1
Pη

[
A
]+

(

sup
η∈E0,2

Pη

[
T̃ ≤ tL

]+ dL

)

μ̃0[E0,2]

+μ̃0[E0,3]. (5.27)

By Proposition 9.4 we have

μ̃0[E0,2] ≤ CLβ1−b
L and μ̃0[E0,3] ≤ CLχ1−b

L

and by Lemma 5.2

sup
η∈E0,2

Pη

[
T̃ ≤ tL

] ≤ C
Lt2Lχb−1

L

φ1+b
L

.

When η ∈ E0,1 for the process to leave E0 at least βL/2 particles need to be moved,
either away from the condensate or onto the site that already contains βL/2 particles.
If fewer jumps occur by time 1

L , the process will necessarily remain in E0 up to time
1
L and the event A will not be realised. Since the total rate at which jumps occur is
bounded bymL , the probability that at least βL/2 jumps occur by time 1

L is dominated
by P[X > βL/2], where X has Poisson distribution with mean m. Hence,

sup
η∈E0,1

Pη

[
A
] ≤

∑

k≥βL/2

e−m mk

k! ≤
mβL/2

(βL/2)! ,

which decays faster than any power of L−1. If we put together the preceding estimates,
(5.27) gives
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Pμ̃0
[
A
] ≤ CL

(
Lt2Lβ1−b

L

φ1+b
L

χb−1
L + χ1−b

L

)

.

The estimate (5.25) now follows, if we optimise the preceding bound by choosing

χL =
(

φ1+b
L βb−1

L

Lt2L

) 1
2(b−1)

=
(
L7 log2 L

) 1
b−1

and this concludes the proof of Lemma 3.5. ��

5.3 Proof of Proposition 2.1: replacement by the trace process

We will make use of the extended well Ẽ0 and the exit time T̃ of the process η(·) from
Ẽ0, as well as the process restricted to Ẽ0, denoted by ξ(·), and its δ-mixing time tδ .
All are defined in the preceding subsection. We begin the proof of Proposition 2.1
with the following estimate.

Lemma 5.3 For any u > 0 we have

sup
η∈E0

Eη

[∫ tδ+u

tδ
1�

(
η(s)

)
ds; T̃ > tδ

]
≤ u

(
δ + μ

[
�
]

1− μ
[
�
]
)
. (5.28)

Proof For η ∈ XL ,N let us define W (η) = Eη[
∫ u

0
1�

(
η(s)

)
ds]. For any η ∈ E0

using the Markov property we have

Eη

[ ∫ tδ+u

tδ
1�

(
η(s)

)
ds; T̃ > tδ

]
= Eη

[
W
(
η(tδ)

); T̃ > tδ
] ≤ Ẽη

[
W
(
ξ(tδ)

)]

=
∫

Wdπη,

where πη is the distribution of the random variable ξ(tδ) under Pη. The inequality
above follows by coupling ξ(·) to η(·) up to time T̃ , just as in the argument following
(5.23). Then,

∫
Wdπη ≤ δ sup

ξ∈Ẽ0

W (ξ)+
∫

W dμ̃0 = δ sup
ξ∈Ẽ0

W (ξ)+ 1

μ
[
Ẽ0
]
∫

Ẽ0
W dμ

= δ sup
ξ∈Ẽ0

W (ξ)+ 1

μ
[⋃

x∈� Ẽ x
]
∫

⋃
x∈� Ẽ x

W dμ

≤ δu + 1

1− μ
[
�
]
∫

XL ,N

W dμ = u
(
δ + μ

[
�
]

1− μ
[
�
]
)
.
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The first line follows from the definition of tδ and (4.2), the second line follows
from translation invariance of the dynamics and the set � and the final step uses the
invariance of μ under the dynamics of η(·). ��

It is now straightforward to prove the replacement by the trace process.

Proof of Proposition 2.1 In view of Lemma 5.3 we have

Eη

[ ∫ tθL

0
1�

(
η(s)

)
ds

]

= Eη

[ ∫ tθL

0
1�

(
η(s)

)
ds; T̃ ≤ tL

]
+ Eη

[ ∫ tθL

0
1�

(
η(s)

)
ds; T̃ > tL

]

≤ tθLPη

[
T̃ ≤ tL

]+ tδ + Eη

[ ∫ tθL

tδ
1�

(
η(s)

)
ds; T̃ > tδ

]

≤ tδ + tθL

(
Pη

[
T̃ ≤ tL

]+ δ + μ
[
�
]

1− μ
[
�
]
)

.

Dividing by θL , the assertion now follows from (5.20) and Corollary 9.5, which pro-
vides a vanishing bound on μ[�]. ��

6 Regularization and dynamics between wells

In order to get matching upper and lower bounds on the transition rates of the auxiliary
process (3.9), we have to replace it with a regularized version on a renormalized lattice,
making use of Lipschitz continuity of the test functions f . In fact, we will show
Proposition 3.4 for all f ∈ C2(T,R), which can be used to uniformly approximate
Lipschitz functions.

Sections 6 and 7 are independent of the rest of the article, the proofs here rely on
some invariant measure estimates provided in Sect. 9. The only restrictions arising
from the results of these sections on the parameter b are given by equations (6.4)
and (6.13), resulting on a lower bound b > 5. Clearly this is much better than the
condition b > 20 following from the uniform bounds on the exit rates (Lemma 3.5),
the estimates required to prove equilibration in thewells (Proposition 3.3) and tightness
of the condensate dynamics (Proposition 3.1).

For future use where a different scaling may be needed, we choose to keep αL and
βL and other quantities derived from them explicit, instead of replacing them by the
values obtained with the choices in (2.13).

6.1 Rate estimates from capacity bounds

Generalizing the rates r�(z) given in (3.10) to non-empty subsets A1, A2 ⊂ � with
A1 ∩ A2 = ∅, we write
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r�(A1, A2) = 1

|A1|
∑

x∈A1
y∈A2

r�(y − x), (6.1)

using that under μ, conditioned on η ∈ E A1 = ⋃
x∈A1

E x , the location of the con-
densate is uniformly distributed in A1. In this notation we can identify r�(z) =
r�
({0}, {z}). Following [6], Lemma 6.8, we have

μE [E A1
]
r�(A1, A2) = 1

2

(
capE

(
E A1 , E\E A1

)+ capE
(
E A2 , E\E A2

)

−capE(E A1∪A2 , E\E A1∪A2
))

. (6.2)

Here capE
(
E A, E B

)
denotes the capacity of the trace process between the sets of wells

E A and E B for any A, B ⊂ �with A∩ B = ∅. By Lemma 6.9 in [6], the trace process
capacities satisfy

μ
[
E
]
capE

(
E x , E y) = cap

(
E x , E y),

where the latter are the full zero-range process capacities. By Corollary 9.5 in Sect.
9 μ[�] ≤ CL

(
α1−b
L + β1−b

L

)
, hence we may replace μE [·] and capE (·, ·) throughout

by the full zero-range process invariant measure and capacities μ[·] and cap(·, ·), at
the cost of an o(1/L) multiplicative error.

Propositions 7.1 and 7.2 provide the following lower and upper bounds on capacities
between complementary sets. For each A ⊂ � we have

θLcap(E A, E\E A) ≥ H(1− εL)
∑

x∈A
y /∈A

cap�(x, y),

θLcap(E A, E\E A) ≤ H(1+ εL)
∑

x∈A
y /∈A

cap�(x, y), (6.3)

with a constant H = H(b, ρ) = 1
(ρ−ρc)1+bzc Ib

and error terms

εL = C
(
Lβ1−b

L + L−1 + Le
− αL

2βL∨
√
L
)

and εL � αL

L
, εL

3 ≥ |A|Lb+3

α2b−2
L (L − |A|) .

(6.4)
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With our choice of αL and βL in (2.13) εL � εL , and using (6.2) this leads to

θLμ
[
E A1

]

H
r�(A1, A2)

≤
∑

x∈A1
y∈A2

cap�(x, y)+ εL

⎛

⎜⎜⎜
⎝

∑

x∈A1
y /∈A1

cap�(x, y)+
∑

x∈A2
y /∈A2

cap�(x, y)

⎞

⎟⎟⎟
⎠

θLμ
[
E A1

]

H
r�(A1, A2)

≥
∑

x∈A1
y∈A2

cap�(x, y)− εL

⎛

⎜⎜⎜
⎝

∑

x∈A1
y /∈A1

cap�(x, y)+
∑

x∈A2
y /∈A2

cap�(x, y)

⎞

⎟⎟⎟
⎠

. (6.5)

The bounds are given in terms of capacities of a simple symmetric random walk on
the lattice �, which are

cap�(x, y) = cap�(0, y − x) = 1/d�(0, y − x)

= 1

|y − x |(L − |y − x |) =
1

L

(
1

|y − x | +
1

L − |y − x |
)

. (6.6)

using the standard embedding {0, . . . , L − 1} of the torus � in Z. In the following we
will use a double embedding {0, . . . , L−1} and {−L , . . . ,−1} shifted by−L , where
we identify sites 0 and −L . The combined use leads to a more intuitive notation of
the regularization procedure which is formulated symmetrically around 0, and should
not cause any confusion. Note also that we write |x − y| ∈ {0, . . . , L − 1} when x, y
are chosen consistently in the same embedding, and that this is not the distance d� on
the discrete torus �. Some particular bounds we will make use of later are

θLr
�(z) ≤HL

( 1

|z|(L − |z|) + 2εL

L−1∑

x=1

1

xL

)
≤ C

( 1

|z| +
1

L − |z| + εL log L
)

and θL
∑

z 	=0
r�(z) ≤ C

(
1+ εL

)
log L (6.7)

using that μ[E z] = (1 − μ[�])/L = 1/L(1 + o(1)). Note that the second line in
(6.7) does not follow from the first; instead, we exploit the fact that

∑
z 	=0 r�(z) =

r�(0,�\0) and apply Proposition 7.2 directly.
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6.2 Proof of Proposition 3.4

To establish (3.12) in Proposition 3.4 we will show that

sup
x∈�

∣∣∣θLL� f (x/L)− LT f (x/L)

∣∣∣→ 0 as L →∞. (6.8)

To achieve this we have to regularize the auxiliary generator L� (3.9), since using
bounds of type (6.7) directly will lead to diverging error terms. Fix an intermediate
scale � depending on L , which is a sequence of integer numbers such that

� →∞ and �/L → 0 as L →∞. (6.9)

We partition the lattice � into subsets (or boxes) of size 2�+ 1, with only the box V̄0
centred in the origin 0 being of larger size. For this we fix a second sequence �̄ such
that

�̄/� →∞, �̄/L → 0 as L →∞, (6.10)

and take V̄0 = {−�̄, . . . , �̄}. We choose �̄ such that the remaining lattice �\V̄0 can be
partitioned into boxes of size 2� + 1, i.e. there exists a sequence of integers M̄ such
that

L − (2�̄+ 1) = M̄(2�+ 1). (6.11)

The integer sequence M̄ is bounded above by the real-valued sequence M := L/(2�+
1), which characterizes the asymptotic number of boxes, since M̄/M → 1 as L →∞.
The partition of the lattice is then given by V̄0 and the boxes

Vm :=
{
y ∈ � : ∣∣y − �̄− (2�+ 1)m

∣∣ ≤ �
}
, m = 1, . . . , M̄ . (6.12)

A choice of scales consistent with (6.9) and (6.10) which is sufficient for the proof is

� = O(αL log
3 L) and �̄ = O(αL log

4 L) as L →∞. (6.13)

This is possible with our choice of αL in (2.13), compatible with (6.4), and implies in
particular that

εLM log L → 0 and
�̄

L
log L → 0 as L →∞. (6.14)

Here we have used that we can choose the error in (6.4) as εL = αL
L log L , since the

size of the sets of wells we consider is |A| ≤ �̄. In fact, a quick computation shows that

among the sequences αL = L
1
2+γ , γ > 0, and � satisfying (6.9), (6.10), the choices

αL = L
1
2+ 5

2b and � = αL log3 L provide the smallest possible εL (up to powers of
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log L) which is consistent with (7.12), and require a lower bound on the parameter b
of only b > 5.

To regularize the rates r� (3.10), we rewrite the generator of the auxiliary process
(3.9) as

L� f (x/L) =
∑

z∈�

r�(z)
(
f
( x + z

L

)
− f

( x
L

))

= 1

2�+ 1

∑

y∈V0

∑

z∈�

r�(z − y)
(
f
( x + z − y

L

)
− f

( x
L

))

= 1

2�+ 1

∑

y∈V0

∑

z∈V̄0
r�(z − y)

(
f
( x + z − y

L

)
− f

( x
L

))

+
M̄∑

m=1

1

2�+ 1

∑

y∈V0

∑

z∈Vm
r�(z − y)

(
f
( x + z − y

L

)
− f

( x
L

))

=: L�
1 f (x/L)+ L�

2 f (x/L). (6.15)

In the first step we used translation invariance of the rates r� and averaged them over
the box V0 = {−�, . . . , �} of size 2�+ 1 around the origin. For the first term L�

1 , we
use the Lipschitz property of f with constant C f to get

θLL�
1 f (x/L) ≤ C f

1

2�+ 1

∑

z∈V̄0

∑

y∈V0

|z − y|
L

θLr
�(z − y) ≤ C f

2�̄

L
θL

∑

0 	=z∈V̄0
r�(z)

≤ C
�̄

L
(1+ εL) log L , (6.16)

where we used (6.7) in the last line. So with (6.14), |L�
1 f (x/L)| → 0 as L → ∞

uniformly for x ∈ �.
The second term of (6.15) can be split asL�

2 f (x/L) = L�
2A f (x/L)+L�

2B f (x/L)

with

L�
2A f (x/L) :=

M̄∑

m=1

1

2�+ 1

∑

y∈V0

∑

z∈Vm
r�(z − y)

×
(
f
( x + z − y

L

)
− f

( x + �̄+ (2�+ 1)m

L

))
,

L�
2B f (x/L) :=

M̄∑

m=1
r�(V0, Vm)

(
f
( x + �̄+ (2�+ 1)m

L

)
− f

( x
L

))
.

(6.17)
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For the first term we can use the Lipschitz continuity of f with constant C f to get

∣
∣L�

2A f (x/L)
∣
∣ ≤ C f

2�+ 1

L

M̄∑

m=1
r�(V0, Vm). (6.18)

Using (6.5) for complementary sets A1 = V0 and A2 = �\V0 we get

θL

M̄∑

m=1
r�(V0, Vm) ≤ θLr

�(V0,�\V0) ≤ K (1+εL)
M

L

∑

x∈V0
y /∈V0

( 1

|x−y| +
1

L − |x−y|
)

≤ CK (1+ εL)
M(2�+1) log L

L
≤ C log L , (6.19)

which leads to

θL
∣∣L�

2A f (x/L)
∣∣ ≤ C f (2�+ 1)

log L

L
→ 0 as L →∞ uniformly in x ∈ �.

(6.20)

In themain contributionL�
2B in (6.17)we canuse (6.5) to obtain for the renormalized

rates

θLr
�(V0, Vm) = M

zc Ib

( ∑

y∈V0

∑

z∈Vm
cap�(0, z − y)+ εLRL(V0, Vm)

)
. (6.21)

Analogously to the above, we can bound the remainder term as

RL(V0, Vm) :=
∑

x∈V0
y /∈V0

cap�(0, y − x)+
∑

x∈Vm
y /∈Vm

cap�(0, y − x)

≤ C

L

∑

x∈V0
y /∈V0

( 1

|x − y| +
1

L − |x − y|
)
≤ C(2�+ 1)

log L

L
. (6.22)

This leads to

∣∣∣
∣θLL

�
2B f

( x
L

)
− M

zc Ib

M̄∑

m=1

∑

y∈V0
z∈Vm

cap�(0, z − y)
(
f
( x + �̄+ (2�+ 1)m

L

)
− f

( x
L

))∣∣∣
∣

≤ CεL M̄
M

zc Ib

(2�+ 1) log L

L
= CεL M̄ log L → 0 (6.23)

with (6.14), since M̄ ≤ M . To conclude the proof it remains to identify the second
term in the first line with LT f (u) in the limit L →∞ when x/L → u ∈ T. To this
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end, we use the representation cap�(0, z − y) = 1
L

( 1
|z−y| + 1

L−|z−y|
)
and note that

∑

y∈V0
z∈Vm

1

|z − y| =
∑

y,z∈V0

1

m(2�+1)+ �̄+ z − y

= 2�+ 1

m + �̄/(2�+1)
(
1+ O

( 1

m + �̄/(2�+1)
))

. (6.24)

Analogously, we have

∑

y∈V0
z∈Vm

1

L − |z − y| =
2�+ 1

M − m − �̄/(2�+1)
(
1+ O

( 1

M − m − �̄/(2�+1)
))

.

(6.25)

So the contributions to (6.23) of the correction terms in (6.24) and (6.25) vanish, since
we have

M

L

M̄∑

m=1

2�+ 1

(m + �̄/(2�+1))2 ≤ C
2�+ 1

�̄
→ 0, (6.26)

and an analogous bound holds for the second correction term. Thereforewe can replace
the second term in the first line of (6.23) by

M

zc Ib

2�+1
L

M̄∑

m=1

( 1

m+�̄/(2�+1) +
1

M − m − �̄/(2�+1)
)

×
(
f
( x+�̄+(2�+1)m

L

)
− f

( x
L

))
(6.27)

Rewriting the rates in this expression as

1

m+�̄/(2�+1) +
1

M − m − �̄/(2�+1) =
1

M

1

(m/M + �̄/L) (1− m/M − �̄/L)

and using that �̄/L → 0 and M̄/M → 1, (6.27) converges to

1

zc Ib

∫ 1

0

1

v(1− v)

(
f (u + v)− f (u)

)
dv = LT f (u) (6.28)

as L → ∞ and x/L → u ∈ T. By regularity of f , u �→ LT f (u) is a uniformly
continuous function on T, and with (6.23) this implies (6.8) and finishes the proof of
Proposition 3.4. ��
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7 Capacity estimates

Upper and lower bounds for the capacities appearing in the proof of Proposition 3.4
in the previous section are obtained following closely Sections 4 and 5 in [7]. The
extension of these methods in [19] lead to matching upper and lower bounds for
complementary sets of wells also in the limit L →∞ with diverging particle density
N/L → ∞. Using precise estimates on the stationary measure summarized in Sect.
9, we are able to improve estimates for the upper bound error that allow us to further
extend these results to the the case N/L → ρ > ρc.

To simplify notation, let Ñ be the typical number of particles at the condensate,

Ñ := N − ρcL . (7.1)

Recall that � denotes the lattice � = Z/LZ, and we will use the subindex k in
�k = Z/kZ whenever we refer to a different lattice.

7.1 Lower bound

Proposition 7.1 Let A be a non-empty subset of the lattice � and denote by E A the
corresponding set of wells. Then, there exists a positive constant C such that

Ñ b+1cap(E A, E\E A) ≥ 1

zc Ib

∑

x∈A
y /∈A

cap�(x, y)
(
1− C

(
Lβ1−b

L + L−1 + Le
− αL

2βL∨
√
L
))

(7.2)
provided that L is large enough. Here Ib =

∫ 1
0 ub(1− u)b du, and for any x, y ∈ �,

cap�(x, y) denotes the capacity (6.6) of the simple symmetric random walk on �.

Proof The variational formulation of the capacity establishes that cap(E A, E\E A) =
infF∈H(E A) D(F), where

H(E A) = {
F : F(η) = 1, η ∈ E A, F(η) = 0, η ∈ E\E A},

and D is the Dirichlet form

D(F) = 1

2

∑

η∈XL ,N

∑

x∈�

∑

r=−1, 1
μ(η) g(ηx )

1

2

[
F(ηx,x+r )− F(η)

]2
. (7.3)

Define the tube

T x,y
L ,N =

{
η ∈ XL ,N : ηx + ηy ≥ Ñ − αL

2
; ηz ≤ βL , z 	= x, y

}
(7.4)
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connecting the two wells at x and y. For any function F : XL ,N → R in H(E A), we
can bound the Dirichlet form by

D(F) ≥
∑

x∈A, y /∈A

⎛

⎜⎜
⎝
1

2

∑

z∈�
r=−1, 1

∑

η∈T x,y
L ,N

μ(η)
1

2
g(ηz)

(
F(ηz,z+r )− F(η)

)2

⎞

⎟⎟
⎠ . (7.5)

This holds because with βL � αL the tubes only overlap within wells on which the

function F is constant, equal to 0 or 1: T x,y
L ,N ∩T x ′,y′

L ,N ⊆ E x ∪E y and necessarily x = x ′
or y = y′ for N , L large enough.

Fix x ∈ A, y /∈ A. Let δz denote the configuration with one and only one par-
ticle at z, and for η ∈ XL ,N let ξ = η − δz , where summation of configurations
is performed componentwise. Given M, K ∈ N and ζ ∈ XM,K we will denote by
g!(ζ ) =∏

u∈�M
g!(ζu) =∏

u∈�M
ζ b
u with the choice of rates in (2.3). Define the set of

configurations J x,yL ,N = {ξ ∈ XL ,N−1 : |ξx+ξy− Ñ | ≤ αL/2, ξu ≤ βL−1, u 	= x, y}
and note that ξ ∈ J x,yL ,N ⇒ ξ + δz ∈ T x,y

L ,N for all z ∈ �. Then we can rewrite the
parenthesis in the right-hand side of (7.5) as

Dx,y(F) = 1

2

∑

z∈�
r=−1, 1

∑

ξ∈XL ,N−1
ξ+δz∈T x,y

L ,N

1

ZL ,N

1

g!(ξ)

1

2

(
F(ξ + δz+r )− F(ξ + δz)

)2

≥ 1

2ZL ,N

∑

ξ∈J x,yL ,N

1

g!(ξ)

∑

z∈�
r=−1,1

1

2

(
F(ξ + δz+r )− F(ξ + δz)

)2
, (7.6)

with

ZL ,N =
∑

η∈XL ,N

1

g!(η)
= zLc ν[SL = N ]. (7.7)

If F(ξ + δx ) 	= F(ξ + δy), then in full analogy with [7] we may define

f = fξ : � → R, f (z) = F(ξ + δz)− F(ξ + δy)

F(ξ + δx )− F(ξ + δy)
.

Note that

f (x) = 1, f (y) = 0, and f (z + r)− f (z) = F(ξ + δz+r )− F(ξ + δz)

F(ξ + δx )− F(ξ + δy)
,

so we can estimate the last sum in (7.6) from below by 2Lcap�(x, y) to get

Dx,y(F) ≥ L

ZL ,N
cap�(x, y)

∑

ξ∈J x,yL ,N

1

g!(ξ)

(
F(ξ + δx )− F(ξ + δy)

)2
. (7.8)
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Clearly, this bound holds trivially also for terms where F(ξ + δx ) = F(ξ + δy).
Let ζ be a configuration in �\{x, y}. For such a ζ ∈ XL−2,k we define the function
Gζ : {0, 1, . . . , N − k} → R by Gζ (i) = F(ζ̄ ) where ζ̄ ∈ XL ,N coincides with ζ

outside {x, y}, and ζ̄x = i, ζ̄y = N − k − i . Let us also define the setOL =
{
k ∈ N :

|k − ρcL| ≤ αL
2

}
. With this notation (7.8) can be written as

Dx,y(F) ≥ L cap�(x, y)

ZL ,N

∑

k∈OL

∑

ζ∈XL−2,k
ζz≤βL−1

1

g!(ζ )

N−k−2∑

i=1

(
Gζ (i + 1)− Gζ (i)

)2

ib (N − k − i − 1)b
.

(7.9)

Note that if |k − ρcL| ≤ αL
2 and ζ ∈ XL−2,k with maxz ζz ≤ βL then Gζ (i) ≡ 0

when i ≤ βL for L sufficiently large, because ζ̄ ∈ E y . Likewise, Gζ (i) ≡ 1 when
i ≥ N − k − βL for sufficiently large L , because ζ̄ ∈ E x . Hence, the rightmost sum
in (7.9) reduces to

N−k−βL−1∑

i=βL

(
Gζ (i + 1)− Gζ (i)

)2

ib (N − k − i − 1)b
.

Minimizing the preceding expression under the constraint

N−k−βL−1∑

i=βL

Gζ (i + 1)− Gζ (i) = 1 ,

the estimate in (7.9) becomes

Dx,y(F) ≥ L cap�(x, y)

ZL ,N

∑

k∈OL

∑

ζ∈XL−2,k
ζz≤βL−1

1

g!(ζ )

⎛

⎝
N−k−1−βL∑

i=βL

ib (N−k −1−i)b

⎞

⎠

−1
.

(7.10)

Using the fact that for anyC2 function f : (0, 1) → R,m ∈ N and sequence km � m,
the following bound holds

∣∣
∣∣∣∣

1

m

m−km∑

i=km
f
( i

m

)
−
∫ 1− km−1/2

m

km−1/2
m

f (x) dx

∣∣
∣∣∣∣
≤ 1

24m2 sup
x∈(0,1)

| f ′′(x)|,
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we get that

N−k−1−βL∑

i=βL

ib (N−k −1−i)b ≤ (N − k − 1)2b+1 Ib
(
1+ C

(N − k − 1)2

)

where Ib =
∫ 1
0 xb(1−x)bdx . Hence, the estimate in (7.10) further becomes (provided

N , L are sufficiently large)

Dx,y(F) ≥ L cap�(x, y)

ZL ,N Ib

∑

k∈OL

∑

ζ∈XL−2,k
ζz≤βL−1

1

g!(ζ ) (N − k − 1)2b+1
(
1− C

(N−k−1)2

)

≥ zL−2c L cap�(x, y)

ZL ,N Ib

∑

k∈OL

1

(N − k)2b+1
ν
[
SL−2 = k, ML−2 ≤ βL − 1

]

≥ zL−2c L cap�(x, y)

ZL ,N Ib
ν
(
(N − SL−2)−(2b+1); KL

)
, (7.11)

where KL is the event KL = { |SL−2 − ρcL| ≤ αL
2 , ML−2 ≤ βL − 1}, ML−2 =

maxη∈�L−2 ηx . Just as in (9.6), if we define k∗ = ν
(
SL−2; KL

)
then

ν
(
(N − SL−2)−(2b+1); KL

)
≥ 1

Ñ 2b+1 ν
[
KL

]+ 2b + 1

Ñ 2b+2 (k∗ − ρcL).

In a fashion similar to (9.7) and (9.8) we have

ν
[
Kc

L

] = ν
[
ML−2 > βL − 1

]+ ν
[|SL−2 − ρcL| > αL , ML−2 ≤ βL

]

≤ C
(
Lβ1−b

L + e
− αL

βL∨
√
L
)
.

and

0 ≤ ρc(L − 2)− k∗ ≤ C L2β1−b
L .

In view of the preceding estimates (7.11) becomes

Ñ b+1Dx,y(F) ≥ zL−2c L Ñ−b cap�(x, y)

ZL ,N Ib

(
1− C

(
Lβ1−b

L + L−1 + Le
− αL

2βL∨
√
L
))

,

and the statement of the proposition follows from Proposition 9.1, since F was an
arbitrary function F : XL ,N → R, with F |E A = 1, F |E\E A = 0. ��
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7.2 Upper bound

Proposition 7.2 Let A ⊂ � be a non-empty subset of the lattice, and denote by E A

the corresponding set of wells. Then for any εL satisfying

εL � αL

L
and εL

3 ≥ |A|L4 Ñ b−1

α2b−2
L (L − |A|) (7.12)

we have

Ñb+1cap(E A, E\E A) ≤ (1+ εL)
1

Ibzc

∑

x∈A, y /∈A
cap�(x, y). (7.13)

In (7.13) Ib = ∫ 1
0 ub(1 − ub) du, and for any x, y ∈ �, cap�(x, y) denotes the

capacity (6.6) of the simple symmetric random walk on �.

Construction of the test function. For 1 ≤ y < L , let f0,y : � → [0, 1] be the function
that realises the capacity cap�(0, y) between the sites 0 and y for the symmetric,
nearest neighbour random walk in �. By elementary results of potential theory, it
is known that f0,y(z) equals the probability that the random walk reaches 0 before
visiting y, when started at z. The formula for f0,y can be easily derived,

f0,y(z) =
⎧
⎨

⎩

1− z
y if 0 ≤ z < y;

z−y
L−y if y ≤ z < L .

(7.14)

Given ε > 0, consider the smooth function Hε : [0, 1] → [0, 1] given by

Hε(t) := 1

Ib

∫ φε(t)

0
ub(1− u)b du , (7.15)

where Ib = ∫ 1
0 ub(1 − u)b du, and φε : R → [0, 1] is a smooth, non-decreasing

function such that φε(t) + φε(1 − t) = 1∀t ∈ R, φε |(−∞,3ε] ≡ 0, φε |[1−3ε,∞) ≡ 1,
supu∈R |φ′ε(u)| ≤ 1 + Cε and supu∈[0,1] |φε(u) − u| ≤ C ′ε, for some universal
constants C,C ′ > 0. It can be easily checked that

Hε(t)+ Hε(1− t) = 1 ∀t ∈ R, Hε |(−∞,3ε] ≡ 0, Hε |[1−3ε,∞) ≡ 1. (7.16)

Enumerate the sites in � as 0 = x1, x2, . . . , xL = y, so that f0,y(x j ) > f0,y(x j+1)
for all j .

Given η ∈ XL ,N , let η̃ ∈ R
� be given by

η̃y = ηz − ρc, y ∈ �. (7.17)
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For y 	= 0, define F j
0,y : XL ,N → [0, 1], 1 ≤ j ≤ L − 1 as

F1
0,y(η) = Hε

(
η̃0

Ñ

)
,

F j
0,y(η) = Hε

⎛

⎝ η̃0

Ñ
+max

⎧
⎨

⎩
−ε;min

{ 1

Ñ

j∑

i=2
η̃xi ; ε

}
⎫
⎬

⎭

⎞

⎠ . (7.18)

Finally, for y 	= 0, let F0,y : XL ,N → R be the convex combination

F0,y(η) =
L−1∑

j=1

[
f0,y(x j )− f0,y(x j+1)

]
F j
0,y(η) . (7.19)

To define F0,0, consider a C1, non-decreasing function h : R → [0, 1] such that
h|(−∞,2ε] ≡ 0, h|(1−2ε,+∞] ≡ 1, supx h

′(x) ≤ 2, and let

F0,0(η) := h
(
η̃0/Ñ

)
. (7.20)

In order to construct the candidate test functions for the capacities in (6.2) we need to
stitch the functions {F0,y}y∈� together.

Let us hence define the sets S = {u ∈ R
�,

∑
i∈� ui = 1}, and, for 0 	= y ∈ �,

T 0,y
ε = {

u ∈ S : u0 + uy ≥ 1− ε
}
,

Aε = {u ∈ S : u0 ≥ 1− ε}

and the disjoint sets

K0,y
ε =

(
T 0,y

ε \A2ε

)
∩
{
u ∈ S, uz <

ε

2
, z 	= 0, y

}
. (7.21)

Let now {
�0,y = �0,y(L , ε)

}
y∈�

(7.22)

be a smooth partition of unity of S, such that�0,y : S → [0, 1], y ∈ �,
∑

y �0,y ≡ 1,

�0,y
∣∣K0,y

ε
≡ 1 and sup

u,u′∈S
|�0,y(u)−�0,y(u′)| ≤ C

ε
‖u − u′‖2, (7.23)

C a positive constant independent of ε, L and y ∈ �. To construct this partition of unity,
consider a bump function g : R → [0, 1], g ≡ 1 on (−∞, 1

2ε], g ≡ 0 on [ε,+∞),

‖g′‖∞ ≤ C
ε
. Let d(u,K0,y

ε ) = inf{‖u −w‖2, w ∈ K0,y
ε } : RL → R be the Euclidean

distance from a point u to the set K0,y
ε , and let �0,y(u) = g(d(u,K0,y

ε )), 1 ≤ y ≤
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L−1.Note that these have disjoint supports and take values in [0, 1]. Define�0,0(u) =
1−∑

1≤y≤L−1 �0,y(u).

The candidate to solve the variational problem for the capacity cap
(
E0, E\E0

)
is

then F0 : XL ,N → R,

F0(η) =
∑

y∈�

�0,y(η̃/Ñ
)
F0,y(η). (7.24)

Lemma 7.3 The function F0 in (7.24) satisfies

F0(η) = F0,y(η), for η̃ ∈ K0,y
ε , (7.25)

F0(η) = 1, for η̃0 ≥ (1− 2ε)Ñ , (7.26)

F0(η) = 0, for η̃0 ≤ 2ε Ñ , (7.27)

|F0(η)− F0(η
′)| ≤ C

1

ε Ñ
‖η − η′‖2, for η, η′ ∈ XL ,N . (7.28)

Proof The first assertion follows from (7.23). For the second one, note that φε ≡ 1 on
[1− 3ε, 1] hence F j

0,y(η) = F0,y(η) = 1 for all y ∈ �\{0}, j = 1 . . . L − 1, and also

F0,0(η) = 1, if η̃0 ≥ (1−2ε)Ñ . Similarly, (7.27) follows from F j
0,y(η) = F0,y(η) = 0

for all y ∈ �\{0}, j = 1 . . . L − 1, F0,0(η) = 0, if η̃0 ≤ 2ε Ñ . Finally, (7.28) is a
consequence of (7.23), if we use that the supports of the functions �0,y, y 	= 0 are
disjoint, and hence at most four terms in the difference

F0(η)− F0(η
′) =

∑

y∈�

[
�0,y(η̃/Ñ

)
F0,y(η)−�0,y(η̃′/Ñ

)
F0,y(η

′)
]

do not vanish identically. ��
By (7.26) and (7.27), F0

∣∣E0 = 1, F0
∣∣E\E0 = 0, hence we can use it to estimate the

capacity between E0 and E\E0.

Single well capacities: Given f : XL ,N → R and U ⊆ XL ,N , define

CN ( f ;U ) := 1

2

∑

η∈U

∑

x∈�

∑

r=−1,+1
μ(η) g(ηx )

1

2

[
f (ηx,x+r )− f (η)

]2
, (7.29)

and for x, y ∈ �L let

Ix,y
N := {η ∈ XL ,N , η̃x + η̃y ≥ Ñ − αL}, (7.30)

where
√
L � αL � L is the constant used in the definition of the wells (2.12).

We first notice that the only relevant contributions to the Dirichlet form (7.3) orig-
inate from configurations in the sets I0,y

N , y ∈ �.
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Lemma 7.4

CN
(
F0; XL ,N\ ∪0 	=y∈� I0,y

N

) ≤ C
L2

ε2 Ñ 2 α2b−2
L

,

C a constant independent of L and ε.

Proof By (7.26), (7.27), (7.28) in Lemma 7.3,

CN
(
F0; XL ,N\ ∪0 	=y∈� I0,y

N

)

≤ C
L

ε2 Ñ 2
μ
[{

η ∈ XL ,N\ ∪0 	=y∈� I0,y
N ; 2ε ≤ η̃0

Ñ
≤ 1− 2ε

}]

≤ C
L

ε2 Ñ 2

L

α2b−2
L

= C
L2

ε2 Ñ 2 α2b−2
L

.

The last line follows from Proposition 9.6 in Sect. 9. ��

Note that
CN

(
F0; ∪0 	=y∈�I0,y

N

) ≤
∑

y∈�

CN
(
F0; I0,y

N

)
, (7.31)

as all terms in the latter sum are non-negative.

Lemma 7.5 Let ε > 0 be such that ε Ñ � αL . There exist positive constants C,C ′
which are independent of L, and such that for any 0 	= y ∈ � ,

∣∣CN
(
F0; I0,y

N

)− CN
(
F0,y; I0,y

N

)∣∣ ≤ Ce−C ′αL/
√
L . (7.32)

Proof By Lemma 7.3 we may just consider those configurations η such that 2ε Ñ ≤
η̃0 ≤ (1− 2ε)Ñ . Note that the fact that η ∈ I0,y

N implies that η̃y ≥ ε Ñ , and also that
for F0(η) 	= F0,y(η) it is necessary that �0,y(η̃/Ñ ) 	= 1, which combined with the
previous conditions implies the existence of z ∈ �, z 	= 0, y, such that η̃z ≥ ε Ñ/2.
From (7.29) and (7.28) in Lemma 7.3, we get

∣∣CN
(
F0; I0,y

N

)− CN
(
F0,y; I0,y

N

)∣∣

≤ C
L

ε2 Ñ 2
μ
[{

η ∈ I0,y
N , 2ε ≤ η̃0

Ñ
≤ (1− 2ε); η̃y

Ñ
≥ ε ; ∃z 	= 0, y, η̃z ≥ ε Ñ

2

}]

≤ C
L

ε2 Ñ 2
μ
[{
∃z 	= 0, y,

L−2∑

i≥2,xi 	=z

η̃xi ≤ −ε Ñ

3

}]
. (7.33)
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By Proposition 9.7,

∣
∣CN

(
F0; I0,y

N

)− CN
(
F0,y; I0,y

N

)∣∣ ≤ C
L2

ε2 Ñ 2
exp{−C ′ε2 Ñ 2/(L − 3)}.

with ε2 Ñ2

L−3 ≥
α2
L
L . ��

Proposition 7.6 Consider ε > 0 such that ε Ñ � αL . Let y 	= 0 in �. There exists a
constant C > 0 independent of L, ε and y, such that

CN
(
F0,y, I0,y

N

) ≤ (1+ Cε)
L zL−2c

Ñ 2b+1 ZL ,N

cap�(0, y)

Ib
, (7.34)

cap�(x, y) the capacity between sites x and y for the simple symmetric random walk
in �.

Proof We first focus on terms r = 1 in (7.29). Fix x̃ ∈ �, and let 1 ≤ i, j ≤ L be the
indexes of x̃, x̃ + 1 in the enumeration of � determined by sites 0, y. Let us suppose
i < j , that is, f0,y(x̃ + 1) < f0,y(x̃). By (7.19), we get

F0,y(η
x̃,x̃+1)− F0,y(η) =

j−1∑

k=i

[
f0,y(xk)− f0,y(xk+1)

][
Fk
0,y(η

x̃,x̃+1)− Fk
0,y(η)

]
.

(7.35)

Replacing (7.35) in definition (7.29),

∑

η∈I0,y
N

μ(η) g(ηx̃ )
1

2

[
F0,y(η

x̃,x̃+1)− F0,y(η)
]2

≤ [
f0,y(x̃)− f0,y(x̃ + 1)

] j−1∑

k=i

[
f0,y(xk)− f0,y(xk+1)

]

×
∑

η∈I0,y
N

μ(η)
g(ηx̃ )

2

[
Fk
0,y(η

x̃,x̃+1)− Fk
0,y(η)

]2 (7.36)

by Jensen’s inequality. Note that terms associated to η ∈ I0,y
N and η̃0 < 2ε Ñ or

η̃0 > (1− 2ε)Ñ vanish by the definition of Fk
0,y , (7.18).

Let

B0,y
N :=

{
η ∈ I0,y

N , 2ε Ñ ≤ η̃0 ≤ (1− 2ε)Ñ , ∃ 2 ≤ l ≤ L − 1,
∣∣

l∑

i=2
η̃xi

∣∣ ≥ ε Ñ
}
.

(7.37)
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Fix now i ≤ k ≤ j − 1 and consider the sum in the last line of (7.36) associated to
the index k. We have

∑

I0,y
N

μ(η)
g(ηx̃ )

2

[
Fk
0,y(η

x̃,x̃+1)− Fk
0,y(η)

]2

=
∑

I0,y
N \B0,y

N

μ(η)
g(ηx̃ )

2

[
Fk
0,y(η

x̃,x̃+1)− Fk
0,y(η)

]2

+
∑

B0,y
N

μ(η)
g(ηx̃ )

2

[
Fk
0,y(η

x̃,x̃+1)− Fk
0,y(η)

]2
,

where

∑

B0,y
N

μ(η)
g(ηx̃ )

2

[
Fk
0,y(η

x̃,x̃+1)− Fk
0,y(η)

]2 ≤ C

ε2 Ñ 2
μ
[
B0,y
N

]
. (7.38)

In B0,y
N we have

∑L−1
i=2 η̃xi ≤ αL . Together with the fact that there is 2 ≤ l ≤

L − 1 such that |∑l
i=2 η̃xi | ≥ ε Ñ , this implies that either a)

∑l
i=2 η̃xi ≤ −ε Ñ or b)

∑L−1
i=l+1 ηxi ≤ αL − ε Ñ . Once more, by Proposition 9.7, and with the hypothesis that

ε Ñ � α, we get

μ
[
B0,y
N ] ≤ C1e

−C2αL/
√
L , (7.39)

C1,C2 positive constants that do not depend on L . From (7.39) and (7.38) it follows
that CN (F0,y,B0,y

N ) is negligible to any polynomial order in (7.34).
On the other hand,

∑

I0,y
N \B0,y

N

μ(η)
g(ηx̃ )

2

[
Fk
0,y(η

x̃,x̃+1)− Fk
0,y(η)

]2

≤ 1

2ZL ,N

∑

ξ∈J 0,y
N−1

1

g!(ξ)

[

Hε

( 1

Ñ
+

k∑

r=0

ξ̃xr

Ñ

)
− Hε

( k∑

r=0

ξ̃xr

Ñ

)]2

, (7.40)

with g!(ξ) =∏
0≤i≤L−1 g!(ξi ) =

∏
0≤i≤L−1 ξbi , where J

0,y
N−1 is the set

J 0,y
N−1 :=

{
ξ ∈ XL ,N−1; 2ε ≤ ξ̃0

Ñ
≤ (1− 2ε), ξ̃0 + ξ̃y ≥ Ñ − αL ;
∣∣

l∑

i=2
ξ̃xi

∣∣ ≤ ε Ñ , ∀ 2 ≤ l ≤ L − 1
}
.
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By the definition (7.15) of Hε , for ξ ∈ J 0,y
N−1, we have

[

Hε

( 1

Ñ
+

k∑

r=1

ξ̃xr

Ñ

)
− Hε

( k∑

r=1

ξ̃xr

Ñ

)
]2

= 1

I 2b

⎛

⎝
∫ φε

(
1
Ñ
+∑0≤r≤k

ξ̃r
Ñ

)

φε

(∑
0≤r≤k

ξ̃r
Ñ

) ub (1− u)b du

⎞

⎠

2

,

and hence

∑

ξ∈J 0,y
N−1

1

g!(ξ)

[

Hε

( 1

Ñ
+

k∑

r=0

ξ̃xr

Ñ

)
− Hε

( k∑

r=0

ξ̃xr

Ñ

)]2

≤
αL−1∑

m=−ρc(L−2)

∑

ξ∈XL−2,M ,
M=ρc(L−2)+m

|∑l
i=2 ξ̃xi

∣∣≤ε Ñ ,∀ l

1

Ñ 2b

1

I 2b

1

g!(ξ)

×
(1−2ε)Ñ+ρc∑

ι=2ε Ñ+ρc

(∫ �ι+1

�ι

ub(1− u)bdu

)2
1

(
ι

Ñ

)b(1− m+ι−2ρc+1
Ñ

)b , (7.41)

where�ι : = φε

(
ι−ρc

Ñ
+ 1

Ñ

∑k
r=1 ξ̃xr

)
. In order to derive the right hand side in (7.41),

we consider the distribution of m + ρc(L − 2) particles in the L − 2 sites other than
0 and y, and then the distribution of the remaining particles between these two sites,
such that ι particles are assigned to 0 and Ñ − m + 2ρc − ι− 1 particles to y.

Terms in (7.41) associated to indices −ρc(L − 2) ≤ m ≤ −ε Ñ correspond to
moderate or large deviations events

∑
2≤i≤L ξ̃xi ≤ m. Proposition 9.7 implies that

their combined contribution decays faster than any power of L , and is hence negligible.
Now, if −ε Ñ ≤ m ≤ αL − 1, and recalling that

∣
∣∑l

i=2 ξ̃xi

∣
∣ ≤ ε Ñ ∀l, we have

∫ �ι+1

�ι

ub(1− u)b

(
ι

Ñ

)b(1− m+ι−2ρc+1
Ñ

)b du ≤ (�ι+1 −�ι)

(
�ι+1

ι

Ñ

)b
⎛

⎝ 1−�ι

1− m+ι−2ρc+1
Ñ

⎞

⎠

b

≤ (�ι+1 −�ι) sup
u∈[2ε,1−2ε]

(
φε(u)

u − 3
2ε

)2b

≤ 1

Ñ
(1+ Cε)2b.

In order to obtain the last line, we applied Cauchy’s mean value theorem to φε(u)

u− 3
2 ε
=

φε(u)−φε(
3
2 ε)

u− 3
2 ε

, using that φε(3ε/2) = 0 and supu |φ′ε(u)| ≤ 1+ Cε from the definition
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after (7.15). Replacing this bound in (7.41) yields

∑

ξ∈J 0,y
N−1

1

g!(ξ)

[

Hε

( 1

Ñ
+

k∑

r=0

ξ̃xr

Ñ

)
− Hε

( k∑

r=0

ξ̃xr

Ñ

)]2

≤ (1+ Cε)

αL−1∑

m=−ρc(L−2)

∑

ξ∈XL−2,M ,
M=ρc(L−2)+m

|∑l
i=2 ξ̃xi

∣
∣≤ε Ñ ,∀ l

1

Ñ 2b+1
1

I 2b

1

g!(ξ)

×
(1−2ε)Ñ+ρc∑

ι=2ε Ñ+ρc

∫ �ι+1

�ι

ub(1− u)b du

≤ (1+ Cε)
1

Ib Ñ 2b+1

αL−1∑

m=−ρc(L−2)

∑

ξ∈XL−2,M ,
M=ρc(L−2)+m

|∑l
i=2 ξ̃xi

∣∣≤ε Ñ ,∀ l

1

g!(ξ)
≤ (1+ Cε)

zL−2c

Ib Ñ 2b+1 .

We can now put the pieces together: replace the above estimate in (7.40) to derive
from (7.36) that

∑

η∈I0,y
N

μ(η)
g(ηx̃ )

2

[
F0,y(η

x̃,x̃+1)− F0,y(η)
]2

≤ (1+ Cε)
1

2 Ib

zL−2c

ZL ,N Ñ 2b+1
[
f0,y(x̃)− f0,y(x̃ + 1)

]2
.

We conclude that

CN (F0,y, I0,y
N ) ≤ (1+ Cε)

zL−2c

Ñ 2b+1 ZL ,N

1

Ib

× 1

2

∑

x̃∈�

∑

r=−1,+1

1

2

[
f0,y(x̃)− f0,y(x̃ + r)

]2

= (1+ Cε)
L zL−2c

Ñ 2b+1 ZL ,N

cap�(0, y)

Ib
.

The extra factor L in the line above is compensating for the uniformweight 1
L appearing

in the computation of the capacities for the symmetric simple randomwalk on the torus.
��

123



160 I. Armendáriz et al.

Lemmas 7.4, 7.5, Propositions 7.6, 9.1 and observation (7.31) combined yield an
upper bound for the capacity

Ñ b+1cap
(
E0, E\E0) ≤ 1

Ibzc

∑

y 	=0
cap�(0, y)

(
1+ Cε + 1

L
+ Ñ b+1

ε2α2b−2
L log L

)
.

(7.42)

By the symmetry of the model, a similar estimate holds for cap
(
E x , E\E x

)
, x ∈ �,

evaluating in this case the Dirichlet form at Fx = F0(τ−x (η)), if τ−x : XL ,N → XL ,N

is the shift [τ−x (η)]z : = ηz+x , z ∈ �.

Multiple wells capacitites. As described in Sect. 6, to compute the rescaled rates of
the process we need bounds on the capacities

cap
(
E A, E\E A), (7.43)

where we recall the notation E A = ∪z∈AE z , A ⊂ �. The strategy is to compute these
in terms of the single well capacities estimated in the previous paragraph.

At this point one would like to take advantage of the subadditivity of the capac-
ities to bound cap(E A, E\E A) ≤ ∑

x∈A,y /∈A cap(E x , E y). To make it work, instead
of estimating the capacity between complementary sets cap(E x , E\E x ) in terms of∑

y 	=x cap�(x, y), as we did in the previous paragraph, it would be necessary to esti-
mate each term cap(E x , E y) directly from the associated capacity cap�(x, y) for the
simple symmetric random walk on �. Unfortunately we are not able to do this: we
need the function Fx,y to be the relevant term on the set Ix,y

N , but it also contributes
to the other sets Ix,z

N , z 	= y, in non-negligible ways. Indeed, it seems that the only
solution to this problem is to consider a partition of unity that singles out each of the
setsKxz

ε , z 	= x, as in (7.21), and to define Fx as in (7.24), thus reducing the Dirichlet
form to the sum of the Dirichlet form restricted to these sets, while still providing a
suitable test function Fx such that Fx

∣
∣E x = 1, Fx

∣
∣E\E x = 0; that is, the construction

of the previous paragraph. Following [7], we next show how these functions can be
combined to estimate cap(E A, E\E A).

Proof of Proposition 7.2 Fix εL > 0 be as in the statement of the proposition. Define
F A : = ∑

z∈A Fz , so that F A
∣∣E A = 1 and F A

∣∣E\E A = 0 by (7.26) and (7.27). As a
first observation, notice that it is enough to consider

CN

(
F A; ∪z∈A

( ∪y∈�
y 	=z

Iz,y
N

))
. (7.44)
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Indeed, using Cauchy Schwarz,

CN

(
F A; XL ,N\ ∪z∈A

( ∪y∈�
y 	=z

Iz,y
N

))

≤ |A|
∑

z∈A
CN

(
Fz; XL ,N\ ∪z∈A

( ∪y∈�
y 	=z

Iz,y
N

))

≤ C
|A|2L2

εL
2 Ñ 2α2b−2

L

by Lemma 7.4, (7.45)

since XL ,N\ ∪z∈A
( ∪y∈�

y 	=z
Iz,y
N

) ⊂ XL ,N\ ∪y 	=u Iu,y
N for each given u ∈ A.

Next,

CN

(
F A; ∪z∈A

( ∪y∈�
y 	=z

Iz,y
N

)) ≤
∑

z∈A

∑

y 	=z

CN

(
F A; Iz,y

N

)

=
∑

z∈A

∑

y∈A
y 	=z

CN

(
Fz + Fy +

∑

w 	=z, y
w∈A

Fw; Iz,y
N

)
+
∑

z∈A

∑

y /∈A
CN

(
Fz +

∑

w 	=z
w∈A

Fw; Iz,y
N

)
.

(7.46)

We will consider the terms in these sums individually.
We have

∣
∣∣CN

(
Fz + Fy +

∑

w 	=z, y
w∈A

Fw; Iz,y
N

)
− CN

(
Fz + Fy; Iz,y

N

)∣∣∣

≤ C
L

εL
2 Ñ 2

μ
[
Iz,y
N ∩ { η̃x ≥ 2εL Ñ , x 	= y, z

}]
,

on account of (7.27) and (7.28). Now on Iz,y
N ∩{η̃x ≥ 2εL Ñ }we have∑u 	=z,y,x η̃u ≤

Ñ − (Ñ − αL)− εL Ñ = αL − 2εL Ñ , and by Proposition 9.7

μ
[
Iz,y
N ∩ {η̃x ≥ 2εL Ñ , x 	= y, z}

]
≤ C1e

−C2αL/
√
L ,

C1,C2 positive constants that do not depend on L . Furthermore, the arguments in
Lemma 7.5 also yield

∣
∣CN

(
Fz + Fy; Iz,y

N

)
− CN

(
Fz,y + Fy,z; Iz,y

N

)∣
∣ ≤ C1e

−C2αL/
√
L ,

so that

∣∣CN

(
Fz+Fy+

∑

w 	=z, y

Fw; Iz,y
N

)
−CN

(
Fz,y+Fy,z; Iz,y

N

)∣∣∣ ≤ C1e
−C2αL/

√
L , z, y ∈ A,

(7.47)
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where the values of the constants may change from line to line. By similar estimates,

∣∣CN

(
Fz +

∑

w 	=z, y

Fw; Iz,y
N

)
− CN

(
Fz,y; Iz,y

N

)∣∣ ≤ C1e
−C2αL/

√
L , z ∈ A, y /∈ A.

(7.48)

We next show that termsCN

(
Fz,y+Fy,z, Iz,y

N

)
, y, z ∈ A, are negligible to first order.

Let η ∈ Iz,y
N \(Bz,y

N ∪ By,z
N

)
(see definition (7.37)). We get

F j
z,y(η)+ FL− j

y,z (η) = HεL

⎛

⎝ η̃z

Ñ
+ 1

Ñ

j∑

2

η̃xi

⎞

⎠+ HεL

⎛

⎝ η̃y

Ñ
+ 1

Ñ

L−1∑

j+1
η̃xi

⎞

⎠

= HεL

⎛

⎝ η̃z

Ñ
+ 1

Ñ

j∑

2

η̃xi

⎞

⎠+ HεL

⎛

⎝1−
⎡

⎣ η̃z

Ñ
+ 1

Ñ

j∑

2

η̃xi

⎤

⎦

⎞

⎠=1.

The first equality holds by the fact that the enumerations
{
xi
}L
i=1 and

{
x̄ j
}L
j=1 on �

determined by fz,y and fy,z satisfy xi = x̄L−i+1. The second equality is due to the
identity HεL (t)+ HεL (1− t) ≡ 1. Then

Fz,y(η)+ Fy,z(η)

=
L−1∑

j=1

[
fz,y(x j )− fz,y(x j+1)

]
F j
z,y(η)+

L−1∑

j=1

[
fy,z(x̄ j )− fy,z(x̄ j+1)

]
F j
y,z(η)

=
L−1∑

j=1

[
fz,y(x j )− fz,y(x j+1)

]
F j
z,y(η)+

L−1∑

j=1

[
fz,y(x j )− fz,y(x j+1)

]
FL− j
y,z (η)

=
L−1∑

j=1

[
fz,y(x j )− fz,y(x j+1)

] (
F j
z,y(η)+ FL− j

y,z (η)
)

=
L−1∑

j=1

[
fz,y(x j )− fz,y(x j+1)

] = 1, η ∈ Iz,y
N \(Bz,y

N ∪ By,z
N

)
,

where we used that fy,z(x̄L− j )− fy,z(x̄L− j+1) = fz,y(x j )− fz,y(x j+1). In particular

CN

(
Fz,y + Fy,z , Iz,y

N \(Bz,y
N ∪ By,z

N

)) = 0. (7.49)

Finally, the arguments leading to (7.39) yield

CN

(
Fz,y + Fy,z ,Bz,y

N ∪ By,z
N

)
≤ C1e

−C2αL/
√
L . (7.50)
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Collecting all results from equations (7.45) to (7.50), we obtain

CN (F A; XL ,N ) ≤
∑

z∈A

∑

y /∈A
CN (Fz,y; Iz,y

N )+ C
|A|2L2

εL
2 Ñ 2α2b−2

L

,

and by Proposition 7.6,

CN

(
F A, XL ,N

)
≤(1+CεL)

L zL−2c

Ñ 2b+1 ZL ,N

1

Ib

∑

z∈A

∑

y /∈A
cap�(z, y)+C

|A|2L2

εL
2 Ñ 2α2b−2

L

.

In particular, pulling out the first term as a common factor, and applying the rough esti-
mates cap�(z, y) ≥ 1

L2 and
∑

z∈A
∑

y /∈A cap�(z, y) ≥ |A|(L−|A|)
L2 , condition (7.12)

yields

Ñ b+1cap
(
E A, E\E A) ≤ (1+ CεL)

L zL−2c

Ñ b ZL ,N

1

Ib

∑

z∈A, y /∈A
cap�(z, y) .

The assertion of the proposition follows from Proposition 9.1, as εL L ≥ 1/L . ��

8 Tightness and limiting distribution

8.1 Proof of Proposition 3.1: Tightness

In this section we will prove tightness of the distributions QL of
(
Y L
t : t ≥ 0

) : =( 1
L ψ

(
ηE (tθL)

) : t ≥ 0
)
. By Aldous’s tightness criterion (cf. Theorem 16.10 in [11]),

it suffices to show that for any η ∈ E, ε > 0, t > 0,

lim
δ↓0 lim sup

L→∞
sup
s≤δ

sup
τ∈Tt

Pη

[
dT
(
Y L

τ+s,Y L
τ

)
> ε

] = 0, (8.1)

with dT(x, y) = |x − y|(1− |x − y|) the distance in the torus T, where, as before, all
algebraic operations are performed modulo Z , i.e. x − y = (x − y)mod(Z). In (8.1)
Tt is the set of stopping times (for the trace process) bounded by t .

Note that by the strong Markov property, for any η ∈ E we have

Pη

[
dT
(
Y L

τ+s,Y L
τ

)
> ε

] = Eη

[
PηE (τ )

[
dT
(
Y L
s ,Y L

0

)
> ε

]]

≤ supη∈E Pη

[
dT
(
Y L
s ,Y L

0

)
> ε

]
. (8.2)

We will denote by

rE (η; z) :=
∑

x∈�

1E x (η)
∑

ξ∈E x+z

rE (η, ξ)
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the total jump rate from a configuration η in some well E x to a new well E x+z . By
Itô’s formula, for any s > 0 we have

dT
(
Y L
s , Y L

0
)

=
∫ sθL

0

∑

z 	=0
rE
(
ηE (u); z)

[
dT
(
ψL (η(u))+ z/L , Y L

0
)− dT

(
ψL (η(u)),Y L

0
)]

du + MsθL ,

where {Ms}s≥0 is a martingale with quadratic variation

〈M〉s =
∫ s

0

∑

z 	=0
rE
(
η(u); z)

[
dT
(
ψL(ηE (u))+ z/L ,Y L

0

)− dT
(
ψL(η(u)),Y L

0

)]2
du.

By the triangle inequality we get

∣∣dT
(
ψL(η)+ z/L ,Y L

0

)− dT
(
ψL(η), Y L

0

)∣∣ ≤ dT
(
z/L , 0

) = z

L

(
1− z

L

)
.

By Doob’s inequality, for any η ∈ E ,

Pη

[
sup
s≤δθL

|Ms | > ε

2

]
≤ 16

ε2
Eη

[
〈M〉δθL

]

≤ 16

ε2

∑

z 	=0

z2

L2

(
1− z

L

)2
Eη

[ ∫ δθL

0
rE
(
ηE (u); z)du

]
(8.3)

≤ 16

ε2

∑

z 	=0

z

L

(
1− z

L

)
Eη

[ ∫ δθL

0
rE
(
ηE (u); z) du

]
. (8.4)

On the other hand, by Markov’s inequality, for any η ∈ E ,

Pη

[
sup
s≤δθL

∫ s

0

∑

z 	=0

z

L

(
1− z

L

)
rE
(
ηE (u); z)du >

ε

2

]

≤ 2

ε

∑

z 	=0

z

L

(
1− z

L

)
Eη

[ ∫ δθL

0
rE
(
ηE (u); z)du

]
. (8.5)

Hence, it suffices to show that

lim
δ↓0 lim sup

L→∞
sup
η∈E

∑

z 	=0

z

L

(
1− z

L

)
Eη

[ ∫ δθL

0
rE
(
ηE (u); z) du

]
= 0. (8.6)

We proceed analogously to the proof of Proposition 3.3 given in Sect. 4.1, using the
bounds on the mixing time tmix(ε

′) for the restricted process given in (4.3). We pick
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ε′ = 1/θL and split the integral in the preceding display according to

∫ δθL

0
rE (ηE (u); z) du =

∫ tmix(ε
′)

0
rE (ηE (u); z) du +

∫ δθL

tmix(ε′)
rE (ηE (u); z) du.

(8.7)

We can estimate the first contribution to (8.6) as

∑

z 	=0

z

L

(
1− z

L

)
Eη

[ ∫ tmix(ε
′)

0
rE
(
ηE (u); z) du

]
≤ tmix(ε

′)
4

sup
η∈E

∑

z 	=0
rE
(
η; z).

(8.8)

By translation invariance supη∈E
∑

z 	=0 rE
(
η; z) = supη∈E0

∑
z 	=0 rE

(
η, E z

)
, which

vanishes as L →∞ by Lemmas 3.5 and 4.1. For the second contribution in (8.6) we
use the definition of the mixing time and the fact (4.2) that the invariant measure μx

of the restricted process equals the invariant measure μ restricted to the well E x , to
get the upper bound

∑

z 	=0

z

L

(
1− z

L

)
Eη

[ ∫ δθL

tmix(ε′)
rE
(
ηE (u), z

)
du
]

≤ δθLε′

4
sup
η∈E0

∑

z 	=0
rE
(
η, E z)+ δθL

∑

z 	=0

z

L

(
1− z

L

)
r�(z).

The first term vanishes as L → ∞ with the choice of ε′ above and Lemma 3.5, and
for the second term (6.8) implies

δθL
∑

z 	=0

z

L

(
1− z

L

)
r�(z) → δ

zc Ib(ρ − ρc)b+1
, (8.9)

hence establishing that the family {QL}L∈N is tight. ��

8.2 Proof of Proposition 3.2: Martingale convergence

The rescaled position of the condensate
(
Y L
t : t ≥ 0

)
is a random variable that takes

values on the space D
([0, T ]; T

)
of càdlàg paths on the torus T, and as we proved

in section 8.1, the family of the corresponding distributions {QL}L∈N is tight. In this
section we prove Lemma 8.2 stated below, that we use in section 3.1 to show that in
fact {QL}L∈N is convergent and to characterise its limit. We begin with a preliminary
result.
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Lemma 8.1 Let Q be any subsequential weak limit of QL , U a bounded continuous
function in D

([0, T ]; T
)
and f : T → R a continuous function on the torus. Then,

for any t ≥ 0

∫
U (ω) f (ωt ) dQ

L(ω) −→
∫

U (ω) f (ωt ) dQ(ω).

Proof Consider the mapping � f,t : D([0, T ]; T
) → R with � f,t (ω) = f (ωt ).

Then � f,t is continuous at paths ω ∈ D
([0, T ]; T

)
that are continuous at t , i.e.

ωt = ωt− : = lims↑t ωs . To see this, note that for any u ∈ D
([0, T ]; T

)
and

λt ∈ [0, T ] we have
∣∣∣� f,t (u)−� f,t (ω)

∣∣∣ ≤ | f (ut )− f (ωλt )| + | f (ωλt )− f (ωt )|.

Since f is continuous on the torus and ω is continuous at t , the right hand side of the
preceding display can be made arbitrarily small, provided we can control |ut − ωλt |
and |λt − t |. If we choose u sufficiently close to ω in the Skorokhod topology we
may find a λt that simultaneously makes these quantities suitably small. Since the set
of discontinuities of the function ω �→ U (ω) f (ωt ) is contained in the set of paths{
ω : ωt 	= ωt−

}
, the assertion of the Lemma will follow if we show that

Q
[
ωt 	= ωt−

] = 0. (8.10)

For t ≥ 0, and ε, δ > 0 define the subset J δ,ε
t ⊂ D

([0, T ]; T) by

J δ,ε
t = {ω ∈ D

([0, T ]; T) : sup
s∈(t−δ,t)

dT(ωt , ωs) > ε}.

We have {ωt 	= ωt−} = ∪ε>0 ∩δ>0 J δ,ε
t . Hence

Q
[
ωt 	= ωt−

] = 0⇔ lim
δ↓0 Q

[
J δ,ε
t
] = 0, ∀ε > 0.

Noting that J δ,ε
t are open in the Skorokhod topology it would suffice to show that

lim
δ↓0 lim sup

L→∞
Q

L[J δ,ε
t
] = lim

δ↓0 lim sup
L→∞

P
[

sup
s∈(t−δ,t)

dT
(
Y L
t ,Y L

s

)
> ε

] = 0, ∀δ > 0.

But this follows from tightness estimate in Section 8.1, in particular (8.3) and (8.5)
and estimates after that. ��

Note that for any Lipschitz function f : T→ Rwe have thatLT( f ) is a continuous
function on T. Indeed, using the elementary estimate

| f (y + u)− f (y)− f (x + u)+ f (x)| ≤ 2 Lip( f )
(
dT(x, y) ∧ dT(u, 0)

)
,
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we have that

|LT f (y)− LT f (x)| ≤ 2 Lip( f )
∫

T

(
1 ∧ dT(x, y)

dT(u, 0)

)
du

≤ 4 Lip( f )dT(x, y)

(
2+ ln

1

dT(x, y)

)
.

In particular, the mapping ω �→ ∫ t
0 LT f (ωs)ds is continuous in the Skorokhod topol-

ogy, and combined with Lemma 8.1 we get the following:

Lemma 8.2 LetQ be any subsequential weak limit ofQL and f : T→ R a Lipschitz
continuous function on the torus. Set

M f
t (ω) = f (ωt )− f (ω0)−

∫ t

0
LT f (ωs) ds.

If U is a bounded continuous function in D
([0, T ]; T) and t ≥ 0 we have

∫
U (ω)M f

t (ω) dQL(ω) −→
∫

U (ω)M f
t (ω) dQ(ω).

8.3 Uniqueness for the martingale problem

In this subsection we prove uniqueness for the martingale problem associated with the
operator LT , i.e. there exists a unique measure Q on the space D(R+;T) of càdlàg
paths on T, such that for the coordinate process (ωs : s ≥ 0) we have

{
Q
[
ω0 = y0 ∈ T

] = 1,

f
(
ωt
)− ∫ t

0 LT f
(
ωs
)
ds is a Q−martingale for all f ∈ Lip(T).

(8.11)

We may plug the test function fk(x) = e2π ikx , x ∈ [0, 1], k ∈ Z in (8.11) to get that
if Q solves (8.11), then for any t ≥ s ≥ 0 we have

E
Q
[
e2π ik(ωt−ωs )

∣∣Fs
] = e−ψ(k)(t−s), where ψ(k) = H(b, ρ)

∫

T

1−cos(2πky)

dT(0, y)
dy.

In particular, this shows that under Q the coordinate process has independent, time
homogeneous increments. This determines the finite dimensional distributions of
(ωs : s ≥ 0) and implies that such a Q is unique. To get a better insight on the
limiting process, we may rewrite ψ as

ψ(k) = H(b, ρ)

∫ 1

−1
1− cos(2πky)

|y| dy
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and note that if
(
Xt : t ≥ 0

)
is a symmetric Lévy process on R with Lévy measure

�(dy) = H(b, ρ)
1
{|y| < 1

}

|y| dy,

then Q is the distribution of the process
(
Xt (mod 1) : t ≥ 0

)
.

9 Estimates on the invariant measure

In this section we collect some auxiliary results of technical nature that we needed
throughout this article. We will use C to denote a constant (not always the same)
that only depends on absolute constants. When X is a random variable defined in a
probability space (�,F , ν) and A ∈ F we will write ν

(
X; A) as a shorthand for∫

A X dν. Recall also that Ñ = N − ρcL , and ZL ,N is the normalization in (7.7).

Proposition 9.1 Suppose δ > ρc. Then, provided that L is sufficiently large, we have

sup
N≥δL

∣
∣∣
zc ν

[
SL = N

]

L Ñ−b − 1
∣
∣∣ ≤ C

L
and thus sup

N≥δL

∣
∣∣

ZL ,N

zL−1c L Ñ−b − 1
∣
∣∣ ≤ C

L
. (9.1)

Proof The proof essentially follows the argument in [23] keeping track of the rate of
convergence when N is supercritical. For a given sequence hL we define the events
Bx = {ηx ≤ hL}, and Ck = Bc

1 ∩ · · · ∩ Bc
k ∩ Bk+1 ∩ · · · ∩ BL . Then,

ν
[
SL = N

] =
L∑

k=0

(
L

k

)
ν
[{SL = N } ∩ Ck

]
. (9.2)

Let us denote by G the distribution function of the one-site marginal of the critical
measure, i.e.G(t) = ν

[
ηx ≤ t

]
and let Ḡ = 1−G. If hL is chosen so that LḠ(hL) →

0⇔ hL � L
1

b−1 , then Lemmas 2.4 and 6.1 in [23] together imply that

L∑

k=2

(
L

k

)
ν
[{SL = N } ∩ Ck

] ≤ CL ν
[{SL = N } ∩ C1

]× (
LḠ(hL)

)
.

We will choose hL = L
2

b−1 so that the sum of the terms for k ≥ 2 in (9.2) is at most
O(L−1) times the term for k = 1. To estimate the term for k = 0 we may use Lemma
2.1 in [23]. Precisely, if κ = max{ 2

b−1 ,
1
2 }, then Lκ is a natural scale for SL −ρcL and

ν
[ |SL−ρcL| > x, ML ≤ hL

] ≤ ν
[ |SL−ρcL| > x, ML ≤ Lκ

]≤Ce−xL−κ ∀x > 0.
(9.3)
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Since Ñ ≥ (δ − ρc)L and κ < 1, for all sufficiently large L we have e−Ñ L−κ ≤ L−1,
hence

L ν
[{SL = N } ∩ C1

] ≤ ν
[
SL = N

] ≤ L ν
[{SL = N } ∩ C1

] (
1+ C

L

)
.

We now pick a sequence γL = Lγ , with κ < γ < 1. Using (9.3) again, it is not hard
to see that

ν
[{SL = N } ∩ C1

] = 1

zc

N−hL∑

k=0
(N − k)−b ν

[
SL−1 = k, ML−1 ≤ hL

]

= 1

zc
ν
(
(N − SL−1)−b; {SL−1 < N − hL , ML−1 ≤ hL}

)

= 1

zc
ν
(
(N − SL−1)−b; KL

) (
1+ o(

1

L
)
)
, (9.4)

where KL = { |SL−1 − ρcL| ≤ γL , ML−1 ≤ hL}. It also follows that

L

zc
ν
(
(N − SL−1)−b; KL

) ≤ ν
[
SL = N

] ≤ L

zc
ν
(
(N − SL−1)−b; KL

) (
1+ C

L

)
.

(9.5)
If |SL−1 − ρcL| ≤ γL we have the following pointwise inequality.

0 ≤ (N − SL−1)−b − Ñ−b − bÑ−(b+1)(SL−1 − ρcL) ≤ C Ñ−(b+2)(SL−1 − ρcL)2.

Integrating over KL and setting k∗ = ν
(
SL−1; KL

) = (L − 1)ν
(
η1; KL

)
we get

0 ≤ ν
(
(N − SL−1)−b; KL

)− ν
[
KL

]

Ñ b
− b

(
k∗ − ρcL ν

[
KL

])

Ñ b+1

≤ C

Ñb+2 ν
(
(SL−1 − ρcL)2

) ≤ CL

Ñb+2 . (9.6)

We now have to estimate how close ν
[
KL

]
is to 1, and k∗ to ρcL . Using (9.3) again

we have

ν
[
Kc

L

] = ν
[
ML−1 > hL

]+ ν
[ |SL−1 − ρcL| > γL , ML−1 ≤ hL

]

≤ (L − 1)ν[η1 > hL ] + ν
[ |SL−1 − ρcL| > γL , ML−1 ≤ Lκ

]

≤ C
(
Lh1−bL + e−Lγ−κ )

. (9.7)
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We also have

ρc = ν
(
η1
) ≥ ν

(
η1; KL

)( = k∗/(L − 1)
)

= ν
(
η1;ML−1 ≤ hL

)− ν
(
η1; |SL−1 − ρcL| > γL , ML−1 ≤ hL

)

≥ G(hL)L−2ν
(
η1; η1 ≤ hL

)− ν
(
η1; |SL−1 − ρcL| > γL , ML−1 ≤ Lκ

)

≥ (
1− LḠ(hL)

)
(ρc − Ch2−bL )− ν

(
η2x
) 1
2 e−Lγ−κ /2 ≥ ρc

(
1− CLh1−bL

)
.

In the penultimate step we have used Cauchy-Schwarz, (9.3), and the elementary
inequality (1− x)n ≥ 1− nx . Hence,

0 ≤ ρc(L − 1)− k∗ ≤ C L2h1−bL . (9.8)

Plugging this estimate into (9.6), the assertion follows from (9.5), since
L2h1−bL = 1. ��

In the proof of Proposition 9.3 we will need the following lemma, which holds in
particular for subextensive Ñ .

Lemma 9.2 Suppose L →∞ and Ñ � √
L log L. Then,

ZL ,N = zL−1c L Ñ−b (1+ o(1)
)
. (9.9)

Proof This follows immediately from Theorem 2.1 in [23] since

ZL ,N =
∑

η∈XL ,N

∏

x∈�

1

g!(ηx ) = zLc ν
[
SL = N

]
.

��
Corollary 1 in [3] states that for b > 3 the fluctuations of the condensate size

around Ñ are of order
√
L and asymptotically normal. The next Proposition provides

a conditional large deviation upper bound for the size of the condensate.

Proposition 9.3 Suppose Lγ ≤ αL ≤ Ñ for some γ > 1
2 . Then, for L sufficiently

large we have

μ
[
ML ≤ Ñ − αL

] ≤ CLα1−b
L . (9.10)

Proof We first observe that there exists a positive ε = ε(b, γ ) such that for L suffi-
ciently large we have

μ
[
ML ≤ ε Ñ ] ≤ CL Ñ 1−b. (9.11)

This follows from Lemma 5 in [24] and Lemma 9.2 since

μ
[
ML ≤ ε Ñ

] = zLc
ZL ,N

ν
[
SL = N , ML ≤ ε Ñ

] ≤ zLc
ZL ,N

( CL

ε Ñ 2

) 1
2ε .
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Choosing ε <
γ−1/2

(2b−1)γ−1 we get that (9.11) holds for L large enough. With this

observation the assertion follows easily when αL ≥ (1− ε)Ñ . Indeed, in this case

μ
[
ML ≤ Ñ − αL

] ≤ μ
[
ML ≤ ε Ñ

] ≤ CL Ñ 1−b ≤ CLα1−b
L .

If on the other hand αL ≤ (1− ε)Ñ we have

μ
[
ML ≤ Ñ − αL

] ≤ μ
[
ML ≤ ε Ñ

]+ Lμ
[
ε Ñ < ML = η1 ≤ Ñ − αL

]
. (9.12)

Now,

μ
[
ε Ñ ≤ ML = η1 ≤ Ñ − αL

] = zL−1c

ZL ,N

Ñ−αL∑

k=ε Ñ

1

kb
ν
[
ML−1 ≤ k, SL−1 = N − k

]

≤ zL−1c

ZL ,N

Ñ−αL∑

k=ε Ñ

1

kb
ν
[
SL−1 = N − k

]

= (L − 1)zL−2c

ZL ,N

(
1+ o(1)

) Ñ−αL∑

k=ε Ñ

1

kb
1

(Ñ − k)b
,

(9.13)

where the last line is a consequence of Theorem 2.1 in [23] and the fact that N −
k ≥ ρcL + αL if k ≤ Ñ − αL . By Jensen’s inequality for the convex function
x �→ x−b(1− x)−b, x ∈ (0, 1) we have

Ñ−αL∑

ε Ñ

1

kb(Ñ − k)b
≤ Ñ 1−2b

∫ 1− αL−1/2
Ñ

ε− 1
2Ñ

dx

xb(1− x)b
≤ C Ñ−bα1−b

L ,

for L sufficiently large. Applying this estimate to the last line of (9.13), we conclude
that

μ
[
ε Ñ ≤ ML = η1 ≤ Ñ − αL

] ≤ C
zLc L Ñ

−b

ZL ,N
α1−b
L . (9.14)

In view of Lemma 9.2 the assertion follows by replacing (9.11) and (9.14) in (9.12).
��

Proposition 9.4 Suppose Lγ ≤ αL ≤ 1
2 Ñ for some γ > 1/2. Let M (2)

L stand for the
second largest component of (η1, . . . , ηL). Then for L sufficiently large we have

μ
[
ML > Ñ − αL , M (2)

L > βL
] ≤ CLβ1−b

L . (9.15)
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Proof We have

μ
[
ML > Ñ − αL , M (2)

L > βL
] ≤ Lμ

[
ηL > Ñ − αL , ηL ≥ ML−1 > βL

]

= L zL−1c

ZL ,N

∑

k>Ñ−αL

1

g!(k)ν
[
SL−1 = N − k, k ≥ ML−1 > βL

]

≤ L zL−1c

ZL ,N (Ñ − αL)b
ν
[
SL−1 < ρcL + αL , ML−1 > βL

]

≤ L zL−1c

ZL ,N (Ñ − αL)b
ν
[
ML−1 > βL

]
.

The assertion now follows from Lemma 9.2 and the elementary estimate

ν
[
ML−1 > βL

] ≤ (L − 1)Ḡ(βL) ≤ CL β1−b
L .

��

Propositions 9.3 and 9.4 show that the invariant measure μ is essentially supported
in the union of the wells, as the following corollary states.

Corollary 9.5 Consider the wells E x defined in (2.12). Suppose Lγ ≤ αL ≤ 1
2 Ñ for

some γ > 1/2, and βL � L
1

b−1 . Then, for the complement � = XL ,N\⋃x∈� E x we
have

μ
[
�] ≤ CL

(
α1−b
L + β1−b

L

)→ 0 as L →∞.

Proof It suffices to note that

μ
[
�
] = μ

[{ML ≤ Ñ − αL} ∪ {M (2)
L > βL}

]

= μ
[
ML ≤ Ñ − αL

]+ μ
[
ML > Ñ − αL , M (2)

L > βL
]
.

��

Proposition 9.6 Suppose Lγ ≤ αL ≤ 1
2 Ñ for some γ > 1/2, and consider the sets

I0,y
N defined in (7.30). Then

μ
[{

η ∈ XL ,N\
⋃

0 	=y∈�

I0,y
N : 2αL ≤ η0 ≤ Ñ − 2αL

}] ≤ C L

α2b−2
L

.
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Proof We have

μ
[{

η ∈ XL ,N\
⋃

0 	=y∈�

I0,y
N : 2αL ≤ η0 ≤ Ñ − 2αL

}]

=
Ñ−2αL∑

k=2αL

ZL−1,N−k
ZL ,N

1

g!(k) μL−1,N−k
[
ML−1 ≤ Ñ − k − αL

]

≤ CL

αb−1
L

Ñ−2αL∑

k=2αL

Ñ b

kb(Ñ − k)b

≤ CL

(αL Ñ )b−1

∫ 1− 2αL−1
Ñ

2αL−1
Ñ

dx

xb(1− x)b
≤ C L

α2b−2
L

.

The third line follows from the second by Lemma 9.2 and an application of Proposition
9.3, term by term, with supercritical particle number N − k ≥ ρcL + 2αL , while the
fourth line follows from the third by Jensen’s inequality. ��

The following Proposition states that deviations of occupation numbers below their
typical value have exponentially decaying probability.

Proposition 9.7 Suppose Ñ ≥ Lγ for some γ > 1
2 , and let A ⊂ �. Let η̃x = ηx −ρc

and v = 2ν
(
η2x
)
. For any m > 0 and large enough L we have

μ
[∑

x∈A
η̃x ≤ −m

]
≤ Ce−

m2
v|A| .

Proof Write

μ
[∑

x∈A
η̃x ≤ −m

]
= zLc

ZL ,N

∑

k≤ρc|A|−m
ν
[
S|A| = k

]
ν
[
SL−|A| = N − k

]
.

For k in the range of summation the number of particles in�\A is supercritical. Indeed,
N − k− ρc(L − |A|) ≥ Ñ +m ≥ Ñ . Hence, ν

[
SL−|A| = N − k

] ≤ C(L − |A|)Ñ−b
for L large enough, and

μ
[∑

x∈A
η̃x ≤ −m

]
≤ CzLc

ZL ,N

(L − |A|)
Ñ b

∑

k≤ρc|A|−m
ν
[
S|A| = k

] ≤ C ν
[∑

x∈A
η̃x ≤ −m

]
,

where the last inequality follows from Lemma 9.2. The rest of the proof is now a
standard Chernoff bound for the sum of the independent variables {ηx }x∈A. For any
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λ < 0 we have

ν
[∑

x∈A
η̃x ≤ −m

]
≤ eλ(m−ρc|A|)ν

(
eληx

)|A| ≤ eλ(m−ρc|A|)
(

ν
(
1+ ληx + λ2

2
η2x

))|A|

= eλ(m−ρc|A|)(1+ λρc + vλ2

4

)|A| ≤ eλm+ v|A|λ2
4 .

The assertion now follows by choosing λ = −2m/v|A|. ��
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